Context-free grammars

- a set of terminals Σ
- a set of nonterminals or variables V
 - syntactic categories
- a starting nonterminal S
 - main category being defined
- a set of productions (rewrite rules) R of the form

 $$\text{variable } \rightarrow \text{string over } V \cup \Sigma$$

Example: $\Sigma = \{a, b\}$, $V = \{S\}$,

$$R = \{ S \rightarrow aSb, \ S \rightarrow \epsilon \}$$

Derivation step: S can be replaced with aSb or ϵ
Derivation step

\Rightarrow_R is a binary relation on $(V \cup \Sigma)^*$, defined as

\{(uAv, u\alpha v) \mid u, v \in (V \cup \Sigma)^*, (A \rightarrow \alpha) \in R\}

If $A \rightarrow \alpha$ is a rule in R, then

$uAv \Rightarrow u\alpha v \quad (uAv \text{ yields } u\alpha v)$

for all $u, v \in (V \cup \Sigma)^*$

\Rightarrow^* is the reflexive, transitive closure of \Rightarrow.

$L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$
Example 1

\[\Sigma = \{a, b\}, \; V = \{S\}, \]

\[R = \{S \rightarrow aSb, \; S \rightarrow aS, \; S \rightarrow \epsilon\} \]

\[S \Rightarrow aSb \Rightarrow aaSb \Rightarrow aab \]

\[S \Rightarrow aS \Rightarrow aaSb \Rightarrow aab \]

\[L(G) = \{a^i b^j \mid i \geq j \geq 0\} \]
Example 2

\[\Sigma = \{a, b\}, \ V = \{S\}, \]

\[R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon\} \]

\[S \Rightarrow aSa \Rightarrow aba \]

\[S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba \]

\[L(G) = \{w \mid w = w^R\} \]
Closure properties – Union

\[G_1 = (V_1, \Sigma, R_1, S_1) \]
\[G_2 = (V_2, \Sigma, R_2, S_2) \]

where \(V_1 \cap V_2 = \emptyset \).

Let \(S \) be a new nonterminal.

\[G = (V, \Sigma, R, S) \]

where

\[V = V_1 \cup V_2 \cup \{ S \} \quad \text{and} \]

\[R = R_1 \cup R_2 \cup \{ S \rightarrow S_1 \mid S_2 \} \]

\[L(G) = L(G_1) \cup L(G_2) \]

Closure properties – Concatenation

\[G_1 = (V_1, \Sigma, R_1, S_1) \]
\[G_2 = (V_2, \Sigma, R_2, S_2) \]

where \(V_1 \cap V_2 = \emptyset \).

Let \(S \) be a new nonterminal.

\[G = (V, \Sigma, R, S) \] where

- \(V = V_1 \cup V_2 \cup \{S\} \) and
- \(R = R_1 \cup R_2 \cup \{S \to S_1S_2\} \)

\[L(G) = L(G_1) \circ L(G_2) \]
\[L = \{a^i b^j c^k \mid j = i + k\} \]

\[L = L_1 L_2 \quad \text{where} \]

\[L_1 = \{a^m b^m \mid m \geq 0\} \]

\[L_2 = \{b^n c^n \mid n \geq 0\} \]

\[
S \rightarrow S_1 S_2 \\
S_1 \rightarrow aS_1 b \mid \epsilon \\
S_2 \rightarrow bS_2 c \mid \epsilon
\]
Closure properties – Star

\[G_1 = (V_1, \Sigma, R_1, S_1) \]

Let \(S \) be a new nonterminal.

\[G = (V, \Sigma, R, S) \] where

- \(V = V_1 \cup \{S\} \) and
- \(R = R_1 \cup \{S \to SS_1 \mid \epsilon\} \)

\[L(G) = L(G_1)^* \]
Derivation tree

$\Sigma = \{a, b\}, \ V = \{S\},$

$\ R = \{S \rightarrow aSb \mid \varepsilon\}$
Derivation tree

- rooted and ordered

- nodes are labelled with nonterminals, terminals or ϵ

- only nonterminal nodes have children
 leaf nodes are labelled with terminals or ϵ

- if A is a node and a_1, \ldots, a_n (each $a_i \in V \cup \Sigma$) its children from left to right, then it must be that $A \rightarrow a_1 \ldots a_n$ is a rule in the grammar

- if A is a node and ϵ is its only child, then it must be that $A \rightarrow \epsilon$ is a rule in the grammar
Ambiguity

A grammar is ambiguous if there is a string with two or more derivation trees.

\[\Sigma = \{a, b\}, \ V = \{S\}, \]
\[R = \{S \rightarrow SS \mid a\} \]

String \(aaa\) has two distinct derivation trees.
Ambiguity: another example

\[\Sigma = \{a, b\}, \quad V = \{S\}, \]

\[R = \{S \rightarrow aSb, \quad S \rightarrow aS, \quad S \rightarrow \epsilon\} \]
Ambiguity: yet another example

\[\Sigma = \{a\}, \ V = \{S\}, \]

\[R = \{S \rightarrow aSSa \mid a\} \]

String \(a^7\) (aaaaaaaa) has two distinct derivation trees.
For the language a^+,

$$\{S \rightarrow SS \mid a\} \text{ is ambiguous, but}$$

$$\{S \rightarrow aS \mid a\} \text{ is not.}$$