CSI535 Introduction to A.I.
Overview of Lecture

What is A.I.?
The Agent Approach to A.I.
Course Overview
Course Logistics
What is Artificial Intelligence-1?

Giving intelligence to machines, but how?

| “[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning . . .” (Bellman, 1978) | “The study of mental faculties through the use of computational models” (Charniak+McDermott, 1985) |
| “The study of how to make computers do things at which, at the moment, people are better” (Rich+Knight, 1991) | “The branch of computer science that is concerned with the automation of intelligent behavior” (Luger+Stubblefield, 1993) |

Views of AI fall into four categories:

<table>
<thead>
<tr>
<th>Thinking humanly</th>
<th>Thinking rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting humanly</td>
<td>Acting rationally</td>
</tr>
</tbody>
</table>

What are the problems with each? Which is the best, Consider how you answer this question
Acting Like a Human

Turing (1950) “Computing machinery and intelligence”:
◊ “Can machines think?” \rightarrow “Can machines behave intelligently?”
◊ Operational test for intelligent behavior: the Imitation Game

◊ Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
◊ Anticipated all major arguments against AI in following 50 years
◊ Suggested major components of AI: knowledge, reasoning, language understanding, learning

Many prizes ($$$) for passing the Turing test
… but no one even tries
Thinking Like a Human

1960s “cognitive revolution”: information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain
 - What level of abstraction? “Knowledge” or “circuits”?
 - How to validate? Requires
 1) Predicting and testing behavior of human subjects (top-down)
 or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI
Laws of Thought: Thinking Rationally

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems: There are two … Assumptions … Computational limitations
Acting Rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn’t necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Notion of limited rationality
Rational Agents

An agent is an entity that perceives and acts

This course is about designing rational agents

Abstractly, an agent is a function from percept histories to actions:

\[f : \mathcal{P}^* \rightarrow A \]

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Caveat: computational limitations make perfect rationality unachievable

→ design best program for given machine resources
Agent Overview

Agent

- **State**
- **How the world evolves**
- **What my actions do**
- **Utility**

Sensors

- What the world is like now
- What it will be like if I do action A
- How happy I will be in such a state
- What action I should do now

Environment

- **Percepts??**
- **Actions??**
- **Goals??**
- **Environment??**
Must first specify the setting for intelligent agent design

Consider, e.g., the task of designing an automated taxi:

- **Percepts**: video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

- **Actions**: steer, accelerate, brake, horn, speak/display, ...

- **Goals**: safety, reach destination, maximize profits, obey laws, passenger comfort, ...

- **Environment**: US urban streets, freeways, traffic, pedestrians, weather, customers, ...
Environment Types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterministic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And single agent versus multiagent
Agent Structures

Agent Structures Diagram:

- Agent: Sensors → What the world is like now → Condition-action rules → What action I should do now → Effectors

- Environment: State → How the world evolves → What the world is like now → What my actions do → What it will be like if I do action A → Goals → What action I should do now → Effectors

- Agent: State → How the world evolves → What the world is like now → What my actions do → What it will be like if I do action A → Utility → How happy I will be in such a state → What action I should do now → Effectors

CSI 535 - Introduction to A.I. Lecture 1
Why so many A.I. Techniques

• Due to variation in PAGE. Consider:

 Percepts Breeze, Glitter, Smell

 Actions Left turn, Right turn,
 Forward, Grab, Release, Shoot

 Goals Get gold back to start
 without entering pit or wumpus square

 Environment
 Squares adjacent to wumpus are smelly
 Squares adjacent to pit are breezy
 Glitter if and only if gold is in the same square
 Shooting kills the wumpus if you are facing it
 Shooting uses up the only arrow
 Grabbing picks up the gold if in the same square
 Releasing drops the gold in the same square
Requires Various Computational Techniques - 1

- Techniques for different agent components
- To be covered in the course:
 - Reasoning
 - Propositional and first order logic
 - Belief networks
 - Problem solving
 - Uninformed search, informed search
 - Constrained search (CSP)
 - Adversial search (environment competes with agent)
Bayesian Belief Networks

• Combination of probabilistic modeling and DAGs
• Nodes on graph are propositional variables.
• Links represent apriori known causal dependencies.
• Reasoning by merging semantic models and evidence.
• Efficient representation of joint distribution
Variable Elimination with loops

\[P(A) \quad P(G) \quad P(S \mid A,G) \]
\[P(E \mid A) \]
\[P(A,G,S) \rightarrow \sum_G P(A,S) \rightarrow \times \rightarrow P(A,E,S) \]
\[\sum_A P(E,S) \quad P(C \mid E,S) \]
\[P(E,S,C) \rightarrow \sum_{E,S} P(C) \]
\[P(L \mid C) \rightarrow \times \rightarrow P(C,L) \rightarrow \sum_C P(L) \]

Complexity is exponential in the size of the factors
Direct World Representations

- Can compute any subset of propositions given another subset.
- Perform different types of reasoning
 - Prediction
 - Abduction
 - Explaining away
- Global semantics
- Local semantics exploit conditional independence
Eight State Puzzle

Start State

- 5
- 4
- 6
- 1
- 8
- 7
- 3
- 2

Goal State

- 1
- 2
- 3
- 8
- 4
- 7
- 6
- 5

states??
operators??
goal test??
path cost??
What is a State and a Node?

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
 includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The EXPAND function creates new nodes, filling in the various fields and using the OPERATORS (or SUCCESSORFn) of the problem to create the corresponding states.
Requires Various Computational Techniques - 2

• To be covered in the course:
 – Planning and Natural Language Processing
 – Learning
 • Computational Learning Theory
 • Neural networks
 • Decision trees
 • Reinforcement learning
“A.I.” Faculty

- Murray – Automatic deduction and theorem proving. CSI 664
- Haas – Natural language processing, Prolog. CSI 636
- Davidson – Machine learning, probabilistic reasoning/learning, learning by compact encoding
Logistics and Next Lecture

- Text: Russell and Norvig – AI, 2nd Edition
- Mailing List, TA: Ke@cs.albany.edu
- Meeting times: MW 2:30-3:50 @ HU110
- Office hours: MW: 4-5pm
- Contact: davidson@cs.albany.edu, 518 442 5173
- 2 Assignments (25% each), Homeworks (10%), Final Exam (30%), Class participation (10%)
- Class web site: cs.albany.edu/~davidson, lectures
- Review of this material – Chapter 1 – (RN)
- Next classes: Agent Architectures – Chapter 2 – (RN)