Convergence Properties of GA’s

Proof of convergence for SA and GA!
A Global Convergence Proof for a Class of Genetic Algorithms
Minimax Example Zero Sum Game

Effectively depth first search, time complexity $O(b^d)$
Properties of Minimax Search

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? $O(blm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games
 \Rightarrow exact solution completely infeasible
Three Player and Non-Zero Sum Games

A
 (/ ? /) (/ ? /) (/ ? /)

B
 (/ ? /) (/ ? /)

C
 (/ ? /) (/ ? /) (/ ? /) (/ ? /)

A (+1 +2 +3) (+4 +2 +1) (+6 +1 +2) (+7 +4 -1) (+5 -1 -1) (-1 +5 +2) (+7 +7 -1) (+5 +4 +5)

How do we create game trees that incorporate chance?
Chance as a Bipartisan Third Player

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

\[\begin{align*}
\text{MAX} & \quad \triangle \\
\text{CHANCE} & \quad 3 \quad 0.5 \quad 0.5 \\
& \quad 0.5 \\
\text{MIN} & \quad 2 \quad 4 \quad 7 \\
& \quad 4 \quad 6 \quad 0 \\
& \quad -2 \quad 5 \\
\end{align*} \]

Before each link implicitly Had Pr=1 on it.

\[\text{Expectiminimax} \text{ gives perfect play} \]

Just like \text{Minimax}, except we must also handle chance nodes:

\[
\begin{align*}
\text{if state is a Max node then} & \quad \text{return the highest } \text{Expectiminimax-value} \text{ of Successors}(\text{state}) \\
\text{if state is a Min node then} & \quad \text{return the lowest } \text{Expectiminimax-value} \text{ of Successors}(\text{state}) \\
\text{if state is a chance node then} & \quad \text{return average of } \text{Expectiminimax-value} \text{ of Successors}(\text{state})
\end{align*}
\]
Depth Limited Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Evaluation function is just a heuristic (not an admissible heuristic)
Break game state into m components
Eval(n) = w_1c_1(n)+w_2c_2(n)…w_mc_m(n)
Note multiple states have the exact same component values
Eval function some estimate of the the expectation of
#wins/#games from this point (as described by the components)

State space, evaluation function for a single player checkers program?
Checkers

Evaluation function features

Samuel experimented with Over 50. Recent work looks at learning the feature weights.
Simplest evaluation function

\[F(n) = 3c_3 + 2c_2 + 1c_1 + 30a_3 + 20a_2 + 10a_1 \]
Alpha Beta Pruning

- Produces exact same results as minimax algorithm
- Reduces search by not expanding sub-optimal paths
- Alpha and Beta terms are the floor and ceiling of the range of values, the player is interested in.
Alpha-beta pruning example: Step 1

- α is the maximum lower bound of possible solutions (MAX plays)
- β is the minimum upper bound of possible solutions (MIN plays)

Max fills left hand alpha value
Min fills in right beta value
Parent can set current best Estimates for alpha and beta
Alpha-beta pruning example: Step 2
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)

For this path, worst min can do is 5

Alpha-beta pruning example: Step 3
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)

For this path, worst max can do is 5
Alpha-beta pruning example: Step 4
α is the maximum lower bound of possible solutions (MAX plays)
β is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 5
α is the maximum lower bound of possible solutions (MAX plays)
β is the minimum upper bound of possible solutions (MIN plays)
Alpha-beta pruning example: Step 6

- α is the maximum lower bound of possible solutions (MAX plays)
- β is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 7

- α is the maximum lower bound of possible solutions (MAX plays)
- β is the minimum upper bound of possible solutions (MIN plays)
Alpha-beta pruning example: Step 8
\(\alpha\) is the maximum lower bound of possible solutions (MAX plays)
\(\beta\) is the minimum upper bound of possible solutions (MIN plays)

All branches “complete”
Alpha-beta pruning example: Step 10

α is the maximum lower bound of possible solutions (MAX plays)
β is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 11

α is the maximum lower bound of possible solutions (MAX plays)
β is the minimum upper bound of possible solutions (MIN plays)
Alpha-beta pruning example: Step 12
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 13
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)
Alpha-beta pruning example: Step 14

α is the maximum lower bound of possible solutions (MAX plays)

β is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 15

α is the maximum lower bound of possible solutions (MAX plays)

β is the minimum upper bound of possible solutions (MIN plays)
Alpha-beta pruning example: Step 16
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 17
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)

Alpha-beta pruning example: Step 18
\(\alpha \) is the maximum lower bound of possible solutions (MAX plays)
\(\beta \) is the minimum upper bound of possible solutions (MIN plays)
Initial call is to \(\text{MAX_VALUE(root_node, -\infty, \infty)} \)

Alpha \(\leq \) Beta, otherwise cut-off search

\textbf{Alpha-Beta pruning}

\begin{verbatim}
function \text{MAX_VALUE(state, game, } \alpha, \beta) \text{ returns the minimax value of state}
inputs: state, current state in game
 game, game description
 \alpha, the best score for \text{MAX} along the path to state
 \beta, the best score for \text{MIN} along the path to state

if \text{GOAL_TEST(state)} then return \text{EVAL(state)}
for each \text{s in SUCCESSORS(state)} do
 \alpha \leftarrow \text{MAX}(\alpha, \text{MIN_VALUE(s, game, } \alpha, \beta))
 if \alpha \geq \beta then return \beta
end
return \alpha

function \text{MIN_VALUE(state, game, } \alpha, \beta) \text{ returns the minimax value of state}

if \text{GOAL_TEST(state)} then return \text{EVAL(state)}
for each \text{s in SUCCESSORS(state)} do
 \beta \leftarrow \text{MIN}(\beta, \text{MAX_VALUE(s, game, } \alpha, \beta))
 if \beta \leq \alpha then return \alpha
end
return \beta
\end{verbatim}

Max of min values

Min of max values
Analysis of Alpha Beta Pruning

 - Most results for perfectly ordered trees
 - Some for randomly ordered trees
Performance analysis of Alpha-Beta Pruning

• Since alpha-beta pruning performs a minimax search while pruning much of the tree, its effect is to allow a deeper search with the same amount of computation.

• The question: how much does alpha-beta improve performance?
Example of alpha-beta worst case

- Evaluation from left to right
Minimax value of game trees

- The most natural definition for the average case is that the leaf nodes are randomly ordered.
- Heuristic node ordering would violate this assumption.
- Average case performance is not a prediction of its performance in practice.
Next Class

• Reinforcement learning – Chapter 21
Agent / Environment Interaction

Goal: Learn to choose actions that maximize

\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots, \text{ where } 0 \leq \gamma < 1 \]

Different rewards
Emphasize
different behavior
Examples and Properties (1)

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors
Examples and Properties (2)

• Each unique location is NOT a state
• Can be applied to any autonomous agent.
 – Software agents, web-crawlers
• Not unlike Pavlovian conditioning
 – Condition the learner to optimal behavior
• Agent receives indirect & delayed rewards, no guidance or corrections given.
 – Different than supervised learning
• Agent does not necessarily know how their actions change their state.
• Recent move towards competing agents.
A Successful Example

[Tesauro, 1995]

Learn to play Backgammon

Immediate reward

- +100 if win
- -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player
Different Environments and Agents

• Environments
 – Direct or indirect rewards/training

• Agents
 – Deterministic versus non-deterministic actions.
 – Incomplete knowledge of effect of actions
 – Incomplete knowledge of the state
 – Agent memory or model of the environment

• Regardless of differences always have:
 – $\delta(s_t,a_t)$ chooses the action to perform
 – $r(s_t,a_t)$ provides the reward given the action
 – Agent may not know either function