Defining functions

(lambda \((x_1 \ x_2 \ \ldots \ x_k) \) \(E \))

When this functional object is invoked,

the parameters are call-by-value

\(E \) is evaluated and

the resulting value is returned
Lexical scoping

(define f
 (lambda (x₁ x₂ ... xₖ) E)
)

The value of a λ-expression is a procedure (closure) that consists of

the list of parameters

the body E

the environment in which the free variables in the body are bound at the time the λ-expression is evaluated

lexical scoping: values of free variables are looked up in the environment in which the procedure was defined
Suppose the value of x is 2

1]=> (define foo (lambda (y) (+ x y)))

;Value: foo

1]=> (foo 1000)

;Value: 1002

1]=> (let ((x 1)) (foo 1000))

;Value: 1002
letrec

the proper way to define recursive functions

(letrec
 (
 (<var_1> <expr_1>)

 (<var_k> <expr_k>)

 (<expression>)
)
)

(define factorial
 (letrec
 ((f (lambda (n)
 (if (= n 0) 1
 (* n (f (- n 1))))
))))
(define remove
 (letrec
 ((rhelp
 ((rhelp
 (lambda (x ls)
 (cond ((null? ls) '())
 ((equal? x (car ls))
 (rhelp x (cdr ls)))
 (else (cons (car ls)
 (rhelp x (cdr ls))))))
)
)
)
)
)
)
)
)
 rhelp
)
)
)
)
define again

\[(\text{define} \ (<\text{fun_name}> \ <f_{p_1}> \ \ldots \ <f_{p_n}>) \ E)\]

is equivalent to

\[(\text{define} \ <\text{fun_name}> \n\ (\text{lambda} \ (<f_{p_1}> \ \ldots \ <f_{p_n}>) \ E)\n)\]
Nested definitions

internal definitions

(define (remove x ls)
 (define (loop L M)
 (cond ((null? L) M)
 ((equal? x (car L)) (loop (cdr L) M))
 (else
 (loop (cdr L) (cons (car L) M)))
)
)
 (reverse (loop ls '()))
)

loop is not visible outside remove
Tail recursion

result of a recursive call (within the body) is not further modified

it is the result of the function

```
(define (fact n)
  (define (loop m p)
    (if (= m 0) p
      (loop (- m 1) (* m p))
    )
  )
  (loop n 1)
)
```
Higher-order functions

- functions as arguments
- functions as (part of) the return value

(define (compose f g)
 (lambda (x) (f (g x)))
)

(((compose 1+ 1+) 100) \rightarrow 102)
\(\text{map} \)

\[
(\text{map } f \ (a_1 \ \ldots \ a_n))
\]

\[
\equiv (f(a_1) \ \ldots \ f(a_n))
\]

\[
(\text{map} \ 1+ \ ' (10 \ 20 \ 30 \ 40))
\]

\[
\implies \ (11 \ 21 \ 31 \ 41)
\]

\[
(\text{map} \ (\lambda \ (x) \ (* \ x \ x)) \ ' (10 \ 20 \ 30 \ 40))
\]

\[
\implies \ (100 \ 400 \ 900 \ 1600)
\]
(define (mapcan f ls)
 (if (null? ls)
 '()
 (append (f (car ls)) (mapcan f (cdr ls))))
)

(mapcan cdr '(((1 2 3) (4 5 6) (7)))
 \Rightarrow (2 3 5 6)
fold-left
fold-left

(define (fold-left f x ls)
 (define (lrhelp y L)
 (if (null? L) y
 (lrhelp (f y (car L)) (cdr L)))
)
 (lrhelp x ls)
)

(fold-left + 0 '(1 3 5 7 9 11))
⇒ 36
(fold-left
 (lambda (x y) (cons y x))
 '()
 '(1 3 5 7)
)

⇒ (7 5 3 1)

(fold-left (lambda (x y) (cons (1+ y) x))
 '()
 '(10 20 30)
)

⇒ (31 21 11)
fold-right

\[
\begin{array}{c}
\text{fold-right} \\
\begin{array}{c}
\text{f} \\
\text{a_1} & \text{f} \\
\text{a_2} \\
\text{f} \\
\text{a_n} & \text{x}
\end{array}
\end{array}
\]
fold-right

(define (fold-right f x ls)
 (define (frhelp ls)
 (if (null? ls)
 x
 (f (car ls) (frhelp (cdr ls)))
)
)
 (frhelp ls)
)

(fold-right - 0 '(7 11 13))
⇒ 9

(fold-right + 0 '(1 3 5 7 9 11))
⇒ 36
(fold-right cons '() '(1 3 5 7))
 ⇒ (1 3 5 7)

(define (I x) x)

(define (myf x f) (lambda (y) (f (cons x y))))

((fold-right myf I '(1 3 5 7)) '())
 ⇒ (7 5 3 1)
\[\lambda x. (\text{cons } 7 \ (\text{cons } 5 \ (\text{cons } 3 \ (\text{cons } 1 \ x)))) \]