Lecture 2 - Review

- Supervised learning takes +ve and –ve examples and tries to learn how to differentiate between the two.

 - Length: ... ThreadAge: (Read/Skip)
 - Case A: Short, ... Old, Read
 - Case B: Long, ... New, Skip
 - Case C: Short, ... New, Read

- Decision trees:
 - Recursively partitions the instances based on the independent attributes
 - Tries to choose a split that results in the least amount of disorder (entropy) amongst the labels.
 - Info. gain splitting criterion, biased towards favor smaller trees + those attributes with the highest information gain being towards the tree root.
- But, when do we stop partitioning?
- What if we do too many splits and partition too far?

Review of Choosing a Split

```
    Length
     /       \
    long    short
    /    \   /    \
  skips 9  reads 9 skips 2  reads 9
       \    /     \    /     
      new old new old
```

- Entropy = \(\sum p \cdot \log_2(p) \)
- EntropyPopulation = 1
- EntropySplit on Length = 0.42
- EntropySplit on Thread = 0.85

Stopping Criteria

- What type of tree will perfectly classify the training data (ie. 100% training set accuracy)?
- Is this a bad thing? Why?
- What does this tell you about the relationship between the dependent and independent attributes?
- Stop growing the tree when:
 - A certain tree depth is reached
 - Number of records at a node goes below some threshold.
 - All potential splits are insignificant

How Do We Know When We’ve Overfitted The Training Data?

Consider error of hypothesis \(h \) over:
- training data: \(error_{train}(h) \)
- entire distribution \(D \) of data: \(error_D(h) \)

Hypothesis \(h \in H \) overfits training data if there is an alternative hypothesis \(h' \in H \) such that

\[
error_{train}(h) < error_{train}(h') \quad \text{and} \quad error_D(h) > error_D(h')
\]

Is there any other way?
Training Set Error Should Approximately Equal Test Set Error

![Graph showing training and test set error](image)

Trimming/Pruning Trees

- Stopping criterion can be somewhat arbitrary.
- Automatic pruning of trees
 - Ask the data, “How far should we split the data?”
 - Two general approaches:
 - Use part of the training set as a validation set
 - Use entire training set (usually an MDL approach).

Using Pruning To Prevent Overfitting

- How can we avoid overfitting?
 - Stop growing when data split not statistically significant
 - Grow full tree, then post-prune
- How to select “best” tree:
 - Measure performance over training data
 - Measure performance over separate validation data set
 - MDL: minimize $size(tree) + size(misclassifications(tree))$

Reduced Error Pruning

- Split data into training and validation set
- Do until further pruning is harmful:
 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
 2. Greedily remove the one that most improves validation set accuracy
- Produces smallest version of most accurate subtree
- What if data is limited?
Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others
3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

MDL Base Pruning

- Minimize Overall Message Length
 - \(\text{MessLen} (\text{Model, Data}) = \text{MessLen} (\text{Model}) + \text{MessLen} (\text{Data} | \text{Model}) \)
- Encode model using node encoding.
- Encode model in terms of classification error.
- Remove a node if it reduces the cost.

X-Fold Cross Validation

- Used to estimate the accuracy of the learner.
- Feature selection for other supervised learning algorithms.

<table>
<thead>
<tr>
<th>Fold 1</th>
<th>Fold 2</th>
<th>Fold 3</th>
<th>Fold 4</th>
<th>Fold 5</th>
</tr>
</thead>
</table>

Ensemble of Decision Trees

- Why stop at one decision tree.
- Adopt the committee of experts approach
- Build multiple decision trees, each votes on the classification, highest vote wins.
- What problem will we run up against?
Bagging

- Take a number of bootstrap samples of the training set.
- Build a decision tree from each
- When predicting the category for a test set instance:
 - Each tree gets to vote on the decision
 - Ties are resolved by choosing the most populous class
- Empirical evidence shows that you get consistently better results on most data set.

Why Does it Work?

- Brieman
 - Works because decision tree learners are unstable.
- Friedman
 - Reduces the variance of the learner without reducing bias.
- Domingos
 - Underlying learners bias towards simplicity is too great
 - Bagging corrects bias.

C4.5 - Quinlan

- Goto http://www.cse.unsw.edu.au/~quinlan/
- Download C4.5 Release 8
- Need to untar it (use tar –xvf)
- In R8/Src type “make all”, builds c4.5 executable
- May need to remove contents of getopt.c file.
- Use “nroff doc/c4.5.1 | more” to read documentation.
- See me during office hours if you have any problems.

Building a Model Using C4.5

- Options
 - C4.5 -f golf -m 2
 outlook = overcast: Play (4.0)
 outlook = sunny:
 humidity <= 75: Play (2.0)
 humidity > 75: Don’t Play (3.0)
 outlook = rain:
 windy = true: Don’t Play (2.0)
 windy = false: Play (3.0)
 - Size Errors
 R 0 (0.0%)

Lecture 3 - CSI 6355
Building and Applying a Model Using C4.5

- Many data sets in the Data directory can be split into .data (training set) and .test (test set).
- Use c4.5 -f <name> -u
 - To build a model and then test it on the training set.
 - (use labor-neg or vote datasets).

Homework due Monday

- Q1 Explore c4.5 to build the model that results in the highest test set accuracy for the vote data set.
 - Print out the decision tree and the c4.5 parameters used.
- Q2 Do you feel comfortable that this is a good model that generalizes beyond the training set? Why?

Further Reading/Next Week

- Further Reading
 - MDL-based Decision Tree Pruning
 - Finish reading chapter 3
 - First homework
- Ensemble of decision trees
 - More on Bagging
 - Boosting