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Problem

• Continuous Personalized Sequence Modeling
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Problem

• Continuous Personalized Sequence Modeling

• Online Education Systems
• abundant of practice problems with large topic varieties
• students can have a long continuous learning experiences

• Knowledge Tracing (KT) 
• model students’ knowledge level over time , to

• predict student performance 
• create a study plan
• recommend learning materials, etc.
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Knowledge Tracing Approaches

• Traditional KT approaches
• probabilistic and hidden Markov models (e.g. BKT [Corbett et al.]) 
• logistic regression models (e.g., IRT [Frederic et al.], PFA [Philip et al.] )
• work well on small datasets

• Deep KT approaches
• work well on large datasets (e.g., DKT [Piech et al.], DKVMN [Zhang et al], SAKT [Pandey et al.])
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Knowledge Tracing Approaches

• Traditional KT approaches
• probabilistic and hidden Markov models (e.g. BKT [Corbett et al.]) 
• logistic regression models (e.g., IRT [Frederic et al.], PFA [Philip et al.] )
• work well on small datasets

• Deep KT approaches
• work well on large datasets (e.g., DKT [Piech et al.], DKVMN [Zhang et al], SAKT [Pandey et al.])
• but, aim to learn global patterns as opposed to personalized ones 

• learn a shared set of parameters for all students
• fail to represent student knowledge in the long run

• truncate long learning sequences, and train on shorter batches
• lose dependence between student sequence batches
• difficult on personalization
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Our Proposed Solution: CPKT

• Continuous Personalized Knowledge Tracing (CPKT):
• personalized

• personalized memory slots
• personalized knowledge acquisition and forgetting patterns

• continuous
• online learning and inference paradigm
• without truncating learning trajectories

• generalizable
• Transition-Aware Stochastic Shared Embedding (TA-SSE)
• avoid overfitting
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CPKT: Overall Architecture
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CPKT: Personalized Memory Augmented Network

• Dynamic key-value memory networks with personalized parameters 
• global static latent concept features 𝑀!

• personalized dynamic value matrix 𝑀",$
% (student mastery state) 

• student embeddings 𝒖"
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CPKT: Personalized Memory Augmented Network

• Personalized knowledge acquisition (𝒂!) and forgetting (𝒇!) rates to update 
student mastery over time
• 𝒇" = 𝜎(𝑤&' 𝑣$ , 𝑢" + 𝑏&)
• 𝑀",$

% 𝑖 = 𝑀",$()
% 𝑖 ⊗ [𝟏*! − 𝑤+(𝑖)𝒇"]

• Personalized knowledge level (𝒓!,#,$) and 
ability-knowledge summary (𝒙!,#,$)
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CPKT: Continuous Knowledge Tracing

• Update model continuously over time with incremental data feeding 
• moving window to extract and train on the most recent historical records
• avoid catastrophic interference problem 
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CPKT: Continuous Knowledge Tracing

• Update model continuously over time with incremental data feeding 
• moving window to extract and train on the most recent historical records
• avoid catastrophic interference problem 

• Caveat: 
• many parameters 
• easily overfitted
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CPKT: Stochastic Shared Embedding to Rescue

• Data-driven regularization of embedding layers
• Stochastically swapping embeddings during the training
• Which embeddings to swap?

• Transition-Aware Stochastic Shared Embedding (TA-SSE) for problems
• random for students
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CPKT: Transition-Aware Stochastic Shared Embedding

• Adds generalizability and avoids overfitting
• generate item transition matrix 𝑇 according to learning trajectories :

𝑇!,# = 𝑝𝑟𝑜𝑏 𝑗 𝑖 = |!→#|
!

• stochastically swap problems in the learning trajectory based on 𝑇  
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Continuous Learning Algorithm Summary

Generate item transition matrix T 
For each test item index t do 

For each problem response pair (q!", a!") in each student s’s last t-H to t-1 responses
 With probability ρ
  replace q!" ‘s embedding and response with a random problem according to T
For each student s with embedding u"

With probability ρ
  replace u"	with random student embedding u#
Update the personalized parameters by forward and backward passes 
Predict the target student response at t
Collect the target student response as new data
Update the transition matrix T
Increase t by 1 
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Three Research Questions

● RQ1. How is the model performance compared with state of-the-art 
baselines?

● RQ2. How do different proposed components affect its prediction 
performance?

● RQ3. How does the model perform on the users with different lengths of 
learning trajectories?
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RQ1: CPKT Outperforms Baselines

Methods
MORF ASSIST2015 EdNet Junyi

RMSE AUC AUC AUC

DKT 0.1990±0.0087 0.7142±0.0029 0.6349±0.0048 0.8709±0.0072

DKVMN 0.1995±0.0067 0.7047±0.0034 0.6291±0.0070 0.8685±0.0084

SAKT 0.1975±0.0075 0.6997±0.0153 0.6296±0.0059 0.8208±0.0091

SAINT 0.2190±0.0186 0.6533±0.0135 0.5058±0.0070 0.8406±0.0078

AKT 0.2417±0.0112 0.6870±0.0159 0.6303±0.0070 0.8133±0.0152

IEKT 0.2481±0.0054 0.7204±0.0027 0.5980±0.0133 0.8721±0.0026

CPKT 0.1752±0.0081 0.7274±0.0032 0.6558±0.0072 0.8802±0.0072
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RQ2: Ablation Study

• Both personalization and TA-SSE Help 

Methods
MORF ASSIST2015 EdNet Junyi

RMSE AUC AUC AUC

CPKT-W/O-Pers 0.1919±0.0092 0.7202±0.0040 0.5745±0.0036 0.8546±0.0078

CPKT-W/O-SSE 0.1895±0.0067 0.7092±0.0049 0.5753±0.0058 0.8333±0.0051

CPKT 0.1752±0.0081 0.7274±0.0032 0.6558±0.0072 0.8802±0.0072
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RQ3: Better Performance for Longer Trajectories
• Arrange all students based on their test sequence lengths (corresponding to 

trajectory lengths) into three groups with roughly equal sizes: short, medium, long.

Group #Users Range of Test 
Length

Mean AUC P-Value of CPKT vs.
DKT DKVMN CPKT DKT DKVMN

Short 199 [0,110] $0.64 0.6427 0.6321 p=0.8421 p=0.4767
Medium 210 [110,380] 0.6422 0.6363 0.644 p=0.7375 p=0.1398

Long 234 [380,900] 0.6413 0.6315 0.6475 p=0.0745 p=1.51e-05

Group #Users Range of Test 
Length

Mean BCE P-Value of CPKT vs.
DKT DKVMN CPKT DKT DKVMN

Short 199 [0,110] 0.655 0.6884 0.653 p=0.8583 p=0.0154
Medium 210 [110,380] 0.6474 0.675 0.6375 p=0.0475 p=2.87e-09

Long 234 [380,900] 0.6562 0.6942 0.6389 p=4.71e-05 p=1.70e-19

18



Conclusions

Continuous Personalized Knowledge Tracing (CPKT):

★ could track personalized student knowledge
★ over long learning trajectories using an online learning and prediction 

paradigm
★ using a transition-aware stochastic shared embedding regularization 

method that could resolve the overfitting issues
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This paper is based upon work supported by the National Science Foundation under Grant No. 2047500.

Source code of CPKT:  https://github.com/persai-lab/CIKM2023-CPKT
Contact: Chunpai Wang chunpaiwang@gmail.com
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Related Work

● Traditional Knowledge Tracing
○ probabilistic models (e.g. BKT) and logistic models (e.g. IRT, AFM)
○ works well on small dataset
○ allow personalization (learn student specific parameters)

● Deep Knowledge Tracing (KT) 
○ works well on large dataset (e.g. DKT, DKVMN, SAKT)
○ aim to learn global patterns (learn a shared set of parameters for all students)

■ truncate long learning sequences, and train on shorter batches 
■ lose dependence between student sequence batches
■ difficult on personalization
■ fail to represent student knowledge in the long term
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Motivation

Online Education System

● abundant of practice problems with large topic varieties
● student can have a “lifelong” or continuous learning experience

○ can practice same topics many times
○ can learn a variety of topics over long periods of time
○ demand of personalized long-term learning experience
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CPKT

• We propose Continuous Personalized Knowledge Tracing (CPKT):
• personalized KT

• track individualized student knowledge and predict student performance 
• personalized memory slots to maintain learner’s knowledge in a lifelong 

manner
• personalized knowledge acquisition and forgetting patterns

• continuous KT by online learning and inference paradigm
• mimic the real world long-term continuous learning scenario
• without truncating learning trajectories to train the model

• incorporation of personalization and continuous model learning
• transition-aware stochastic shared embedding
• avoid overfitting
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CPKT: Personalized Memory Augmented Network

● Personalized knowledge tracing:
○ given 𝑞!" , 𝑎!" , 𝑞#" , 𝑎#" , … , 𝑞$%!" , 𝑎$%!" , 𝑞$" , predict 𝑎$".
○ the general deep learning-based models omit the superscript 𝑠 in the context and 

do not differentiate distinct students’ historical records. 
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CPKT: Personalized Memory Augmented Network

● Personalized Memory Slots 
○ maintain a dynamic value matrix          for each student
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CPKT: Personalized Memory Augmented Network

• Personalized knowledge acquisition (𝒂!,#) and forgetting (𝒇!,#) rates to 
update student mastery over time
• 𝒇",$ = 𝜎(𝑤'( 𝑣$ , 𝑢" + 𝑏')
• 𝑀",$

) 𝑖 = 𝑀",$%!
) 𝑖 ⊗ [𝟏*! − 𝑤+(𝑖)𝒇",$]

• Personalized knowledge level (𝒓!,$,#) and 
ability-knowledge summary (𝒙!,$,#)
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CPKT: Personalized Memory Augmented Network

● Personalized Knowledge Acquisition and Forgetting
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CPKT: Stochastic Shared Embedding to Rescue

● Stochastic Shared Embedding (SSE) [1]
○ data-driven regularization of embedding layers
○ stochastically swapping similar item embeddings during the training
○ implicitly adds exponentially many distinct reordering layers above the 

embedding layer and leads to exponentially many models trained at the 
same time

○ the loss landscape with SSE regularization becomes smoother and leads 
to better generalization.

○ requires an auxiliary knowledge graph to compute the switching 
probability distribution

[1] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James L Sharpnack. 2019. Stochastic Shared Embeddings: Data-driven Regularization of Embedding 
Layers. Advances in Neural Information Processing Systems 32 (2019). 28



CPKT: Transition-Aware Stochastic Shared Embedding

• Adds generalizability and avoids overfitting
• propose to generate and use a transition matrix based on the student 

learning trajectories.
• learning trajectories typically contain some information on the learning 

material similarities.
• better generalization.
• Q by Q transition matrix T: 
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Algorithm
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Algorithm

● RMSE (H denotes the sliding window 
size)

● Binary Cross Entropy
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Experimental Setup

5-Fold User Stratified Cross Validation

● Observe all historical records for all training users.
● Observe all records before a preset threshold time index for all testing users.
● Predict test users’ performance after the threshold time index.
● The testing records will be uncovered over time, along with the rolling prediction. 
● Set the threshold index at roughly 10% of the maximum sequence lengths for each data.

Descriptive Statistics of 4 Real World Datasets.

Dataset Users Questions
Question 
Record

Mean
Question

Responses

STD
Question

Responses

Correct
Question

Responses

Incorrect
Question

Responses

Max
Sequence

Length

MORF 686 10 12031 0.7763 0.2507 N/A N/A 46
ASSIST2015 19840 100 683801 N/A N/A 500379 183,422 1000

EdNet 1000 11249 200931 N/A N/A 118767 82,184 1,000
Junyi 1564 142 120984 N/A N/A 86654 34328 1000 32
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