Continuous Personalized Knowledge Tracing: Modeling Long-Term Learning in Online Environment

Chunpai Wang, Sherry Sahebi

University at Albany - SUNY

State University of New York

Problem

Continuous Personalized Sequence Modeling

Problem

- Continuous Personalized Sequence Modeling
- Online Education Systems
 - abundant of practice problems with large topic varieties
 - students can have a long continuous learning experiences
- Knowledge Tracing (KT)
 - model students' knowledge level over time , to
 - predict student performance
 - create a study plan
 - recommend learning materials, etc.

Knowledge Tracing Approaches

- Traditional KT approaches
 - probabilistic and hidden Markov models (e.g. BKT [Corbett et al.])
 - logistic regression models (e.g., IRT [Frederic et al.], PFA [Philip et al.])
 - work well on small datasets
- Deep KT approaches
 - work well on large datasets (e.g., DKT [Piech et al.], DKVMN [Zhang et al], SAKT [Pandey et al.])

Knowledge Tracing Approaches

- Traditional KT approaches
 - probabilistic and hidden Markov models (e.g. BKT [Corbett et al.])
 - logistic regression models (e.g., IRT [Frederic et al.], PFA [Philip et al.])
 - work well on small datasets
- Deep KT approaches
 - work well on large datasets (e.g., DKT [Piech et al.], DKVMN [Zhang et al], SAKT [Pandey et al.])
 - but, aim to learn **global** patterns as opposed to **personalized** ones
 - learn a shared set of parameters for all students
 - fail to represent student knowledge in the long run
 - truncate long learning sequences, and train on shorter batches
 - lose dependence between student sequence batches
 - difficult on personalization

Our Proposed Solution: CPKT

- Continuous Personalized Knowledge Tracing (CPKT):
 - personalized
 - personalized memory slots
 - personalized knowledge acquisition and forgetting patterns
 - continuous
 - online learning and inference paradigm
 - without truncating learning trajectories
 - generalizable
 - Transition-Aware Stochastic Shared Embedding (TA-SSE)
 - avoid overfitting

CPKT: Overall Architecture

- Dynamic key-value memory networks with personalized parameters
 - global static latent concept features M^k
 - personalized dynamic value matrix $M_{s,t}^{v}$ (student mastery state)
 - student embeddings u_s

- Personalized knowledge acquisition (a_s) and forgetting (f_s) rates to update student mastery over time
 - $\boldsymbol{f}_s = \sigma(w_3^T[\boldsymbol{v}_t, \boldsymbol{u}_s] + \boldsymbol{b}_3)$
 - $M_{s,t}^{v}(i) = M_{s,t-1}^{v}(i) \otimes [\mathbf{1}^{d_{h}} w_{q}(i)\mathbf{f}_{s}]$

• Personalized knowledge level $(r_{s,q,t})$ and ability-knowledge summary $(x_{s,q,t})$

CPKT: Continuous Knowledge Tracing

• Update model continuously over time with incremental data feeding

- moving window to extract and train on the most recent historical records
- avoid catastrophic interference problem

UNIVERSITY AT ALBANY State University of New York

CPKT: Continuous Knowledge Tracing

• Update model continuously over time with incremental data feeding

- moving window to extract and train on the most recent historical records
- avoid catastrophic interference problem
- Caveat:
 - many parameters
 - easily overfitted

UNIVERSITY AT ALBANY State University of New York

CPKT: Stochastic Shared Embedding to Rescue

- Data-driven regularization of embedding layers
- Stochastically swapping embeddings during the training
- Which embeddings to swap?
 - Transition-Aware Stochastic Shared Embedding (TA-SSE) for problems
 - random for students

CPKT: Transition-Aware Stochastic Shared Embedding

- Adds generalizability and avoids overfitting
 - generate item transition matrix *T* according to learning trajectories :

$$T_{i,j} = prob(j|i) = \frac{|i \to j|}{i}$$

• stochastically swap problems in the learning trajectory based on T

Continuous Learning Algorithm Summary

Generate item transition matrix T

For each test item index t do

For each problem response pair (q_i^s, a_i^s) in each student s's last t-H to t-1 responses With probability ρ

replace \boldsymbol{q}_i^s 's embedding and response with a random problem according to T

For each student s with embedding \boldsymbol{u}_s

With probability $\boldsymbol{\rho}$

replace u_s with random student embedding u_z

Update the personalized parameters by forward and backward passes

Predict the target student response at t

Collect the target student response as new data

Update the transition matrix T

Increase t by 1

Three Research Questions

- RQ1. How is the model performance compared with state of-the-art baselines?
- RQ2. How do different proposed components affect its prediction performance?
- RQ3. How does the model perform on the users with different lengths of learning trajectories?

RQ1: CPKT Outperforms Baselines

16

UNIVERSITY AT ALBANY State University of New York

RQ2: Ablation Study

• Both personalization and TA-SSE Help

Mathada	MORF	ASSIST2015	EdNet	Junyi	
ivietnoas	RMSE	AUC	AUC	AUC	
CPKT-W/O-Pers	0.1919±0.0092	0.7202±0.0040	0.5745±0.0036	0.8546±0.0078	
CPKT-W/O-SSE	0.1895±0.0067	0.7092±0.0049	0.5753±0.0058	0.8333±0.0051	
СРКТ	0.1752±0.0081	0.7274±0.0032	0.6558±0.0072	0.8802±0.0072	

RQ3: Better Performance for Longer Trajectories

• Arrange all students based on their test sequence lengths (corresponding to trajectory lengths) into three groups with roughly equal sizes: short, medium, long.

Group	#Llcorc	Range of Test		Mean AUC	P-Value of CPKT vs.		
	#USETS	Length	DKT	DKVMN	СРКТ	DKT	DKVMN
Short	199	[0,110]	\$0.64	0.6427	0.6321	p=0.8421	p=0.4767
Medium	210	[110,380]	0.6422	0.6363	0.644	p=0.7375	p=0.1398
Long	234	[380,900]	0.6413	0.6315	0.6475	p=0.0745	p=1.51e-05

Group	#1.10.010	Range of Test		Mean BCE	P-Value of CPKT vs.		
	#USEIS	Length	DKT	DKVMN	СРКТ	DKT	DKVMN
Short	199	[0,110]	0.655	0.6884	0.653	p=0.8583	p=0.0154
Medium	210	[110,380]	0.6474	0.675	0.6375	p=0.0475	p=2.87e-09
Long	234	[380,900]	0.6562	0.6942	0.6389	p=4.71e-05	p=1.70e-19

Conclusions

Continuous Personalized Knowledge Tracing (CPKT):

- ★ could track personalized student knowledge
- over long learning trajectories using an online learning and prediction paradigm
- using a transition-aware stochastic shared embedding regularization method that could resolve the overfitting issues

Source code of CPKT: <u>https://github.com/persai-lab/CIKM2023-CPKT</u> Contact: Chunpai Wang <u>chunpaiwang@gmail.com</u>

This paper is based upon work supported by the National Science Foundation under Grant No. 2047500.

State University of New York

Related Work

- Traditional Knowledge Tracing
 - probabilistic models (e.g. BKT) and logistic models (e.g. IRT, AFM)
 - works well on small dataset
 - allow personalization (learn student specific parameters)
- Deep Knowledge Tracing (KT)
 - works well on large dataset (e.g. DKT, DKVMN, SAKT)
 - aim to learn global patterns (learn a shared set of parameters for all students)
 - truncate long learning sequences, and train on shorter batches
 - lose dependence between student sequence batches
 - difficult on personalization
 - fail to represent student knowledge in the long term

Motivation

Online Education System

- abundant of practice problems with large topic varieties
- student can have a "lifelong" or continuous learning experience
 - can practice same topics many times
 - can learn a variety of topics over long periods of time
 - demand of personalized long-term learning experience

СРКТ

- We propose Continuous Personalized Knowledge Tracing (CPKT):
 - personalized KT
 - track individualized student knowledge and predict student performance
 - personalized memory slots to maintain learner's knowledge in a lifelong manner
 - personalized knowledge acquisition and forgetting patterns
 - continuous KT by online learning and inference paradigm
 - mimic the real world long-term continuous learning scenario
 - without truncating learning trajectories to train the model
 - incorporation of personalization and continuous model learning
 - transition-aware stochastic shared embedding
 - avoid overfitting

• Personalized knowledge tracing:

- given $\{(q_1^s, a_1^s), (q_2^s, a_2^s), \dots, (q_{t-1}^s, a_{t-1}^s), q_t^s\}$, predict a_t^s .
- the general deep learning-based models omit the superscript s in the context and do not differentiate distinct students' historical records.

- Personalized Memory Slots
 - maintain a dynamic value matrix $\mathbf{M}_{s,t}^{v}$ for each student

- Personalized knowledge acquisition $(a_{s,t})$ and forgetting $(f_{s,t})$ rates to update student mastery over time
 - $\boldsymbol{f}_{s,t} = \sigma(w_3^T[v_t, u_s] + b_3)$
 - $M_{s,t}^{v}(i) = M_{s,t-1}^{v}(i) \otimes [\mathbf{1}^{d_{h}} w_{q}(i)\mathbf{f}_{s,t}]$

• Personalized knowledge level $(r_{s,q,t})$ and ability-knowledge summary $(x_{s,q,t})$

Personalized Knowledge Acquisition and Forgetting

CPKT: Stochastic Shared Embedding to Rescue

- Stochastic Shared Embedding (SSE) [1]
 - data-driven regularization of embedding layers
 - stochastically swapping similar item embeddings during the training
 - implicitly adds exponentially many distinct reordering layers above the embedding layer and leads to exponentially many models trained at the same time
 - the loss landscape with SSE regularization becomes smoother and leads to better generalization.
 - requires an auxiliary knowledge graph to compute the switching probability distribution

[1] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James L Sharpnack. 2019. Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers. Advances in Neural Information Processing Systems 32 (2019).

CPKT: Transition-Aware Stochastic Shared Embedding

- Adds generalizability and avoids overfitting
 - propose to generate and use a transition matrix based on the student learning trajectories.
 - learning trajectories typically contain some information on the learning material similarities.
 - better generalization.
 - Q by Q transition matrix T:

$$T_{ij} = \operatorname{prob}(j \mid i) = \frac{|i \rightarrow j|}{|i|}$$

Algorithm

Algorithm 1: CPKT

- **Input:** Observed student responses Ω_{obs} , including other students' and the target student's historical responses. Hyperparameter ρ denotes by SSE threshold and H denotes by time window size.
- 1 Sort each student's responses by the timestamp.
- ² Generate the learning transition matrix **T** based on all observed learning trajectories.
- ³ Generate a dictionary D that stores each problem as key and a list of corresponding observed score or correctness from all students as value.

4 f	or each testing time index t do
5	Extract each student's responses between time index
	$t - H$ and $t - 1$, denotes by $\Omega_{t-H}^{t-1} = \{(q_i^s, a_i^s)\}_{i=t-H}^{i=t-1}$.
6	Feed Ω_{t-H}^{t-1} along with student IDs into model.
7	for each problem q_i^s and corresponding interaction
	$(q_i^s, a_i^s) \in \Omega_{t-H}^{t-1}$ do
8	Identify the problem embedding \mathbf{k}_i and interaction
	embedding \mathbf{v}_i .
9	Generate a random number $\gamma \in [0, 1]$.
10	if $\gamma < \rho$ then
11	Replace \mathbf{k}_i with \mathbf{k}_j , where $j \sim T_{ij} = prob(j \mid i)$
12	Randomly sample a response a_j for problem q_j
	from \mathcal{D} .
13	Identify the interaction embedding \mathbf{v}_j for
	(q_j, a_j) , and replace \mathbf{v}_i with \mathbf{v}_j .
14	end
15	end

Algorithm

16	for each students do								
16									
17	Identify the student embedding u _s .								
18	Generate a random number $\gamma \in [0, 1]$.								
19	if $\gamma < \rho$ then								
20	Randomly sample a student <i>z</i> from all students.								
21	Identify the student embedding \mathbf{u}_{z} .								
22	Replace \mathbf{u}_s with \mathbf{u}_z .								
23	end								
24	end								
25	Forward and backward pass with the new embeddings								
	to train the model by minimizing the training loss.								
26	Predict the target student's response at time <i>t</i> .								
27	Collect the target student's new response into Ω_{obs} .								
28	Update the transition matrix T as well as \mathcal{D} .								
29	Increase the testing time index by 1.								

30 end

• RMSE (H denotes the sliding window size)

$$\ell_{RMSE} = \sqrt{\frac{\sum_{s} \sum_{t}^{t+H} (a_t^s - p_t^s)^2}{n}}$$

• Binary Cross Entropy

$$\ell_{BCE} = -\sum_{s}\sum_{t}^{t+H} \left(a_t^s \log p_t^s + \left(1 - a_t^s\right) \log \left(1 - p_t^s\right)\right)$$

Experimental Setup

5-Fold User Stratified Cross Validation

- Observe all historical records for all training users.
- Observe all records before a preset threshold time index for all testing users.
- Predict test users' performance after the threshold time index.
- The testing records will be uncovered over time, along with the rolling prediction.
- Set the threshold index at roughly 10% of the maximum sequence lengths for each data.

Descriptive Statistics of 4 Real World Datasets.									
Dataset	Users	Questions	Question Record	Mean Question Responses	STD Question Responses	Correct Question Responses	Incorrect Question Responses	Max Sequence Length	
MORF	686	10	12031	0.7763	0.2507	N/A	N/A	46	
ASSIST2015	19840	100	683801	N/A	N/A	500379	183,422	1000	
EdNet	1000	11249	200931	N/A	N/A	118767	82,184	1,000	
Junyi	1564	142	120984	N/A	N/A	86654	34328	1000	

Experimental Setup

Table 4: Hyperparameters of CPKT.

Dataset	d_h	d_u	Ν	H
MORF	32	2	11	20
ASSIST2015	128	8	6	150
EdNet	128	8	41	150
Junyi	128	4	7	200

Descriptive Statistics of 4 Real World Datasets.									
Dataset	Users	Questions	Question Record	Mean Question Responses	STD Question Responses	Correct Question Responses	Incorrect Question Responses	Max Sequence Length	
MORF	686	10	12031	0.7763	0.2507	N/A	N/A	46	
ASSIST2015	19840	100	683801	N/A	N/A	500379	183,422	1000	
EdNet	1000	11249	200931	N/A	N/A	118767	82,184	1,000	
Junyi	1564	142	120984	N/A	N/A	86654	34328	1000	