Review of Decision Tree Classifiers

• Basic algorithm is fine, but applications in the real world require further enhancements
 – Rare events
 – Concept drift
 – Sequential data
 – Continuous dependent variables
 – Multiple dependent variables
Biological Inspiration

• Brain consists of billions of switches called neurons, wired up in a complicated way
• Computers consists of many switches (transistors)
Why Model The Brain

Consider humans:

- Neuron switching time ~ 0.001 second
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time ~ 0.1 second
- 100 inference steps doesn’t seem like enough
 \rightarrow much parallel computation
- Computer switch at speeds of 10^{-11}
- Sub-symbolic learning
Simplest Type of Unit - Perceptron

\[o(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\
-1 & \text{otherwise.}
\end{cases} \]

Sometimes we’ll use simpler vector notation:

\[o(\vec{x}) = \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\
-1 & \text{otherwise.}
\end{cases} \]
Perceptron Decision Boundaries

![Diagram showing two quadrants with decision boundaries]

- Represents some useful functions
- What weights represent $g(x_1, x_2) = \text{AND}(x_1, x_2)$?
- But some functions not representable
 - e.g., not linearly separable

What function? Minsky and Papert
Perceptron Training Rule

\[w_i \leftarrow w_i + \Delta w_i \]

where

\[\Delta w_i = \eta(t - o)x_i \]

Where:

- \(t = c(\vec{x}) \) is target value
- \(o \) is perceptron output
- \(\eta \) is small constant (e.g., .1) called **learning rate**

Can prove it will converge

- If training data is linearly separable
- and \(\eta \) sufficiently small
Perceptron Training Rule

\[w_i \leftarrow w_i + \Delta w_i \]

\[\Delta w_i = \eta(t - o)x_i \]

- Learning the AND function, rate = 0.05

<table>
<thead>
<tr>
<th>w0</th>
<th>w1</th>
<th>w2</th>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>t</th>
<th>w0,x0</th>
<th>w1,x1</th>
<th>w2,x2</th>
<th>o</th>
<th>delta_w0</th>
<th>delta_w1</th>
<th>delta_w2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-0.1</td>
</tr>
<tr>
<td>-0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-0.1</td>
<td>0</td>
<td>0.3</td>
<td>1</td>
<td>-0.1</td>
<td>0</td>
<td>-0.1</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Linear Units – No Threshold

• Gradient Descent (Delta Rule) (update weights after looking at all training data)

 * For each linear unit weight w_i, Do

 \[\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i \]

 - For each linear unit weight w_i, Do

 \[w_i \leftarrow w_i + \Delta w_i \]

• Stochastic Gradient Descent (update weights after looking at each instance)
Classification Using Neural Networks

• Typical NN structure for classification:
 – One output node per class
 – Output value is class membership function value

• Supervised learning

• For each tuple in training set, propagate it through NN. Adjust weights on edges to improve future classification.

• Algorithms: Propagation, Backpropagation, Gradient Descent
Decision Tree vs. Neural Network
Network of Neurons

Four Key Decisions To Make

• Arrange neurons in various layers.
• Deciding the type of connections among neurons for different layers, as well as among the neurons within a layer.
• Deciding the way a neuron receives input and produces output.
• Determining the strength of connection within the network.
Layers and Connections?

• Layers
 – How many input nodes, hidden units, hidden layers, output units.
 – What happens if you have too many hidden units?

• Connections
 – Uni (Hierarchical) or bi-directional (resonance) between neurons
 – Connect to units in other layers or within a layer (re-current: form cliques)
 – Full or partial connections between layers
Training a Network of Neurons

- Use the backpropagation algorithm
 - Gradient descent (can get stuck in local minima)
 - Error is summed over all outputs
 - Network of neurons allows complex decision boundaries. Input layer not neurons.
What Type of Neuron to Use?

- Linear units? Perceptrons? Use sigmoid, tanh

\[
\sigma(x) \text{ is the sigmoid function}
\]

\[
\frac{1}{1 + e^{-x}}
\]

Nice property:
\[
\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))
\]

We can derive gradient decent rules to train

- One sigmoid unit

- *Multilayer networks of sigmoid units* → Backpropagation
Error Gradient For Sigmoid Function

\[
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\
= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\
= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\
= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\
= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}
\]

But we know:
\[
\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)
\]
\[
\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}
\]

So:
\[
\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d(1 - o_d) x_{i,d}
\]
Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

• For each training example, Do

1. Input the training example to the network and compute the network outputs

2. For each output unit \(k \)

\[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]

3. For each hidden unit \(h \)

\[\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{h,k} \delta_k \]

4. Update each network weight \(w_{i,j} \)

\[w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \]

where

\[\Delta w_{i,j} = \eta \delta_j x_{i,j} \]
Insights into Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α
 \[\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1) \]
- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast
Hidden Layer and Latent Concepts - 1

A target function:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000000</td>
<td>100000000</td>
</tr>
<tr>
<td>010000000</td>
<td>010000000</td>
</tr>
<tr>
<td>001000000</td>
<td>001000000</td>
</tr>
<tr>
<td>000100000</td>
<td>000100000</td>
</tr>
<tr>
<td>000010000</td>
<td>000010000</td>
</tr>
<tr>
<td>000001000</td>
<td>000001000</td>
</tr>
<tr>
<td>000000100</td>
<td>000000100</td>
</tr>
<tr>
<td>000000010</td>
<td>000000010</td>
</tr>
<tr>
<td>000000010</td>
<td>000000010</td>
</tr>
</tbody>
</table>

Can this be learned??
Hidden Layer and Latent Concepts - 2

A network:

Learned hidden layer representation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Values</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000000</td>
<td>0.89 0.04 0.08</td>
<td>100000000</td>
</tr>
<tr>
<td>010000000</td>
<td>0.01 0.11 0.88</td>
<td>010000000</td>
</tr>
<tr>
<td>001000000</td>
<td>0.01 0.97 0.27</td>
<td>001000000</td>
</tr>
<tr>
<td>000100000</td>
<td>0.99 0.97 0.71</td>
<td>000100000</td>
</tr>
<tr>
<td>000010000</td>
<td>0.03 0.05 0.02</td>
<td>000010000</td>
</tr>
<tr>
<td>000001000</td>
<td>0.22 0.99 0.99</td>
<td>000001000</td>
</tr>
<tr>
<td>000000100</td>
<td>0.80 0.01 0.98</td>
<td>000000100</td>
</tr>
<tr>
<td>000000010</td>
<td>0.60 0.94 0.01</td>
<td>000000010</td>
</tr>
</tbody>
</table>