Backpropagation a Worked Example

Hypothesis Space and Search Bias

- Hypothesis space
 - m weights -> m-dimensional space, each dimension takes a value (-1,1).
 - Continuous nature not discrete like decision trees
- Search bias
 - Consider to be a smooth interpolation between points.
- Hidden Layer
 - Holds intermediate representations.
During Training …

Convergence Issues

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different initial weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses
Over-fitting

- Training epoch is passing all data through the network
- How many training epochs?
 - Validation set
 - Weight decay
- Why weight decay?
 - With identical weights \rightarrow smooth decision surface
 - Increased weights mean more complex surfaces which can overfit the training set.
Overfitting and Weight Decay

\[\Delta w_{ij} = -\mu \frac{\partial E}{\partial w_{ij}} = -\mu \frac{\partial E}{\partial h_{ij}} - \mu \nu w_{ij} \]

Recurrent Networks

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time
Dynamically Modifying Structure

• Effectively dynamically changing the model/hypothesis space.
• Cascade-correlation
 – Start with no hidden nodes, Train
 – Add an extra hidden node with fixed chosen weights
 – Retrain, Whenever a hidden node is added, its inputs are the all the input layer nodes and the other hidden layer nodes.
 – Reduces training time
• Start with overly complex network
 – Remove nodes with zero weights or perform sensitivity analysis with respect to the weights.

Reading for Next Classes

• Additional reading
 – Rumelhart work on neural networks mimicking learning verb tense
 – www.dcs.shelf.ac.uk/~yorick/ai_course/lecture_9.ppt
• Lecture 9 – 03/04/02 and onwards
 – Unsupervised Learning
 – K-Means, SOM
 – Reinforcement Learning (Mitchell, Chapter 13)