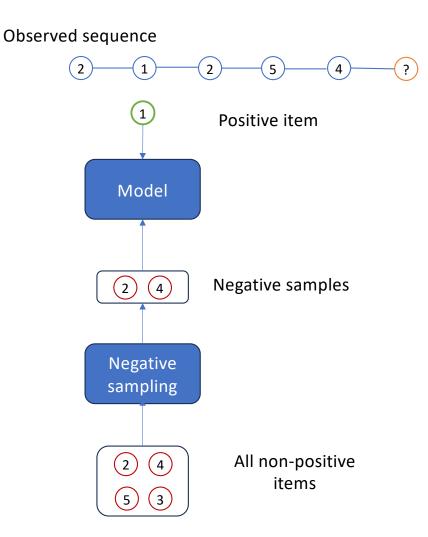


Neighborhood-Aware Negative Sampling for Student Knowledge and Behavior Modeling

General problem

- Negative sampling
 - Distinguish informative vs. noninformative samples
 - To predict the next sequence item with complex patterns and interrelations
 - Using coarse-grained sequence information



Application Context: Student Modeling

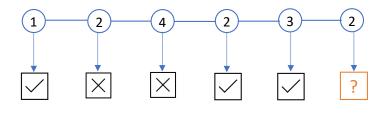
- Online education systems
 - Enabling distance learning and abundant courses
 - Attracting more and more students
 - Promoting the development of Educational Data Mining (EDM)
- Essential EDM problems
 - Student Knowledge Tracing (KT)
 - Student Behavior Modeling (BM)

Student Knowledge Tracing (KT)

- Objectives
 - Given observed student history and performance
 - Quantify student knowledge level while learning
 - Predict students' future performance in a given question

Interacted questions

Performance in questions

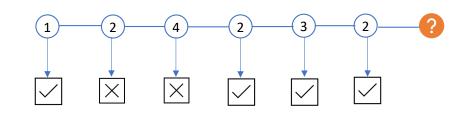


Student Behavior Modeling (BM)

- Understanding students' behavior patterns during the learning process
 - Engagement
 - Procrastination
 - Preference for learning materials
 - Predict the next question student chooses to interact with, given history
 - Many questions to choose from \rightarrow needs negative sampling

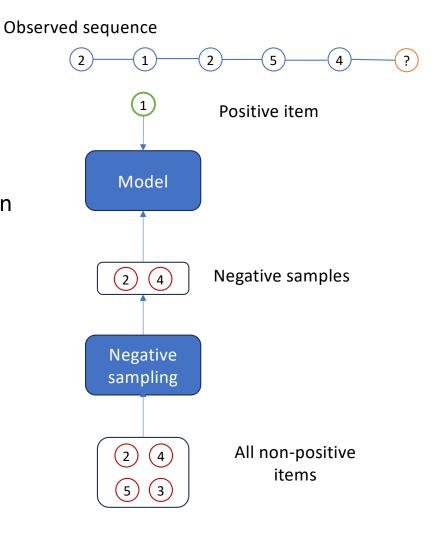
Interacted questions

Performance in questions



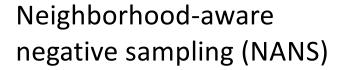
Challenge

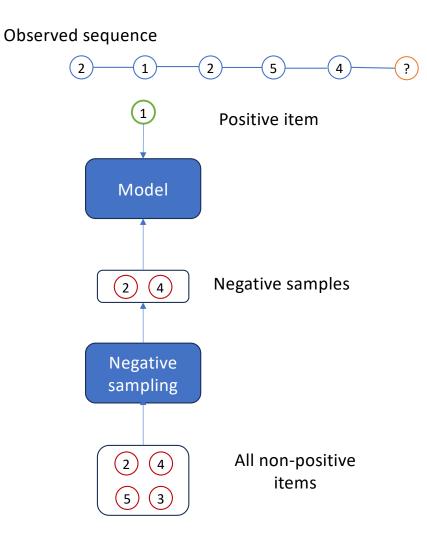
- How to use sequence information in selecting informative negative samples
 - Using coarse-grained sequence information
- While learning both student knowledge (KM) and Behavior (BM)
 - Using fine-grained sequence information



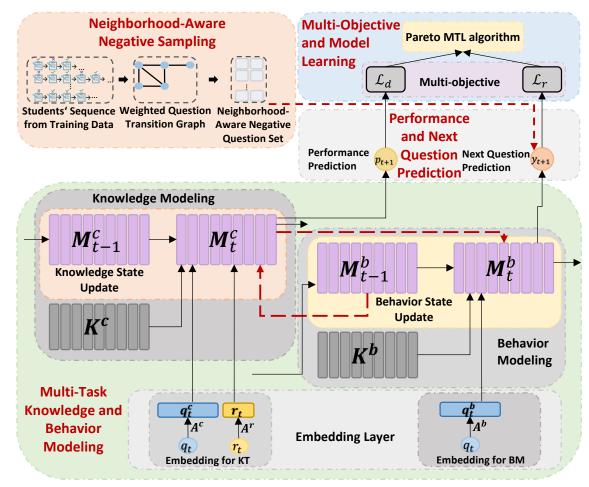
PersAl Lab

Multi-objective multi-task key-value memory networks (KoBeM)

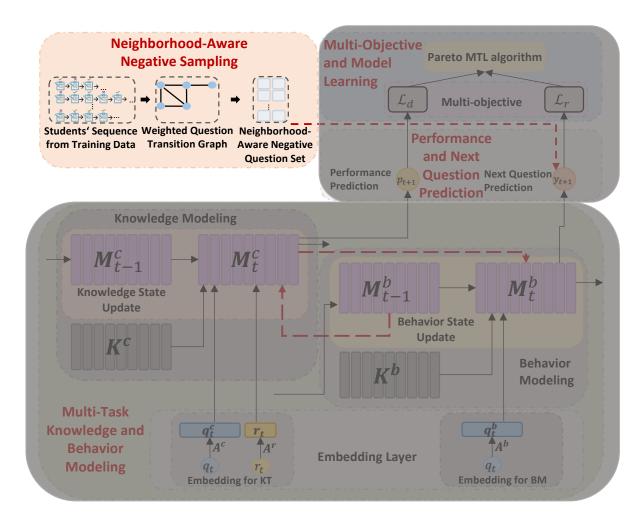




Neighborhood-Aware Negative Sampling (NANS) with Knowledge and Behavior Modeling (KoBeM)

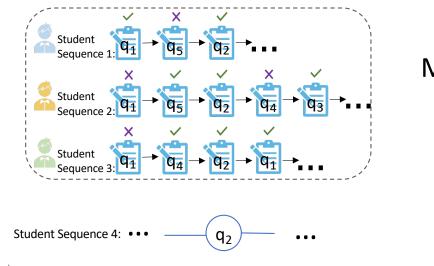


Neighborhood-Aware Negative Sampling (NANS)



Neighborhood-Aware Negative Sampling (NANS)

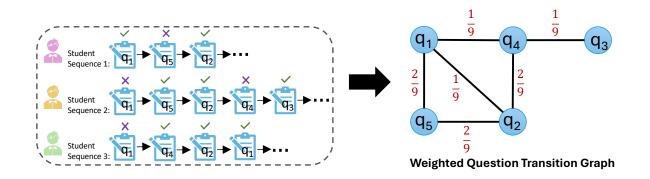
- Out of many similar questions, the student chooses one positive item
- Using "similar" questions as the difficult negative candidate set



Most similar questions to q₂

Neighborhood-Aware Negative Sampling (NANS) -

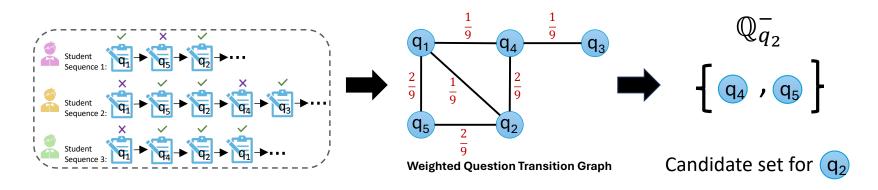
1. Weighted transition graph
$$w_{q_i,q_j} = \frac{|I_{q_i,q_j}|}{\sum_{i,j} |I_{q_i,q_j}|}$$



Neighborhood-Aware Negative Sampling (NANS) -

1. Weighted transition graph
$$w_{q_i,q_j} = \frac{|I_{q_i,q_j}|}{\sum_{i,j} |I_{q_i,q_j}|}$$

2. Neighborhood-Aware Negative Candidate Set $(\mathbb{Q}_{q_t}^-)$

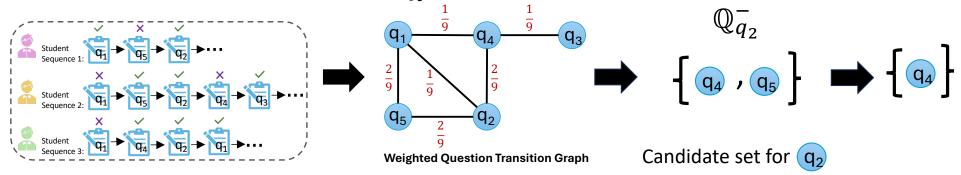


PersAl Lab

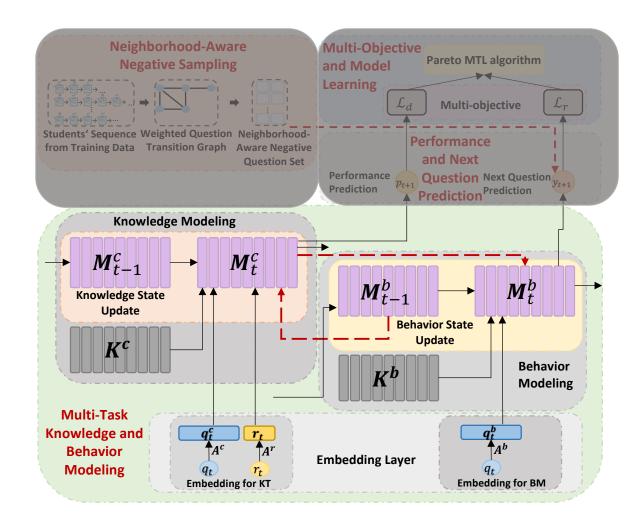
Neighborhood-Aware Negative Sampling (NANS) -

1. Weighted transition graph
$$w_{q_i,q_j} = \frac{|I_{q_i,q_j}|}{\sum_{i,j} |I_{q_i,q_j}|}$$

- 2. Neighborhood-Aware Negative Candidate Set $(\mathbb{Q}_{q_t}^-)$
- 3. Randomly sample from $\mathbb{Q}_{q_t}^-$ to increase diversity of samples

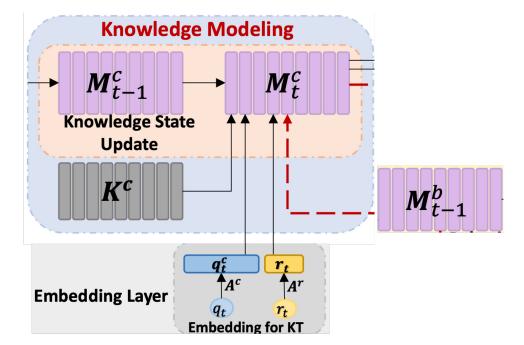


Multi-Task Knowledge and Behavior Modeling (KoBeM)



Behavior-Aware Knowledge Modeling

- Dynamic key-value memory networks for knowledge tracing
 - **K**^c: latent concept features
 - M_t^c : student's mastery state
- Update Mastery M_t^c
 - erase-followed-by-add
 - considering student's behavior state from the BM component (*M*^b_t)



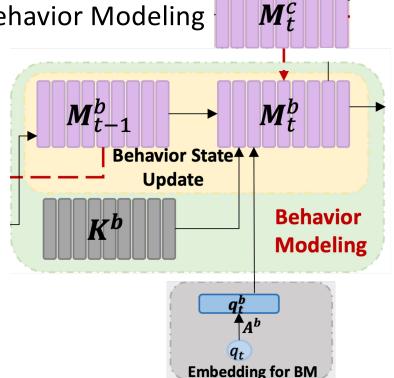
PersAl Lab

Behavior-Aware Knowledge Modeling

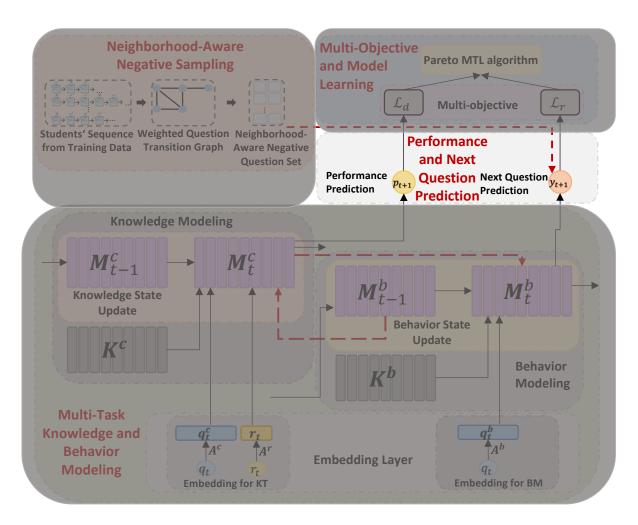
- Erase step:
 - $\boldsymbol{e}_{t}^{c} = \sigma \left(\boldsymbol{E}^{c^{T}} [\boldsymbol{q}_{t}^{cT} \oplus \boldsymbol{r}_{t}] + \boldsymbol{E}_{b}^{c^{T}} \boldsymbol{M}_{t-1}^{b} + \boldsymbol{b}_{e}^{c} \right)$
 - $\widetilde{\boldsymbol{M}}_t^c = \boldsymbol{M}_t^c(i) \cdot [\boldsymbol{1} w_t^c(i)\boldsymbol{e}_t^c]$
- Add step
 - $\boldsymbol{a}_{t}^{c} = Tanh(\boldsymbol{D}^{c^{T}}[\boldsymbol{q}_{t}^{c} \oplus \boldsymbol{r}_{t}] + \boldsymbol{D}_{b}^{c^{T}}\boldsymbol{M}_{t-1}^{b} + \boldsymbol{b}_{d}^{c})$
 - $\boldsymbol{M}_t^c = \widetilde{\boldsymbol{M}}_t^c(i) + w_t^c(i)\boldsymbol{a}_t^c$

Knowledge-Aware Behavior Modeling

- Dynamic key-value memory networks for Behavior Modeling
 - **K**^b: latent behavior features
 - M_t^b : student's behavior state
- Update Mastery *M*^b_t
 - erase-followed-by-add
 - considering student's behavior state from the KT component (*M*^c_t)



Prediction Layer



PersAl Lab

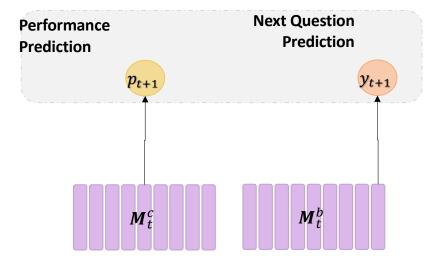
Prediction Layer

• Next question prediction

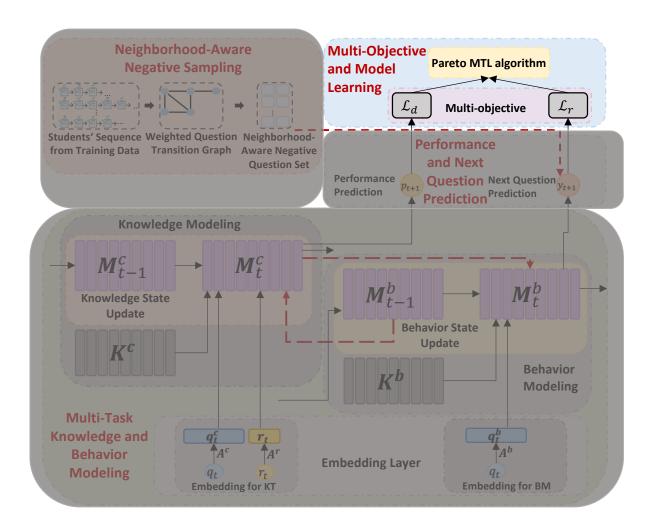
$$g_t^b = \sum_{i=1}^{n_d} w_t(i) M_t^b(i)$$
$$s_t = Tanh(W_s^{\mathsf{T}}[g_t^b \oplus q_t^b] + b_s)$$
$$y_{t+1} = sigmoid(W_y^T s_t + b_y)$$

• Performance prediction

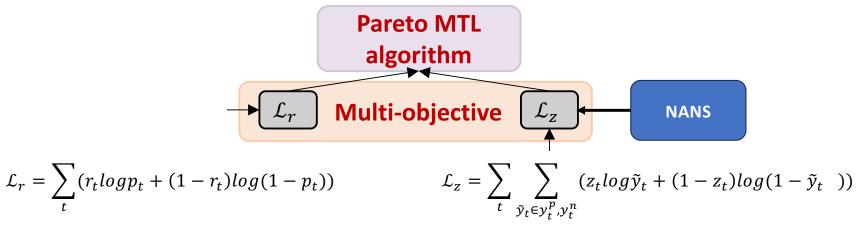
$$g_{t+1}^c = \sum_{i=1}^{n_c} w_{t+1}(i) M_t^c(i)$$
$$f_{t+1} = Tanh(W_f^T[g_{t+1}^c \oplus q_{t+1}^c] + b_f)$$
$$p_{t+1} = Sigmoid(W_p^T f_t + b_p)$$



Multi-Objective and Model Learning

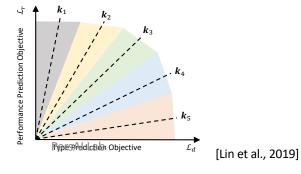


Multi-Objective and Pareto Optimization



Student performance prediction loss

Student behavior prediction loss



Experiments

- Student behavior prediction
 - Compared to baselines
 - With alternative negative sampling methods

• Student performance prediction

Dataset	#Users	#Questions	Question Activities	Question Responses Mean	Question Responses STD	#Correct Question Responses	#Incorrect Question Responses
EdNet Junyi	$\begin{array}{c} 1000\\ 2063 \end{array}$	$\begin{array}{c} 11249\\ 3760 \end{array}$		$\begin{array}{c} 0.5910 \\ 0.6660 \end{array}$	$0.2417 \\ 0.2224$	$\frac{118747}{193664}$	$82184 \\ 97090$

Student Behavior Prediction Comparison

- NANS-KoBeM structure and negative sampling performs well in predicting the next question, whether with or without knowledge modeling
- But, the information transfer between knowledge modeling and behavior modeling helps

•	Student behavior is influenced by preference knowledge	
•	Student behavior is influenced by preference knowledge	

Methods	HR	Ednet NDCG	MRR	HR	Junyi NDCG	MRR
LSTM MANN			0.0301^{**} 0.0396^{**}			
NANS-KoBeM w/o KM NANS-KoBeM			0.0449** 0.0503			

Student Behavior Prediction with Alternative Negative Sampling

- Neighborhood-aware negative sampling (NANS) is is more effective than
 - Random negative sampling (RD)
 - Weighted distribution negative sampling (WD)
 - Graph representation learning negative sampling (MCNS), and
 - Neighborhood overlap difference negative sampling (GNNO)

Methods	HR	Ednet NDCG	MRR	HR	Junyi NDCG	MRR
RD-KoBeM	0.0973^{*}	0.0616^{*}	0.0498^{*}	0.4807^{*}		0.3344^{**}
WD-KoBeM	0.0969^{*}	0.0614^{*}	0.0496^{*}	0.4355**	0.3490^{**}	0.3200^{**}
MCNS-KoBeM	0.0972*	0.0617^{*}	0.0499^{*}	0.4871*	0.3752^{*}	0.3387^{**}
GNNO-KoBeM	0.0974^{*}	0.0618^{*}	0.0499^{*}	0.4875^{*}	0.3756^{*}	0.3389**
NANS-KoBeM w/o KM	0.0877**	0.0555**	0.0449**	0.4391**	0.3387**	0.3051**
NANS-KoBeM	0.0982	$\boldsymbol{0.0622}$	0.0503	0.4919	0.3795	0.3422

🔀 Student Performance Prediction Comparison

Methods	EdNet AUC	Junyi AUC
DKT SAKT SAINT AKT DeepIRT	$\frac{0.6393^{**}}{0.6334^{**}}$ $\frac{0.5205^{**}}{0.6393^{**}}$ $\frac{0.6290^{**}}{0.6290^{**}}$	$\frac{0.8623^{**}}{0.8053^{**}}$ 0.7951^{**} 0.8093^{**} 0.8498^{**}
DKVMN (NANS-KoBeM w/o BM) NANS-KoBeM	0.6296** 0.6615	0.8558** 0.8779

- NANS-KoBeM structure and negative sampling performs well in predicting student performance
- But, the information transfer between knowledge modeling and behavior modeling helps
 - Student knowledge is influenced by preference behavior

Conclusions

- Proposed NANS, a neighborhood-aware negative sampling method
 - Effectively capturing coarse-grained sequential data to produce difficult and diverse negative samples
- Proposed KoBeM, a multi-objective multi-task student knowledge and behavior model, and accordingly, proposed NANS-KoBeM
 - Effectively combining knowledge modeling and behavior modeling to enhance both tasks
 - Modeling the interrelationships between student knowledge and question preference behavior

State University of New York

Thank you! Q & A

szhao2@albany.edu

ssahebi@albany.edu

Our code and sample data are available at GitHub: https://github.com/persai-lab/2025-NANSKoBeM

AAAI-25

This paper is based upon work supported by the National Science Foundation under Grant No. 2047500.