Reinforcement Learning

Agent / Environment Interaction

Goal: Learn to choose actions that maximize
\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \], where \(0 \leq \gamma < 1 \)

Different rewards
Emphasize
different behavior

CSI - 635 Lecture 13 and 14
Examples and Properties (1)

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors

Examples and Properties (2)

- Each unique location is NOT a state
- Can be applied to any autonomous agent.
 - Software agents, web-crawlers
- Not unlike Pavlovian conditioning
 - Condition the learner to optimal behavior
- Agent receives indirect & delayed rewards, no guidance or corrections given.
 - Different than supervised learning
- Agent does not necessarily know how their actions change their state.
- Recent move towards competing agents.
A Successful Example

[Tesauro, 1995]

Learn to play Backgammon

Immediate reward

- +100 if win
- -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

Consider People wrt the Reinforcement Learning Model

- Environment shapes our behavior
- Can maximize immediate pay-off or long term-payoff
- Free exploiting or exploration of the environment
- Life-long learning of tasks
- Some people explicitly try to learn reward and action-state transition functions
Different Environments and Agents

- **Environments**
 - Direct or indirect rewards/training

- **Agents**
 - Deterministic versus non-deterministic actions.
 - Incomplete knowledge of effect of actions
 - Incomplete knowledge of the state
 - Agent memory or model of the environment

- Regardless of differences always have:
 - $\delta(s_t, a_t)$ chooses the action to perform
 - $r(s_t, a_t)$ provides the reward given the action
 - Agent may not know either function

Markov Decision Process RL

Assume
- finite set of states S
- set of actions A
- at each discrete time agent observes state $s_t \in S$
 and chooses action $a_t \in A$
- then receives immediate reward r_t
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e., r_t and s_{t+1} depend only on current state and action
 - functions δ and r may be nondeterministic
 - functions δ and r not necessarily known to agent
Difference to Supervised Learning

Execute actions in environment, observe results, and:
- learn action policy \(\pi : S \rightarrow A \) that maximizes
 \[E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots] \]
 from any starting state in \(S \)
- here \(0 \leq \gamma < 1 \) is the discount factor for future rewards

Note something new:
- Target function is \(\pi : S \rightarrow A \)
- but we have no training examples of form \((s, a) \)
- training examples are of form \((s, a, \pi) \)

Learning in a Deterministic World

To begin, consider deterministic worlds...

For each possible policy \(\pi \) the agent might adopt, we can define an evaluation function over states

\[
V^\pi(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}
\]

where \(r_t, r_{t+1}, \ldots \) are generated by following policy \(\pi \) starting at state \(s \)

Restated, the task is to learn the optimal policy \(\pi^* \)

\[
\pi^* = \arg\max_{\pi} V^\pi(s), (\forall s)
\]
Use of Q instead of V Function (1)

We might try to have agent learn the evaluation function V^* (which we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$
\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]
$$

A problem:

* This works well if agent knows $\delta : S \times A \to S$, and $r : S \times A \to \mathbb{R}$
* But when it doesn’t, it can’t choose actions this way
Use of Q instead of V Function (2)

Define new function very similar to V^*

$$Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$$

If agent learns Q, it can choose optimal action even without knowing δ!

$$\pi^*(s) = \arg\max_a r(s, a) + \gamma V^*(\delta(s, a))$$

$$\pi^*(s) = \arg\max_a Q(s, a)$$

Q is the evaluation function the agent will learn.

Learning \hat{Q} an Estimate of Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

$$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

Nice! Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s.
Learning \hat{Q} - Deterministic Worlds

For each s, a initialize table entry $Q(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:
 $$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

- $s \leftarrow s'$

Updating \hat{Q}

$$\hat{Q}(s_1, a_{\text{right}}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$

$\leftarrow 90$

notice if rewards non-negative, then

$(\forall s, a, a') \quad Q_{a+1}(s, a) \geq \hat{Q}_{a}(s, a)$

and

$(\forall s, a, a') \quad 0 \leq \hat{Q}_{a}(s, a) \leq Q(s, a)$
Reading

- Next Lecture 03/20/02
 - Pages page 377 – 386
 - Term projects and critique of papers
- Interested readers
 - NASA Mars rovers and reinforcement learning
 - http://anytime.cs.umass.edu/~shlomo/research/NASA01.html

Convergence: $\lim_{n \to \infty} \hat{Q} = Q$

Proof. Define a full interval to be an interval during which each (s, a) is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n; that is

$$\Delta_n = \max |\hat{Q}_n(s, a) - Q(s, a)|$$

For any table entry $\hat{Q}_n(s, a)$ updated on iteration $n+1$, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is

$$|\hat{Q}_{n+1}(s, a) - Q(s, a)| = |(\gamma + \gamma \max \hat{Q}_n(s', a'))(r + \gamma \max \hat{Q}_n(s', a'))|$$

$$= \gamma |\max \hat{Q}_n(s', a') - \max \hat{Q}(s', a')|$$

$$\leq \gamma \max |\hat{Q}_n(s', a') - Q(s', a')|$$

$$\leq \gamma \max |\hat{Q}_n(s', a') - Q(s', a')|$$

$$|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \gamma \Delta_n$$
Non-Deterministic Worlds

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^*(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

Learning $\hat{Q} –$ Non-Deterministic Worlds

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s, a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s, a) + \alpha_n[r + \max_{a'}\hat{Q}_{n-1}(s', a')]$$

where

$$\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]
Temporal Difference Learning

Learn Q Quickly

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a'} Q(s_{t+1}, a')$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a'} Q(s_{t+2}, a')$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a'} Q(s_{t+n}, a')$$

Blend all of these:

$$Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right]$$

Temporal Difference Learning

$Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right]$

Equivalent expression:

$$Q^\lambda(s_t, a_t) = r_t + \gamma \left[(1-\lambda) \max_{a'} Q(s_t, a_t) + \lambda Q^\lambda(s_{t+1}, a_{t+1}) \right]$$

TD(λ) algorithm uses above training rule

- Sometimes converges faster than Q learning
- Converges for learning V^* for any $0 \leq \lambda \leq 1$
 \cite{Dayan, 1992}
- Tesauro's TD-Gammon uses this algorithm
Ongoing Research

- Replace Q table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta}: S \times A \rightarrow S$
- Relationship to dynamic programming