Regular expressions

- \emptyset
- a for all $a \in \Sigma$
- If r_1, r_2 are regular expressions then so are $r_1 \cup r_2$ and $r_1 r_2$
- If r is a regular expression then so is r^*
- Nothing else is a regular expression

If w is a string, then w is a regular expression.
Regular expressions

\(\mathcal{L}(r) \) — language denoted by \(r \)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(\mathcal{L}(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(a)</td>
<td>({a})</td>
</tr>
<tr>
<td>(r_1 \cup r_2)</td>
<td>(\mathcal{L}(r_1) \cup \mathcal{L}(r_2))</td>
</tr>
<tr>
<td>(r_1r_2)</td>
<td>(\mathcal{L}(r_1)\mathcal{L}(r_2))</td>
</tr>
<tr>
<td>(r^*)</td>
<td>(\mathcal{L}(r)^*)</td>
</tr>
</tbody>
</table>

The operator precedence is \(* \succ \circ \succ \cup \)

\(\mathcal{L}(ab^* \cup aa) = (\{a\} \circ \{b\}^*) \cup \{aa\} \)
Deterministic Finite Automaton (DFA)

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \) = set of states of the finite automaton
- \(\Sigma \) is a finite alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the initial state
- \(F \subseteq Q \) is the set of accepting states
Acceptance by DFA

\[\delta^* : Q \times \Sigma^* \rightarrow Q \]

\[\delta^*(q, \epsilon) = q \]

\[\delta^*(q, ax) = \delta^*(\delta(q, a), x) \]

\(w \) is accepted by \(M \) iff \(\delta^*(q_0, w) \in F \)

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

\(M \text{ recognizes } L \) iff \(L = L(M) \)
Dead states

\[\forall w : \delta^* (q, w) \notin F \]

\[q_2 \text{ is a dead state} \]
Product construction

\[M_1 = (P, \Sigma, \delta_1, p_0, F_1) \]
\[M_2 = (Q, \Sigma, \delta_2, q_0, F_2) \]

\((P \times Q, \Sigma, \delta, (p_0, q_0), \ldots)\)

where

\[\delta((p, q), b) = (\delta_1(p, b), \delta_2(q, b)) \]

for all \((p, q) \in P \times Q, b \in \Sigma\)

<table>
<thead>
<tr>
<th>Aim</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cap)</td>
<td>(F_1 \times F_2)</td>
</tr>
<tr>
<td>(\cup)</td>
<td>{ (p, q)</td>
</tr>
<tr>
<td>(\setminus)</td>
<td>{ (p, q)</td>
</tr>
</tbody>
</table>