A Requirements Analysis for Parallel KDD Systems

William A. Maniatty1 and Mohammed J. Zaki2

1 Computer Science Dept., University at Albany, Albany, NY 12222
maniatty@cs.albany.edu http://www.cs.albany.edu/~maniatty/

2 Computer Science Dept., Rensselaer Polytechnic Institute, Troy, NY 12180
zaki@cs.rpi.edu http://www.cs.rpi.edu/~zaki/

Abstract. The current generation of data mining tools have limited capacity and performance, since these tools tend to be sequential. This paper explores a migration path out of this bottleneck by considering an integrated hardware and software approach to parallelize data mining. Our analysis shows that parallel data mining solutions require the following components: parallel data mining algorithms, parallel and distributed data bases, parallel file systems, parallel I/O, tertiary storage, management of online data, support for heterogeneous data representations, security, quality of service and pricing metrics. State of the art technology in these areas is surveyed with an eye towards an integration strategy leading to a complete solution.

1 Introduction

Knowledge discovery in databases (KDD) employs a variety of techniques, collectively called data mining, to uncover trends in large volumes of data. Many applications generate (or acquire) data faster than it can be analyzed using existing KDD tools, leading to perpetual data archival without retrieval or analysis. Furthermore, analyzing sufficiently large data sets can exceed the available computational resources of existing computers. In order to reverse the vicious cycle induced by these two problematic trends, the issues of performing KDD faster than the rate of arrival and increasing capacity must simultaneously be dealt with. Fortunately, novel applications of parallel computing techniques should assist in solving these large problems in a timely fashion.

Parallel KDD (PKDD) techniques are not currently that common, though recent algorithmic advances seek to address these problems (Freitas and Lav- ington 1998; Zaki 1999; Zaki and Ho 2000; Kargupta and Chan 2000). However, there has been no work in designing and implementing large-scale parallel KDD systems, which must not only support the mining algorithms, but also the entire KDD process, including the pre-processing and post-processing steps (in fact, it has been posited that around 80\% of the KDD effort is spent in these steps, rather than mining). The picture gets even more complicated when one considers persistent data management of mined patterns and models.

Given the infancy of KDD in general, and PKDD in particular, it is not clear how or where to start, to realize the goal of building a PKDD system.
that can handle terabyte-sized (or larger) central or distributed datasets. Part
of the problem stems from the fact that PKDD draws input from diverse areas
that have been traditionally studied in isolation. Typically, the KDD process
is supported by a hierarchical architecture consisting of the following layers:
(from bottom to top) I/O Support, File System, Data Base, Query Manager,
and Data Mining. However, the current incarnations of this architecture tend
to be sequential, limiting both problem size and performance. To implement
a successful PKDD toolkit, we need to borrow, adapt, and enhance research in
fields such as super-, meta- and heterogeneous-computing environments, parallel
and distributed databases, parallel and distributed file systems, parallel I/O,
mass storage systems, and so on (not to mention the other fields that make up
KDD — statistics, machine learning, visualization, etc.).

This paper represents a first step in the process of unifying these diverse
technologies and leveraging them within the PKDD system. We do this by dis-
cussing the system requirements for PKDD and the extant solutions (or lack
thereof), i.e., the what and the how of PKDD. These requirements follow from;
the basic requirements imposed by KDD (Section 2), current KDD algorithmic
techniques (Section 3), the trends in commodity hardware design (Section 4)
and software requirements (Section 5). One difficulty in making such a survey
is that each research community has its own jargon, which we will try to make
accessible by describing it within a common PKDD framework.

2 PKDD Requirements

We begin by discussing the wish-list or desirable features of a functional PKDD
system, using it to guide the rest of the survey. We mainly concentrate on aspects
that have not received wide attention as yet.

Algorithm Evaluation: Algorithmic aspects that need attention are the ability to
handle high dimensional datasets, to support terabyte data-stores, to minimize
number of data scans, etc. An even more important research area is to provide
a rapid development framework to implement and conduct the performance e-
valuation of a number of competing parallel methods for a given mining task.
Currently this is a very time-consuming process, and there are no guidelines
when to use a particular algorithm over another.

Process Support: The toolkit should support all KDD steps, from pre-processing
operations for like sampling, discretization, and feature subset selection, to post-
processing operations like rule grouping and pruning and model scoring. Other
aspects include (persistent) pattern management operations like caching, effi-
cient retrieval, and meta-level mining.

Location Transparency: The PKDD system should be able to seamlessly access
and mine datasets regardless of their location, be they centralized or distributed.

Data Type Transparency: The system should be able to cope with heterogeneity
(e.g., different database schemas), without having to materialize a join of multi-
ple tables. Other difficult aspects deal with handling unstructured (hyper-)text,
spreadsheet, and a variety of other data types.
System Transparency: This refers to the fact that the PKDD system should be able to seamlessly access file systems, databases, or data archives. Databases and data warehouses represent one kind of data repositories, and thus it is crucial to integrate mining with DBMS to avoid extracting data to flat files. On the other hand, a huge amount of data remains outside databases in flat-files, weblogs, etc. The PKDD system must therefore bridge the gap that exists today between the database and file-systems worlds (Choudhary and Kotz 1996). This is required since database systems today offer little functionality to support mining applications (Agrawal et al. 1993), and most research on parallel file systems and parallel I/O has looked at scientific applications, while data mining operations have very different workload characteristics.

Security, QoS and Pricing: In an increasingly networked world one constantly needs access to proprietary third-party and other remote datasets. The two main issues that need attention here are security and Quality-of-Service (QoS) issues in data mining. We need to prevent unauthorized mining, and we need to provide cost-sensitive mining to guarantee a level of performance. These issues are paramount in web-mining for e-commerce.

Availability, Fault Tolerance and Mobility: Distributed and parallel systems have more points of failure than centralized systems. Furthermore temporary disconnections (which are frequent in mobile computing environments) and reconnections by users should be tolerated with a minimal penalty to the user. Many real world applications cannot tolerate outages, and in the presence of QoS guarantees and contracts outages can breach the agreements between providers and users. Little work has been done to address this area as well.

In the discussion below, due to space constraints, we choose to concentrate only on the algorithmic and hardware trends, and system transparency issues (i.e., parallel I/O and parallel and distributed databases), while briefly touching on other aspects (a more detailed paper is forthcoming).

3 Mining Methods

Faster and scalable algorithms for mining will always be required. Parallel and distributed computing seems ideally placed to address these big data performance issues. However, achieving good performance on today’s multiprocessor systems is a non-trivial task. The main challenges include synchronization and communication minimization, work-load balancing, finding good data layout and data decomposition, and disk I/O minimization.

The parallel design space spans a number of systems and algorithmic components such as the hardware platform (shared vs. distributed), kind of parallelism (task vs. data), load balancing strategy (static vs. dynamic), data layout (horizontal vs. vertical) and search procedure used (complete vs. greedy).

Recent algorithmic work has been very successful in showing the benefits of parallelism for many of the common data mining tasks including association rules (Agrawal and Shafer 1996; Cheung et al. 1996; Han et al. 1997; Zaki et al. 1997), sequential patterns (Shintani and Kitsuregawa 1998; Zak-
i 2000), classification (Shafer et al. 1996; Joshi et al. 1998; Zaki et al. 1999; Sreenivas et al. 1999), regression (Williams et al. 2000) and clustering (Judd et al. 1996; Dhillon and Modha 2000; S. Goil and Choudhary 1999).

The typical trend in parallel mining is to start with a sequential method and pose various parallel formulations, implement them, and conduct a performance evaluation. While this is very important, it is a very costly process. After all the parallel design space is vast and results on the parallelization of one serial method may not be applicable to other methods. The result is that there is a proliferation of parallel algorithms without any standardized benchmarking to compare and provide guidelines on which methods work better under what circumstances. The problem becomes even worse when a new and improved serial algorithm is found, and one is forced to come up with new parallel formulations. Thus, it is crucial that the PKDD system support rapid development and testing of algorithms to facilitate algorithmic performance evaluation.

One recent effort in this direction are discuss by (Skillcorn 1999). He emphasizes the importance of and presents a set of cost measures that can be applied to parallel algorithms to predict their computation, data access, and communication performance. These measures make it possible to compare different parallel implementation strategies for data-mining techniques without benchmarking each one.

A different approach is to build a data mining kernel that supports common data mining operations, and is modular in design so that new algorithms or their “primitive” components can be easily added to increase functionality. An example is the MKS (Anand et al. 1997) kernel. Also, generic set-oriented primitive operations were proposed in (Freitas and Lavington 1998) for classification and clustering, which were integrated with a parallel DBMS.

4 Hardware Models and Trends

The current hardware trends are that memory and disk capacity are increasing at a much higher rate than their speed. Furthermore, CPU capacity is roughly obeying Moore’s law, which predicts doubling performance approximately every 18 months. To combat bus and memory bandwidth limitations, caching is used to improve the mean access time, giving rise to Non-Uniform Memory Access architectures. To accelerate the rate of computation, modern machines frequently increase the number of processing elements in an architecture. Logically, the memory of such machines is kept consistent, giving rise to a shared memory model, called Symmetric Multiprocessing (SMP) in the architecture community and shared everything in the database community (DeWitt and Gray 1992; Valduriez 1993). However the scalability of such architectures is limited, so for higher degrees of parallelism, a cluster of SMP nodes is used. This model, called shared-nothing in database literature, is also the preferred architecture for parallel databases (DeWitt and Gray 1992).

Redundant arrays of independent (or inexpensive) disks (RAID) (Chen et al. 1994) has gained popularity to increase I/O bandwidth and storage capacity,
reduce latency, and (optionally) support fault tolerance. In many systems, since the amount of data exceeds that which can be stored on disk, tertiary storage is used, typically consisting of one or more removable media devices with a juke box to swap the loaded media.

In addition to the current trends, there have been other ideas to improve the memory and storage bottlenecks. Active Disks (Riedel et al. 1997) and Intelligent Disks (Keeton et al. 1998) have been proposed as a means to exploit the improved processor performance of embedded processors in disk controllers to allow more complex I/O operations and optimizations, while reducing the amount of traffic over a congested I/O bus. Intelligent RAM (IRAM) (Kozyrakis and Patterson 1998) seeks to integrate processing elements in the memory. Active disks and IRAM are not currently prevalent, as the required hardware and systems software are not commonly available.

5 Software Infrastructure

Since our goal is to use commodity hardware, much of the support for our desired functionality is pushed back into the software. Much of the support for the exploitation of parallelism in PKDD has not been developed. In this section we discuss some of the system transparency issues in PKDD systems, i.e., support for seamless access to databases and file systems and parallel I/O. We review selected aspects of these areas.

The most common database constructions currently in use are relational databases, object oriented databases, and object-relational databases. The database layer ensures referential integrity and provides support for queries and or transactions on the data set (Oszu and Valduriez 1999). The data base layer is frequently accessed via a query language, such as SQL. We are primarily interested in parallel and distributed database systems (DeWitt and Gray 1992; Valduriez 1993), which have data sets spanning disks. The primary advantages of such systems are that capacity of storage is improved and that parallelizing disk access improves bandwidth and (for large I/O's) can reduce latency. Early on parallel database research explored special-purpose database machines for performance (Hsiao 1983), but today the consensus is that it's better to use available parallel platforms, with shared-nothing paradigm as the architecture of choice. Shared-nothing database systems include Teradata, Gamma (D. DeWitt et al. 1990), Tandem (Tandem Performance Group 1988), Bubba (Boral et al. 1990), Arbre (Lorie et al. 1989), etc. We refer the reader to (DeWitt and Gray 1992; Valduriez 1993; Khan et al. 1999) for excellent survey articles on parallel and distributed databases. Issues within parallel database research of relevance to PKDD include the data partitioning (over disks) methods used; these include simple round-robin partitioning, where records are distributed evenly among the disks. Hash partitioning is most effective for applications requiring associative access. Records are partitioned based on a hash function. Finally, range partitioning clusters records with similar attributes together. Most parallel data mining work to-date has used a round-robin approach to data partitioning. Other meth-
ods might be more suitable. Exploration of efficient multidimensional indexing structures for PKDD is required (Gaede and Gunther 1998). The vast amount of work on parallel relational query operators, particularly parallel join algorithms, is also of relevance (Pirahesh et al. 1990). The use of DBMS views (Ozsu and Valduriez 1999) to restrict the access of a DBMS user to a subset of the data, can be used to provide security in KDD systems.

Parallel I/O and file systems techniques are geared to handling large data sets in a distributed memory environment, and appear to be a better fit than DFS for managing the large data sets found in KDD applications. Parallel File Systems and Parallel I/O techniques have been widely studied; Kotz maintains an archive and bibliography (Kotz), which has a nice reference guide (Stockinger 1998). Use of parallel I/O and file systems becomes necessary if RAID devices have insufficient capacity (due to scaling limitations) or contention for shared resources (e.g. buses or processors) exceeds the capacity of SMP architectures. The Scalable I/O initiative (SIO) includes many groups, including the Message Passing Interface (MPI) forum, which has adopted a MPI-IO API (Thakur et al. 1999) for parallel file management. MPI-IO is layered on top of local file systems. MPI uses a run-time type definition scheme to define communication and I/O entity types. The ROMIO library (Thakur et al. 1999) implements MPI-IO in Argonne’s MPICH implementation of MPI. ROMIO automates scheduling of aggregated I/O requests and uses the ADIO middleware layer to provide portability and isolate implementation dependent parts of MPI. PABLO, another SIO member group, has created the portable parallel file systems (PPFS II), designed to support efficient access of large data sets in scientific applications with irregular access patterns. More information on parallel and distributed I/O and file systems appears in (Kotz; Carretero et al. 1996; Gibson et al. 1999; Initiative; Moyer and Sunderam 1994; Nieuwjaar and Kotz 1997; Schikuta et al. 1998; Seamons and Winslett 1996).

Users of PKDD systems are interested in maximizing performance. Prefetching is an important performance enhancing technique that can reduce the impact of latency by overlapping computation and I/O (Cortes 1999; Kimbrel et al. 1996; Patterson III 1997). In order for prefetching to be effective, the distributed system uses hints which indicate what data is likely to be used in the near future. Generation of accurate hints (not surprisingly) tends to be difficult since it relies on predicting a program’s flow of control. Many hint generation techniques rely on traces of a program’s I/O access patterns. (Kimbrel et al. 1996) surveyed a range of trace driven techniques and prefetching strategies, and provided performance comparisons. (Madhyastha and Reed 1997) recently used machine learning tools to analyze I/O traces from the PPFS, relying on artificial neural networks for on-line analysis of the current trace, and hidden markov models to analyze data obtained by profiling. (Chang and Gibson 1999) developed SpecHint which generates hints via speculative execution. We conjecture that PKDD techniques can be used to identify reference patterns, to provide hint generation and to address open performance analysis issues (Reed et al. 1998).
As we noted earlier, integration of various systems components for effective KDD is lagging. The current state of KDD tools can accurately be captured by the term *flat-file mining*, i.e., prior to mining all the data is extracted into a flat file, which is then used for mining, effectively bypassing all database functionality. This is mainly because traditional databases are ill-equipped to handle/optimize the complex query structure of mining methods. However, recent work has recognized the need for integrating the database, query management and data mining layers (Agrawal and Shim 1996; Sarawagi et al. 1998). (Agrawal and Shim 1996) postulated that better integration of the query manager, database and data mining layers would provide a speedup. (Sarawagi et al. 1998) confirmed that performance improvements could be attained, with the best performance obtained in *cache-mine* which caches and mines the query results on a local disk. SQL-like operators for mining association rules have also been developed (Meo et al. 1996). Further, proposals for data mining query language (Han et al. 1996; Imielinski and Mannila 1996; Imielinski et al. 1996; Siebes 1995) have emerged. We note that most of this work is targeted for serial environments. PKDD efforts will benefit from this research, but the optimization problems will of course be different in a parallel setting. Some exceptions include the parallel generic primitives proposed in (Freitas and Lavington 1998), and Data Surveyor (Holsheimer et al. 1996), a mining tool that uses the Monet database server for parallel classification rule induction. We further argue that we need a wider integration of parallel and distributed databases and file systems, to fully mine all available data (only a modest fraction of which actually resides in databases). Integration of PKDD and parallel file systems should enhance performance by improving hint generation in prefetching. Integrated PKDD can use parallel file systems for storing and managing large data sets and use distributed file system as an access point suited to mobile clients for management of query results.

6 Conclusions

We described a list of desirable design features of parallel KDD systems. These requirements motivated a brief survey of existing algorithmic and systems support for building such large-scale mining tools. We focused on the state-of-the-art in databases, file systems and parallel I/O techniques. We observe that implementing a effective PKDD system requires integration of these diverse sub-fields into a coherent and seamless system. Emerging issues in PKDD include benchmarking, security, availability, mobility and QoS, motivating fresh research in these disciplines. Finally, PKDD approaches may be used as a tool in these areas (e.g. hint generation for prefetching in parallel I/O), resulting in a bootstrapping approach to software development.