Knowledge Based Agents

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system)

Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

Knowledge Base Agent Wrapper

Function KB-AGENT

Returns an action

Stable: KB (a knowledge base)

I, a reasoner, initially 0, indicating time

Tell(AKB, MAKE, PERCEPT, SENTENCE, ACTION, QUERY)

Make-ACTION-QUERY(action)

Tell(AKB, MAKE-SENTENCE, action)

Return action

The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts

Update internal representations of the world

Deduce hidden properties of the world

Deduce appropriate actions

Logics at High Level

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;

i.e., define truth of a sentence in a world

E.g., the language of arithmetic

\[x + 2 \geq y \] is a sentence

\[x + 2 \geq y \] is true iff the number \(x + 2 \) is no less than the number \(y \)

\[x + 2 \geq y \] is true in a world where \(x = 7 \), \(y = 1 \)

\[x + 2 \geq y \] is false in a world where \(x = 0 \), \(y = 6 \)

Inference

\(KB \vdash \alpha \) is a sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

Soundness: \(i \) is sound if

whenever \(KB \vdash \alpha \), it is also true that \(KB \models \alpha \)

Completeness: \(i \) is complete if

whenever \(KB \models \alpha \), it is also true that \(KB \vdash \alpha \)

Notion of a Model

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)

\(M(\alpha) \) is the set of all models of \(\alpha \)

Then \(KB \models \alpha \) if and only if \(M(KB) \subseteq M(\alpha) \)

E.g. \(KB = \) Giants won and Reds won\n
\(\alpha = \) Giants won

Logic Types

Logics are characterized by what they commit to as “primitives”

Epistemological commitment: what states of knowledge?

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief 0…1</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>degree of truth</td>
<td>degree of belief 0…1</td>
</tr>
</tbody>
</table>
Propositional Logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas.

The proposition symbols P_1, P_2 etc are sentences.

If S is a sentence, $\neg S$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \land S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \lor S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \Rightarrow S_2$ is a sentence.

If S_1 and S_2 is a sentence, $S_1 \Leftrightarrow S_2$ is a sentence.

Propositional Logic: Semantics

Each model specifies true/false for each proposition symbol.

E.g. A, B, C

| True | True | False |

Rules for evaluating truth with respect to a model m:

- S is true iff S is true.
- $S_1 \land S_2$ is true iff S_1 is true and S_2 is true.
- $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true.
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true.
- $S_1 \Leftrightarrow S_2$ is true iff S_1 is true and S_2 is true.

Inference via Enumeration

Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \land \neg C)$.

Is it the case that $KB \models \alpha$?

Check all possible models—α must be true wherever KB is true.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \lor C$</th>
<th>$B \land \neg C$</th>
<th>KB</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>