Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner’s performance?
- Learners Error = noise + bias + variance
- How we calculate bias and variance for a learner:
 - \(T_{\text{train}} \): Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginal better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

\[D_j(i) = 1 / I \] \ Initial training instances have same weight
For \(j = 1 \) to \(J \) \((J \) is the number of rounds (trees)
Build \(H_j \) from \(D_j \)
\[\alpha_j = 0.5 \log (\frac{1 - \text{Error}(H_j)}{\text{Error}(H_j)}) \]
For \(i = 1 \) to \(I \)
 - if instance \(i \) is misclassified then\(D_{j+1}(i) = D_j(i) e^{\alpha_j} \)
 - else\(D_{j+1}(i) = D_j(i) e^{-\alpha_j} \)
 - endif
 - endfor
Elaborate calculation of \(\alpha_j \) is so that \(\sum D_j(i) = 1 \)
Prediction(\(x \)) = \(\sum \alpha_j \cdot H_j(x) \), \(H_j(x) \) produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis
Some Insights into Boosting

• Final aggregate model will have no training error (given some conditions).
• Seems to over-fit but reduces test set error
• Larger margins on training set correspond to better generalization error
 – Margin(x) = y Σ α_j h_j(x) / Σ α_j

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer</td>
<td>Both</td>
<td>Variance</td>
<td>Boost*</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voting Scheme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of Belief in Model</td>
<td>Equal</td>
<td>Depends on Model Error</td>
<td></td>
</tr>
<tr>
<td>Requirement of Learners</td>
<td>Bayesian</td>
<td>Unstable</td>
<td>Weak consistently better than random guessing</td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

• Representation and search
• Does Bagging and Boosting change model representation space?
• Do they change search preference?
• Order of data presented does not count.

Reading for Next Classes

• Additional reading
 – Various papers at http://www.boosting.org
• Lecture 6 – 02/11/02 and onwards
 – Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner’s performance?
- Learners Error = noise + bias + variance
- How we calculate bias and variance for a learner?
 - \(T_{\text{train}} \): Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

\[
D_j(i) = 1 / I \quad \text{Initially training instances have same weight}
\]

For \(j = 1 \) to \(J \) \(\text{is the number of rounds (trees)} \)

Build \(H_j \) from \(D_j \)

\[
\alpha_j = 0.5 \log \left(\frac{1 - \text{Error}(H_j)}{\text{Error}(H_j)} \right)
\]

For \(i = 1 \) to \(I \)

- if instance \(i \) is misclassified then
 - \(D_j,i(i) = D_j(i) e^{\alpha_j} \)
- else
 - \(D_j,i(i) = D_j(i) e^{-\alpha_j} \)
- endif
- endfor
- endfor

Elaborate calculation of \(\alpha_j \) is so that \(\sum D_j(i) = 1 \)

Prediction(\(x \)) = \(\sum \alpha_j H_j(x) \), \(H_j(x) \) produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis

Demo at http://www.cs.huji.ac.il/~yossi/adaboost/index.html
Some Insights into Boosting

- Final aggregate model will have no training error (given some conditions).
- Seems to over-fit but reduces test set error
- Larger margins on training set correspond to better generalization error
 \[\text{Margin}(x) = y \sum \alpha_i h_i(x) \]

<table>
<thead>
<tr>
<th>Ensemble Technique Scorecard</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMA</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Variance Reducer</td>
</tr>
<tr>
<td>Variance Only</td>
</tr>
<tr>
<td>Degree of Belief in Model</td>
</tr>
<tr>
<td>Requirement of Learners</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

- Representation and search
- Does Bagging and Boosting change model representation space?
- Do they change search preference?
- Order of data presented does not count.

Reading for Next Classes

- Additional reading
 - Various papers at http://www.boosting.org
 - Lecture 6 – 02/11/02 and onwards
 - Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner’s performance?
- Learners Error = noise + bias + variance
- How we calculate bias and variance for a learner?
 - $T_{i, \omega}$: Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Pseudo Code

$D_1(i) = 1 / I$ // Initially training instances have same weight
For $j = 1$ to J // J is the number of rounds (trees)
 Build H_j from D_j
 $\alpha_j = 0.5 \log (1 - \text{Error}(H_j) / \text{Error}(H_j))$
 For $i = 1$ to I
 if instance i is misclassified then
 $D_{j+1}(i) = D_j(i) e^{\alpha_j}$
 else
 $D_{j+1}(i) = D_j(i) e^{-\alpha_j}$
 endif
 endfor
endfor

Elaborate calculation of α_j is so that $\Sigma D_j(i) = 1$
Prediction(x) = $\Sigma \alpha_j H_j(x)$, $H_j(x)$ produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis

Demo at http://www.cs.huji.ac.il/~yossi/adaboost/index.html
Some Insights into Boosting

- Final aggregate model will have no training error (given some conditions).
- Seems to over-fit but reduces test set error.
- Larger margins on training set correspond to better generalization error
 \[\text{Margin}(x) = y \sum \alpha_j h_j(x) / \sum \alpha_j \]

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer</td>
<td>Both</td>
<td>_variance</td>
<td>Boost*</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or bias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voting Scheme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief in Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consistently</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better than</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random guessing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

- Representation and search
- Does Bagging and Boosting change model representation space?
- Do they change search preference?
- Order of data presented does not count.

Reading for Next Classes

- Additional reading
 - Various papers at http://www.boosting.org
- Lecture 6 – 02/11/02 and onwards
 - Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner's performance?
- Learners Error = noise + bias\(^2\) + variance
- How we calculate bias and variance for a learner*
 - \(T_{train}\): Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

\[
D_j(i) = \frac{1}{I} \quad \text{Initially training instances have same weight}
\]

For \(j = 1 \text{ to } J\)

1. \(\alpha_j = 0.5 \log (\frac{1 - \text{Error}(H_j)}{\text{Error}(H_j)})\)

2. For \(i = 1 \text{ to } I\)
 - if instance \(i\) is misclassified then
 \[D_{j+1}(i) = D_j(i) e^{\alpha_j}\]
 - else
 \[D_{j+1}(i) = D_j(i) e^{-\alpha_j}\]

endfor

endfor

Elaborate calculation of \(\alpha_j\) is so that \(\Sigma D_j(i) = 1\)

Prediction(x) = \(\Sigma \alpha_j H_j(x)\), \(H_j(x)\) produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis
Some Insights into Boosting

- Final aggregate model will have no training error (given some conditions).
- Seems to over-fit but reduces test set error.
- Larger margins on training set correspond to better generalization error.
 \[\text{Margin}(x) = y \sum \alpha_i h_i(x) / \sum \alpha_i \]

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Variance Or Bias</td>
<td>Both</td>
<td>Variance</td>
<td>Bias*</td>
</tr>
<tr>
<td>Voting Scheme</td>
<td>Degree of Belief in Model</td>
<td>Equal</td>
<td>Depends on Model Error</td>
</tr>
<tr>
<td>Requirement of Learners</td>
<td>Bayesian</td>
<td>Unstable</td>
<td>Weak consistently better than random guessing</td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

- Representation and search
- Does Bagging and Boosting change model representation space?
- Do they change search preference?
- Order of data presented does not count.

Reading for Next Classes

- Additional reading
 - Various papers at http://www.boosting.org
- Lecture 6 – 02/11/02 and onwards
 - Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner's performance?
- Learners Error = noise + bias + variance
- How we calculate bias and variance for a learner
 - T_i: Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

\[
D_j(i) = \frac{1}{I} \quad \text{Initially training instances have same weight}
\]

For $j = 1$ to J is the number of rounds (trees)

Build H_j from D_j

$\alpha_j = 0.5 \log \left(\frac{1 \cdot \text{Error}(H_j)}{\text{Error}(H_j)} \right)$

For $i = 1$ to I

if instance i is misclassified then

$D_{j+1}(i) = D_j(i) \times e^{\alpha_j}$

else

$D_{j+1}(i) = D_j(i) \times e^{-\alpha_j}$

endif

endfor

Elaborate calculation of α_j is so that $\sum D_j(i) = 1$

Prediction(x) = $\sum \alpha_j \cdot H_j(x)$, $H_j(x)$ produces a 0 or 1

\[
\]
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis

Demo at http://www.cs.huji.ac.il/~yossi/adaBoost/index.html
Some Insights into Boosting

- Final aggregate model will have no training error (given some conditions).
- Seems to over-fit but reduces test set error
- Larger margins on training set correspond to better generalization error
 \[\text{Margin}(x) = y \sum \alpha_j h_j(x) / \sum \alpha_j \]

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Variance</td>
<td>Both</td>
<td>Variance</td>
<td>Bias*</td>
</tr>
<tr>
<td>Voting Scheme</td>
<td>Degree of Belief in Model</td>
<td>Equal</td>
<td>Depends on Model Error</td>
</tr>
<tr>
<td>Requirement of Learners</td>
<td>Bayesian</td>
<td>Unstable</td>
<td>Weak consistently better than random guessing</td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

- Representation and search
- Does Bagging and Boosting change model representation space?
- Do they change search preference?
- Order of data presented does not count.

Reading for Next Classes

- Additional reading
 - Various papers at http://www.boosting.org
- Lecture 6 – 02/11/02 and onwards
 - Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner’s performance?
- Learner Error = noise + bias + variance
- How do we calculate bias and variance for a learner?
 - $T_{i,x}$: Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instance has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

$D_j(i) = 1/I$ // Initially training instances have same weight
For $j = 1$ to J // J is the number of rounds (trees)
Build H_j from D_j

$\alpha_j = 0.5 \log \left(\frac{1}{\text{Error}(H_j)} / \text{Error}(H_j) \right)$

For $i = 1$ to I
if instance i is misclassified then
 $D_{j+1}(i) = D_j(i) \cdot e^{\alpha_j}$
else
 $D_{j+1}(i) = D_j(i) \cdot e^{-\alpha_j}$
endif
endfor

Elaborate calculation of α_j is so that $\Sigma D_j(i) = 1$
Prediction$(x) = \Sigma \alpha_j \cdot H_j(x)$, $H_j(x)$ produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

- Round 1
- Round 2 + 3
- Final Hypothesis

Demo at http://www.cs.huji.ac.il/~yoadf/adaboost/index.html
Some Insights into Boosting

• Final aggregate model will have no training error (given some conditions).
• Seems to over-fit but reduces test set error
• Larger margins on training set correspond to better generalization error
 – Margin$(x) = y \sum \alpha_j h_j(x) / \sum \alpha_j$

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer</td>
<td>Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or bias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voting Scheme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief in Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depends on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consistently</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better than</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random guessing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

• Representation and search
• Does Bagging and Boosting change model representation space?
• Do they change search preference?
• Order of data presented does not count.

Reading for Next Classes

• Additional reading
 – Various papers at http://www.boosting.org
• Lecture 6 – 02/11/02 and onwards
 – Mitchell chapter 4 (Neural Networks)
Lecture 4 - Review

- Error of the hypothesis vs error of the learning algorithm?
- Know the training and test set error, good estimate of the learner’s performance?
- Learners Error = noise + bias + variance
- How we calculate bias and variance for a learner:
 - $T_{i,n}$: Training sets drawn randomly from population
- Bias is the expected (mean) error over all training sets
- Variance is the variability of the error.
- Why would a decision tree be biased? Have a high variance?

Ensemble Techniques Reduce Error

- Decision trees are known to have a high variance, particularly when overfitted.
- BMA
 - Expected cost of Bayesian prediction is the noise.
 - Why?
- Bagging
 - Reduces variance but not bias
- Boosting
 - Reduces what?

Boosting – The Idea

- Take weak learners (marginally better than random guessing) make them stronger.
- Freund and Schapire, 95 – AdaBoost
- AdaBoost premise
 - Each training instances has equal weight
 - Build first Model from training instances
 - Training instances that are classified incorrectly given more weight
 - Build another model with re-weighted instances and so on and so on.

Boosting Psuedo Code

$$D_j(i) = 1 / I$$ Initial training instances have same weight
For j = 1 to J is the number of rounds (trees)
Build H_j from D_j
$$\alpha_i = 0.5 \log_2 \left(\frac{1 - \text{Error}(H_j)}{\text{Error}(H_j)} \right)$$
For $i = 1$ to I
if instance i is misclassified then
$$D_{j+1}(i) = D_j(i) \cdot e^{\alpha_i}$$
else $$D_{j+1}(i) = D_j(i) \cdot e^{-\alpha_i}$$
endif
endfor
Elaborate calculation of α_i is so that $\Sigma D_j(i) = 1$
Prediction$(x) = \Sigma \alpha_i \cdot H_j(x)$, $H_j(x)$ produces a 0 or 1
Some Implementation Comments

- Difficult to parallelize
- Factoring instance weights into decision tree induction.
- Tree vote is weighted inversely to error.
- Adaptive Boosting (AdaBoosting) according to the tree error
- Free scaled down version of C5.0 incorporates boosting available at http://www.rulequest.com/download.html

Toy Example (Freund COLT 99)

Round 1

Round 2 + 3

Final Hypothesis

Demo at http://www.cs.huji.ac.il/~yosef/adaboost/index.html
Some Insights into Boosting

- Final aggregate model will have no training error (given some conditions).
- Seems to over-fit but reduces test set error
- Larger margins on training set correspond to better generalization error
 \[\text{Margin}(x) = y \sum \alpha_j h_j(x) / \sum \alpha_j \]

Ensemble Technique Scorecard

<table>
<thead>
<tr>
<th></th>
<th>BMA</th>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer</td>
<td>Both</td>
<td>Variance</td>
<td>Bias*</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or bias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voting Scheme</td>
<td>Degree of Belief in Model</td>
<td>Equal</td>
<td>Depends on Model Error</td>
</tr>
<tr>
<td>Requirement of Learners</td>
<td>Bayesian</td>
<td>Unstable</td>
<td>Weak consistently better than random guessing</td>
</tr>
</tbody>
</table>

Retrospective on Decision Trees

- Representation and search
- Does Bagging and Boosting change model representation space?
- Do they change search preference?
- Order of data presented does not count.

Reading for Next Classes

- Additional reading
 - Various papers at http://www.boosting.org
- Lecture 6 – 02/11/02 and onwards
 - Mitchell chapter 4 (Neural Networks)