Lecture 3 - Review
Overfitting the Training Set

• What type of strategy do DT algorithms use?
• Why does over-fitting occur? Two part answer
• Our aim when building a model?

![Decision Tree Diagram]

- **Tenure**
 - < 10
 - ≥ 10
- **Premium**
 - < $420
 - ≥ $420
- **Ann. Time**
 - < 11:21am
 - ≥ 11:21am

- Defect
- NoDef
- Defect
- NoDef

CSI - 635 Lecture 4
Overfitting
Knowing You’ve Overfitted?
Overcoming Overfitting

• $\text{Accuracy}_{\text{Training}} \gg \text{Accuracy}_{\text{Test}}$
• Book definition (* fill in *)
• Model doesn’t make sense.
• Too little data

Methods to overcome Overfitting in DTrees

• Providing some apriori stopping criterion.
• Overfitting then pruning the tree back.
• Last approach tends to obtain better results.
Overfitting: Using Validation Sets

Why use this approach?

$$E \approx 0.0041 \quad E \approx 0.336$$
Types of Pruning Using V. Set

• Reduced Error Pruning
 – Prune nodes depending on order of decreasing error
 – May not be sufficient data

• Rule Post Pruning (used in c4.5)
 – Grow, convert to rules, remove pre-conditions, sort rules on accuracy to get application order.
 – Why? Remove exclusiveness, can prune root node, readability.
 – What is an important effect of converting a tree into rules and post-pruning have?
Model Uncertainty

• What’s wrong with making predictions from one model?
 – May have two or more equally accurate models that give different predictions.
 – May have two models that are quite fundamentally different
Ensemble of Models Techniques

• Bayesian Modeling Averaging
 – $\Pr(c,x \mid D, H) = \sum_{h \in H} \Pr(c,x \mid h) \cdot \Pr(h \mid D)$
 – Weight each model’s prediction by how good the model is.
 – Can this approach be applied to C4.5 Dtrees?

• Boosting (Bootstrap Aggregation), 1996.
 – Improves accuracy
 • Seminal paper says on 19 of 26 data sets improves accuracy by 4%.
The Bagging Algorithm

• Building the Models
 For $i = 1$ to k // k is the number of bags
 $T_i = \text{BootStrap}(D)$ // D is the training set
 Build Model M_i from T_i (ie. Induce the tree)
End
• Applying the Models To Make a Prediction
 For a test set example, x
 For $i = 1$ to k // k is the number of bags
 $C_i = M_i(x)$
End
Prediction is the class with the most vote.
Take A Bootstrap Sample

Sample with replacement
Bootstrapping and model building can be easily parallelized

<table>
<thead>
<tr>
<th>Original</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set 1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Training set 2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Training set 3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Training set 4</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>
Example of Bagging

Problem

Single DT Solution

100 DT’s

Bagging Solution
Errors

The true error of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_{S}(h)$ estimate $error_{\mathcal{D}}(h)$?
Bias and Variance

1. **Bias**: If S is training set, $error_S(h)$ is optimistically biased

 $$bias \equiv E[error_S(h)] - error_D(h)$$

 For unbiased estimate, h and S must be chosen independently.

2. **Variance**: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$
Reading for Next Classes

• Additional reading
 http://www.boosting.org/papers/Breiman96.pdf

• Lecture 5 – 02/06/02
 – Mitchell pages (5.3.2 to 5.3.5, pages 135-137)
 – www.boosting.org (tutorial section)
 – R.E. Schapire. A brief introduction to boosting. In
 Proceedings of the Sixteenth International Joint
 Conference on Artificial Intelligence, 1999.