Association Rules Outline

Goal: Provide an overview of basic Association Rule mining techniques

- Association Rules Problem Overview
 - Large/Frequent itemsets
- Association Rules Algorithms
 - Apriori
 - Sampling
 - Partitioning
 - Parallel Algorithms
- Comparing Techniques
- Incremental Algorithms
- Advanced AR Techniques
Example: Market Basket Data

• Items frequently purchased together:
 \textbf{Bread }\Rightarrow\textbf{PeanutButter}

• Uses:
 – Product placement
 – Advertising - Amazon
 – Sales
 – Coupons
Association Rule Definitions

• **Set of items:** $I = \{I_1, I_2, \ldots, I_m\}$
• **Transactions:** $D = \{t_1, t_2, \ldots, t_n\}, t_j \subseteq I$
• **Itemset:** $\{I_{i1}, I_{i2}, \ldots, I_{ik}\} \subseteq I$
• **Support of an itemset:** Percentage of transactions which contain that itemset.
• **Large (Frequent) itemset:** Itemset whose number of occurrences is above a threshold.
Association Rules Example

I = \{ Beer, Bread, Jelly, Milk, PeanutButter\}

Support of \{Bread, PeanutButter\} is 60%
 Association Rule Definitions

- **Association Rule (AR):** implication \(X \Rightarrow Y \) where \(X, Y \subseteq I \) and \(X \cap Y = \emptyset \);

- **Support of AR (s) \(X \Rightarrow Y \):** Percentage of transactions that contain \(X \cup Y \)

- **Confidence of AR (\(\alpha \) \(X \Rightarrow Y \):** Ratio of number of transactions that contain \(X \cup Y \) to the number that contain \(X \).
Association Rules Ex (cont’d)

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X \Rightarrow Y$</th>
<th>s</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread \Rightarrow PeanutButter</td>
<td>60%</td>
<td>75%</td>
</tr>
<tr>
<td>PeanutButter \Rightarrow Bread</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>Beer \Rightarrow Bread</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>PeanutButter \Rightarrow Jelly</td>
<td>20%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Jelly \Rightarrow PeanutButter</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>Jelly \Rightarrow Milk</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Association Rule Problem

• Given a set of items $I=\{I_1,I_2,\ldots,I_m\}$ and a database of transactions $D=\{t_1,t_2, \ldots, t_n\}$ where $t_i=\{I_{i1},I_{i2}, \ldots, I_{ik}\}$ and $I_{ij} \in I$, the **Association Rule Problem** is to identify all association rules $X \Rightarrow Y$ with a minimum support and confidence.

• Link Analysis

• **NOTE**: Support of $X \Rightarrow Y$ is same as support of $X \cup Y$.
Association Rule Techniques

1. Find Large Itemsets.
2. Generate rules from frequent itemsets.
Algorithm to Generate ARs

Input:
- D //Database of transactions
- I //Items
- L //Large itemsets
- s //Support
- α //Confidence

Output:
- R //Association Rules satisfying s and α

ARGen Algorithm:
1. $R = \emptyset$;
2. for each $l \in L$ do
 - for each $x \subset l$ such that $x \neq \emptyset$ and $x \neq l$ do
 - if $\frac{\text{support}(l)}{\text{support}(x)} \geq \alpha$ then
 - $R = R \cup \{x \Rightarrow (l - x)\}$;
Apriori

Large Itemset Property:
Any subset of a large itemset is large.

Contrapositive:
If an itemset is not large, none of its supersets are large.
Large Itemset Property
Apriori Ex (cont’d)

<table>
<thead>
<tr>
<th>Pass</th>
<th>Candidates</th>
<th>Large Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Beer}, {Bread}, {Jelly}, {Milk}, {PeanutButter}</td>
<td>{Beer}, {Bread}, {Milk}, {PeanutButter}</td>
</tr>
<tr>
<td>2</td>
<td>{Beer, Bread}, {Beer, Milk}, {Beer, PeanutButter}, {Bread, Milk}, {Bread, PeanutButter}, {Milk, PeanutButter}</td>
<td>{Bread, PeanutButter}</td>
</tr>
</tbody>
</table>

s = 30% \quad \alpha = 50%
Apriori Algorithm

1. \(C_1 = \) Itemsets of size one in \(I \);
2. Determine all large itemsets of size 1, \(L_1 \);
3. \(i = 1 \);
4. Repeat
5. \(i = i + 1 \);
6. \(C_i = \) Apriori-Gen\((L_{i-1})\);
7. Count \(C_i \) to determine \(L_i \);
8. until no more large itemsets found;
Apriori-Gen

• Generate candidates of size i+1 from large itemsets of size i.
• Approach used: join large itemsets of size i if they agree on i-1
• May also prune candidates who have subsets that are not large.
Apriori-Gen Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Blouse</td>
</tr>
<tr>
<td>t_2</td>
<td>Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_3</td>
<td>Jeans,TShirt</td>
</tr>
<tr>
<td>t_4</td>
<td>Jeans,Shoes,TShirt</td>
</tr>
<tr>
<td>t_5</td>
<td>Jeans,Shorts</td>
</tr>
<tr>
<td>t_6</td>
<td>Shoes,TShirt</td>
</tr>
<tr>
<td>t_7</td>
<td>Jeans,Skirt</td>
</tr>
<tr>
<td>t_8</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_9</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{10}</td>
<td>Jeans,Shoes,TShirt</td>
</tr>
<tr>
<td>t_{11}</td>
<td>TShirt</td>
</tr>
<tr>
<td>t_{12}</td>
<td>Blouse,Jeans,Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_{13}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_{14}</td>
<td>Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_{15}</td>
<td>Jeans,TShirt</td>
</tr>
<tr>
<td>t_{16}</td>
<td>Skirt,TShirt</td>
</tr>
<tr>
<td>t_{17}</td>
<td>Blouse,Jeans,Skirt</td>
</tr>
<tr>
<td>t_{18}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_{19}</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{20}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
</tbody>
</table>
Apriori-Gen Example (cont’d)

<table>
<thead>
<tr>
<th>Scan</th>
<th>Candidates</th>
<th>Large Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Blouse}, {Jeans}, {Shoes}, {Shorts}, {Skirt}, {TShirt}</td>
<td>{Jeans}, {Shoes}, {Shorts}, {Skirt}, {TShirt}</td>
</tr>
<tr>
<td>4</td>
<td>{Jeans, Shoes, Shorts, TShirt}</td>
<td>{Jeans, Shoes, Shorts, TShirt}</td>
</tr>
<tr>
<td>5</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>
Apriori Adv/Disadv

- **Advantages:**
 - Uses large itemset property.
 - Easily parallelized. How?
 - Easy to implement.

- **Disadvantages:**
 - Assumes transaction database is memory resident.
 - Requires up to m database scans.
Partitioning

- Divide database into partitions D^1, D^2, \ldots, D^p
- Apply Apriori to each partition
- Any large itemset must be large in at least one partition.
Partitioning Algorithm

1. Divide D into partitions D^1, D^2, \ldots, D^p;
2. For $I = 1$ to p do
3. \[L^i = \text{Apriori}(D^i); \]
4. \[C = L^1 \cup \ldots \cup L^p; \]
5. Count C on D to generate L;
Partitioning Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

$L^1 = \{\{\text{Bread}\}, \{\text{Jelly}\}, \{\text{PeanutButter}\}, \{\text{Bread, Jelly}\}, \{\text{Bread, PeanutButter}\}, \{\text{Jelly, PeanutButter}\}, \{\text{Bread, Jelly, PeanutButter}\}\}$

$L^2 = \{\{\text{Bread}\}, \{\text{Milk}\}, \{\text{PeanutButter}\}, \{\text{Bread, Milk}\}, \{\text{Bread, PeanutButter}\}, \{\text{Milk, PeanutButter}\}, \{\text{Bread, Milk, PeanutButter}\}, \{\text{Beer}\}, \{\text{Beer, Bread}\}, \{\text{Beer, Milk}\}\}$
Partitioning Adv/Disadv

• **Advantages:**
 – Adapts to available main memory
 – Easily parallelized
 – Maximum number of database scans is two.

• **Disadvantages:**
 – May have many candidates during second scan.
Sampling

• Large databases
• Sample the database and apply Apriori to the sample.

• Potentially Large Itemsets (PL): Large itemsets from sample

• Negative Border (BD⁻):
 – Generalization of Apriori-Gen applied to itemsets of varying sizes.
 – Minimal set of itemsets which are not in PL, but whose every subset is in PL.
Negative Border Example

PL

PL \cup B D^{-}(PL)
Sampling Algorithm

1. \(D_s = \) sample of Database \(D \);
2. \(PL = \) Large itemsets in \(D_s \) using \(\alpha \text{MinSup} \);
3. \(C = PL \cup BD^-(PL) \);
4. Count \(C \) in \(D_s \);
5. \(ML = \) large itemsets in \(BD^-(PL) \);
6. If \(ML = \emptyset \) then done
7. else \(C = \) repeated application of \(BD^- \);
8. Count \(C \) in Database;
Sampling Example

- Find AR assuming MinSup = 20%
- $D_s = \{ t_1, t_2 \}$
- $\alpha_{MinSup} = 10\%$
- $PL = \{ \{\text{Bread}\}, \{\text{Jelly}\}, \{\text{PeanutButter}\}, \{\text{Bread, Jelly}\}, \{\text{Bread, PeanutButter}\}, \{\text{Jelly, PeanutButter}\}, \{\text{Bread, Jelly, PeanutButter}\} \}$
- $BD^{-}(PL) = \{ \{\text{Beer}\}, \{\text{Milk}\}\}$
- $ML = \{ \{\text{Beer}\}, \{\text{Milk}\}\}$
- Repeated application of BD^{-} generates all remaining itemsets
Sampling Adv/Disadv

• **Advantages:**
 – Reduces number of database scans to one in the best case and two in worst.
 – Scales better.

• **Disadvantages:**
 – Potentially large number of candidates in second pass
Parallelizing AR Algorithms

• Based on Apriori
• Techniques differ:
 – What is counted at each site
 – How data (transactions) are distributed
• Data Parallelism
 – Data partitioned
 – Count Distribution Algorithm
• Task Parallelism
 – Data and candidates partitioned
 – Data Distribution Algorithm
Count Distribution Algorithm (CDA)

1. Place data partition at each site.
2. In Parallel at each site do
3. \(C_1 = \) Itemsets of size one in \(I \);
4. Count \(C_1 \);
5. Broadcast counts to all sites;
6. Determine global large itemsets of size 1, \(L_1 \);
7. \(i = 1 \);
8. Repeat
9. \(i = i + 1 \);
10. \(C_i = \) Apriori-Gen\((L_{i-1}) \);
11. Count \(C_i \);
12. Broadcast counts to all sites;
13. Determine global large itemsets of size \(i \), \(L_i \);
14. until no more large itemsets found;
CDA Example

p^1

D^1: t_1, t_2
Counts:
- Beer: 0
- Bread: 2
- Jelly: 1
- Milk: 0
- PeanutButter: 2

p^2

D^2: t_3, t_4
Counts:
- Beer: 1
- Bread: 2
- Jelly: 0
- Milk: 1
- PeanutButter: 1

p^3

D^3: t_5
Counts:
- Beer: 1
- Bread: 0
- Jelly: 0
- Milk: 1
- PeanutButter: 0

Broadcast Local Counts
Data Distribution Algorithm (DDA)

1. Place data partition at each site.
2. In Parallel at each site do
3. Determine local candidates of size 1 to count;
4. Broadcast local transactions to other sites;
5. Count local candidates of size 1 on all data;
6. Determine large itemsets of size 1 for local candidates;
7. Broadcast large itemsets to all sites;
8. Determine L_1;
9. $i = 1$;
10. Repeat
11. $i = i + 1$;
12. $C_i = \text{Apriori-Gen}(L_{i-1})$;
13. Determine local candidates of size i to count;
14. Count, broadcast, and find L_i;
15. until no more large itemsets found;
DDA Example

Broadcast Database Partition

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
</table>
| **D1:**
 \[t_1 , t_2 \]
 Counts:
 Beer 0
 Bread 2 |
| **D2:**
 \[t_3 , t_4 \]
 Counts:
 Jelly 0
 Milk 1 |
| **D3:**
 \[t_5 \]
 Counts:
 PeanutButter 0 |
Comparison of AR Techniques

<table>
<thead>
<tr>
<th>Partitioning</th>
<th>Scans</th>
<th>Data Structure</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apriori</td>
<td>(m + 1)</td>
<td>hash tree</td>
<td>none</td>
</tr>
<tr>
<td>Sampling</td>
<td>2</td>
<td>not specified</td>
<td>none</td>
</tr>
<tr>
<td>Partitioning</td>
<td>2</td>
<td>hash table</td>
<td>none</td>
</tr>
<tr>
<td>CDA</td>
<td>(m + 1)</td>
<td>hash tree</td>
<td>data</td>
</tr>
<tr>
<td>DDA</td>
<td>(m + 1)</td>
<td>hash tree</td>
<td>task</td>
</tr>
</tbody>
</table>
Incremental Association Rules

- Generate ARs in a dynamic database.
- Problem: algorithms assume static database
- Objective:
 - Know large itemsets for D
 - Find large itemsets for $D \cup \{\Delta D\}$
- Must be large in either D or ΔD
- Save L_i and counts
Note on ARs

• Many applications outside market basket data analysis
 – Prediction (telecom switch failure)
 – Web usage mining

• Many different types of association rules
 – Temporal
 – Spatial
 – Causal
Advanced AR Techniques

• Generalized Association Rules
 – Need is-a hierarchy
• Multiple-Level Association Rules
• Quantitative Association Rules
• Using multiple minimum supports

Figure 1: Example of a Taxonomy

Figure 1: A taxonomy for the relevant data items
Measuring Quality of Rules

- Support (Joint probability)
- Confidence (Conditional probability)
- Interest (Essentially a measure of independence)
- Conviction (Asymmetrical interest measure)
 - $A \rightarrow B$ rewritten using the implication elimination of P.L?
- Chi Squared Test
 - Create a contingency table, test for independence