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Abstract—Knowledge about active radio transmitters is crit-
ical for multiple applications: spectrum regulators can use this
information to assign spectrum, licensees can identify spectrum
usage patterns and better provision their future needs, and
dynamic spectrum access applications can leverage such knowl-
edge to pick operating frequency. Despite the importance of
transmitter identification the current work in this space is limited
and requires prior knowledge of transmitter signatures to identify
active radio transmitters. More naive approaches are limited
to detecting power levels and do not identify characteristics of
the active transmitter. To address these challenges we propose
TxMiner; a system that identifies transmitters from raw spectrum
measurements without prior knowledge of transmitter signatures.
TxMiner harnesses the observation that wireless signal fading
follows a Rayleigh distribution and applies a novel machine
learning algorithm to mine transmitters. We evaluate TxMiner on
real-world spectrum measurements between 30MHz and 6GHz.
The evaluation results show that TxMiner identifies transmitters
robustly. We then make use of TxMiner to map the number of
active transmitters and their frequency and temporal characteris-
tics over 30MHz-6GHz, we detect rogue transmitters and identify
opportunities for dynamic spectrum access.

I. INTRODUCTION

There is an increased demand for additional RF spectrum to
support mobile data communication. However, nearly all the
RF spectrum has been allocated for different purposes, e.g.
TV, radio, cellular, radars, satellites, etc. Therefore, spectrum
regulators worldwide are investigating the use of Dynamic
Spectrum Access (DSA) techniques, such as in the TV white
spaces or tiered access in 3.5 GHz of spectrum, to meet the
additional demand. Using these techniques, mobile devices can
send and receive packets over a frequency as long as they do
not interfere with the licensed user of that frequency.

To identify new spectrum for DSA, the government and
spectrum regulators worldwide have expressed a desire to
create large-scale spectrum inventory in order to determine
spectrum usage at different locations over long periods of
time [6]. For example, in the US, the goal of the Spectrum
Inventory Bill [2] is to create a nationwide footprint of spec-
trum usage over time. Based on these measurements, spectrum
regulators can open new portions of the spectrum for DSA [5].
Furthermore, new DSA technologies can be designed taking
into account the characteristics of these bands.

Creating such national spectrum inventory is aimed at
answering various questions including (i) how much spectrum
is occupied and how much is idle, (ii) how many transmitters
occupy a given frequency band, and (iii) are they authorized to

Fig. 1. Example of overlapping transmitters.

operate in this band. While the first question can be approached
by simple estimation of power level in a given band, the other
two questions require more elaborate analysis of spectrum
occupancy. Such analysis needs to answer questions such as are
there more than one transmitters in a given band, and what are
their received powers, operating frequencies, bandwidth and
temporal characteristics. Learning these characteristics from
raw spectrum measurements is critical for improved policing
and technological advancements in the DSA domain.

Despite the need for deep understanding of spectrum
occupancy, there does not exist a platform to create such
nationwide spectrum usage footprint. This is primarily due to
lack of scalable infrastructure for collection and processing
of RF spectrum measurements. Traditionally, spectrum occu-
pancy is analyzed via spectrum analyzers that capture large
amounts of data. The latter poses challenges in scalable data
storage. Furthermore, the current approaches to mining and
summarizing spectrum measurements are very limited, making
it hard to evaluate the collected spectrum data.

Current approaches to spectrum summarization require
prior knowledge of transmitter signatures and fine-grained
spectrum measurements [9, 14], both of which are difficult
to obtain in wide-band sweep-based spectrum sensing. Other,
more general approaches, make use of measured power level
in order to determine spectrum occupancy [17], however they
can be very inaccurate in creating a spectrum inventory. To il-
lustrate the problems related to spectrum traces summarization
let us consider the example in Figure 1. The top part of the
figure plots power spectral density (PSD) measured over the
course of 90 seconds between 700 and 900MHz. The bottom
figure plots a maxhold of PSD in the entire frequency range,
that is the maximum measured PSD value in each frequency
bin. Arguably, in some parts of the spectrum there exist more
than one transmitters that occupy the same band in a time-
division fashion. Direct analysis of the data in time-frequency
domain is prone to errors due to the noisy nature of raw
spectrum signals. Analysis of the maxhold, on another hand,
can provide intuition of occupied fractions of this spectrum
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but hides the time-frequency characteristics of the signal; that
is if multiple transmitters share the same frequency band they
will be considered as a single transmitter. Furthermore, using
maxhold-based analysis, one cannot determine the temporal
patterns of the signal.

To address these challenges we design a new technique,
called TxMiner, that identifies transmitters from raw spec-
trum measurements, even when the transmitter characteristics
are not known and the spectrum sensing resolution is low.
TxMiner leverages the phenomenon that fading of non-line-
of-sight wireless signals typically follows a Rayleigh distri-
bution, while noise follows a Gaussian distribution [7]. Thus,
the raw spectrum samples can be modeled as a mixture of
Rayleigh distributions capturing the ongoing transmissions,
and a Gaussian representing the noise. Based on this obser-
vation we design a machine learning algorithm that extracts
Rayleigh and Gaussian sub-populations from a given RF signal
population. There are two challenges associated with such
approach to transmitter characterization. First, the performance
of our Rayleigh-Gaussian mixture model is dependent on the
initialization of the model. To address this challenge, we
design a multi-scale initialization scheme, presented in detail
in Section II-D. Second, in order to extract frequency and
temporal transmitter characteristics we need to perform time-
frequency analysis of the collected data. Towards this end, we
design a post-processing technique detailed in Section II-E.
Thus, TxMiner is comprised of three critical components: (i)
multi-scale initialization, (ii) Rayleigh-Gaussian representation
of raw spectrum measurements and (iii) post-processing for
actual transmitter identification.

We evaluate TxMiner on spectrum measurements collected
by the Spectrum Observatory1, as well as on several controlled
transmissions, and we have found that it can accurately iden-
tify transmitters of different types including WiMax, TV &
FM broadcasts, as well as proprietary DSA protocols. We
demonstrate TxMiner’s ability to map the number of active
transmitters and their bandwidths over a wide band from
30MHz to 6GHz, recognize rogue transmitters and identify
opportunities for dynamic spectrum access. This paper makes
several key contributions:

• We design the first of its kind mechanism, called TxMiner,
that can identify transmitters and their characteristics in
raw spectrum measurements.

• We harness TxMiner to create a spectrum inventory
through longitudinal, wideband analysis of traces col-
lected by the Spectrum Observatory in the course of a
year between 30MHz and 6GHz.

• We demonstrate TxMiner’s ability to detect rogue trans-
mitters in raw spectrum scans and to quantify the oppor-
tunity for secondary transmitters in licensed bands.

This paper is organized as follows. In Section II we detail
the physical phenomenon that backs our modeling technique.
We then present in detail the challenges associated with mining
transmitter characteristics and outline our solutions to those
challenges. We continue with evaluation in Section III. Finally,

1The Spectrum Observatory is comprised of distributed spectrum analyzers
that perform wide-band measurements between 30MHz and 6GHz. The
collected data is stored centrally for further analysis, summarization and
presentation. More information at http://observatory.microsoftspectrum.com

we apply TxMiner on real world spectrum traces in Section IV
in order to demonstrate TxMiner’s capabilities to create a
nationwide spectrum inventory and thus benefit both regulators
as well as DSA technology designers. We finalize the paper
with discussion and conclusion in Section VI.

II. TXMINER: IDENTIFYING TRANSMITTERS IN

SPECTRUM OBSERVATORY DATA

Traditionally, spectrum occupancy is analyzed manually
by the use of tools, such as spectrograms of power spectral
density. While such tools are informative, they are not very
actionable. Particularly, they do not allow automated, fine-
grained, long-term observation of spectrum occupancy patterns
that are needed to inform DSA system design and policy. We
propose TxMiner to solve the above problems by identifying
transmitters in raw Spectrum Observatory data without prior
knowledge of transmitter characteristics. TxMiner enables sev-
eral new and exciting applications including mapping spectrum
occupancy, identifying rogue transmitters, DSA beyond TV
white spaces and spectrum management.

Applications of TxMiner: The problem of spectrum map-
ping and management is relevant worldwide. In the US the
FCC has been mandated by Congress to create a spectrum
usage map to be included in the Spectrum Inventory Bill [1].
In developing countries, spectrum regulators often do not know
how spectrum is being used2. TxMiner can be applied in
both scenarios for advanced mapping of spectrum occupancy,
which in turn enables effective spectrum use and regulation.
Furthermore, it can inform spectrum management by answer-
ing questions such as (i) how many types of transmitters
are using the channel? (ii) how many transmitters of each
type are present? and (iii) what is the noise floor of the
channel when these transmissions are not present? TxMiner
can also be useful in identifying rogue transmitters by detecting
discrepancies between expected and detected transmitters in a
given band. This capability enables spectrum licensees and
regulators to identify and remove spectrum squatters.

Beyond analysis of spectrum use, TxMiner can be applied
in support of DSA technologies. The concept of DSA is often
applied in the TV bands, where incumbents have fairly static
transmission patterns. Frequency ranges beyond TV bands
provide vast opportunity for DSA access, however the dynamic
nature of transmitters in non-TV bands poses challenges for the
operation of secondary devices. TxMiner can help by providing
historical information of spectrum occupancy, which in turn
can inform DSA users about the transmission opportunity in
spectrum bands beyond TV white spaces.

A. Key Insights

The key insight behind TxMiner is that the probability
distributions of measured Power Spectral Density (PSD) reveal
a lot about channel occupancy. To illustrate this observation we
study the probability distributions of different spectrum occu-
pancy scenarios in the TV bands. Note that these observations
are valid in other bands as well.

2The authors have been approached by representatives of the Kenyan,
Moroccan and Philippines government asking for help with analysis of
spectrum occupancy.
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Fig. 2. Probability Distributions of Power Spectral Density for different
occupancy scenarios. The figure demonstrates how differences in measured
signal distributions can inform transmitter characterization.

Figure 2 presents the probability distributions for the stud-
ied spectrum occupancy scenarios. The top graphs present a
max-hold of PSD over a time window of 100 seconds, while
the bottom graphs present the CDF of all values measured in
this window over frequency and time. We note that a max-hold
of a signal in frequency and time captures the highest measured
value in a given frequency over all time samples. We see that
the distributions of one occupied and one idle TV channel
(Figure 2(a) and 2(b)) are very similar in shape, however,
the mean of the occupied channel is higher than that of the
idle channel. In a frequency band, which is in part occupied
and in part idle (Figure 2(c)), the probability distribution we
observe is bimodal, reflecting on the two spectrum activities.
The means of the two modes correspond to the mean received
power levels during the spectrum measurements.

In an urban or indoor environment, the transmitter’s radio
signal will attenuate with distance and encounter multiple
objects in the environment that produce additional reflected,
diffracted or scattered copies of the signal known as multipath
signal components. Thus, the amplitude of the received signal
can be characterized by a Rayleigh distribution while the phase
can be characterized by a uniform distribution if we assume
narrowband fading (i.e. different multipath components are
not resolvable) [7]. In mathematical notation, the amplitude
of the received signal s(t) can be characterized by Rayleigh
distribution as follows

R(s;µ) =
πs

2µ2
exp−

πs2

4µ2
,

where µ is the mean of Rayleigh distribution and 4µ2

π
is the

average received power of the signal based on the attenuation
resulting from path-loss and shadowing alone. Along with
active transmitters, a spectrum scan might also capture noise.
This background noise can be modeled as white noise, which
follows a Gaussian probability distribution [7].

So far we observed that measured transmission signals
follow a Rayleigh distribution, while measured noise follows
a Gaussian distribution. Thus, power values from spectrum
measurements can be modeled as a mixture of Rayleigh dis-
tributions, one for each measured transmitter, and a Gaussian
representing the noise. Following this intuition we develop
a custom machine learning algorithm that models spectrum
measurements as a mixture of Rayleighs and a Gaussian dis-
tribution. We dub this method RGMM (for Rayleigh-Gaussian
Mixture Model). In the remainder of this section we first
outline the challenges of using such an approach to charac-
terize transmitters. We then describe how we address these
challenges and present our RGMM algorithm in details.

B. Challenges

There are several challenges associated with unsupervised
learning of transmitters related to (i) mixture extraction, (ii)
mixture initialization and (iii) post-processing to mine for
transmitters. We describe these challenges in turn.

Mixture extraction. The goal of our analysis is, given a
spectrum scan over time and frequency, to identify the number
and characteristics of the transmitters that occupy the measured
spectrum. We assume no prior knowledge for our spectrum
data, thus this problem requires an unsupervised machine
learning technique. As already established in Section II-A, a
population of radio signals can be represented as a mixture of
Rayleigh and Gaussian distributions, however, there does not
exist an off-the-shelf machine learning technique to fit such a
mixture over unlabeled data. Towards this end we develop a
custom machine learning algorithm dubbed Rayleigh-Gaussian
Mixture Model (RGMM) that fits a mixture of multiple
Rayleigh and one Gaussian distributions over unlabeled data.
We present RGMM in detail in Section II-C.

Mixture initialization. While RGMM successfully models
the power distribution of raw spectrum scans, obtaining a
robust fit in a large time-frequency scan is a challenge. RGMM
uses unsupervised machine learning and therefore requires a
good initialization approach to extract a representative mixture
model. To this end, we need a rough estimation of the
signal distributions in a raw spectrum scan before running
RGMM. There is a plethora of off-the-shelf data clustering
algorithms that can be helpful in this step. TxMiner makes
use of Gaussian Mixture Models for mixture initialization. We
develop two mixture initialization techniques that are described
and compared in Section II-D.

Post-processing. Obtaining a robust mixture model that
represents our raw data can help answer questions such as
how many transmitters do we observe and what are their
approximate power levels. This mixture model, however, hides
time-frequency properties of the signal that answer more inter-
esting questions such as what is the transmitter bandwidth and
what are its temporal characteristics. In order to answer these
questions we need a post-processing procedure that brings
together the extracted mixture model and the time-frequency
characteristics of the measured spectrum scan. We design a
post-processing technique that (i) calculates the association
probability of each measured power value with each of the
distributions in the mixture model and (ii) smooths these
associations to facilitate time-frequency analysis of the raw
spectrum traces. We detail our post-processing algorithm in
Section II-E.

C. Rayleigh-Gaussian Mixture Models

The key feature of TxMiner that enables transmitter anal-
ysis is its ability to represent raw spectrum measurements
as a mixture of Rayleigh and Gaussian distributions. This
is enabled by our custom machine learning technique called
Rayleigh-Gaussian Mixture Model (RGMM) that represents
raw spectrum measurements as a mixture of several Rayleigh
distributions – one for each sensed transmitter, and a Gaussian
for the noise. We use this approach to identify sub-populations
in the raw data that correspond to individual transmissions.
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A mixture model is a representation of any probability dis-
tribution in terms of a weighted sum of individual probability
distributions (densities). In our case, these individual densities
correspond to Rayleigh densities (one for each transmitter) and
one Gaussian density (noise). Each Rayleigh component in the
mixture model is characterized via its mean. Furthermore, each
of the components is associated with a weight that charac-
terizes its contribution to the mixture. The Gaussian density
on the other hand has two parameters: mean and variance.
Formally, the Rayleigh-Gaussian mixture model pMM (s) can
be represented as

pMM (s) =
k
∑

i=1

wi ·R(s;µi) + wn ·N(s;µn,σ
2
n) (1)

Here, R(s;µ) denotes the Rayleigh density with mean µ. Sim-
ilarly, N(s;µn,σ

2
n) is the Gaussian distribution with mean µn

and variance σ2
n. The weights (w1, .., wn), means (µ1, .., µn)

and the variance σ2
n comprise the parameters of the mixture

model, which are discovered via the Expectation-Maximization
(EM) algorithm. EM aims to discover the parameters that
maximize the likelihood of the statistical model (i.e. the
mixture) to represent the raw data. Formally, EM is an iterative
procedure that starts with a random initial assignment of the
parameters and keeps refining them by alternating between the
E and the M step. The E and the M step for our application
are defined as follows:

E-Step:p(s ∈ j) =
R(s;µj)

∑k
i=1 R(s;µi) +N(s;µn,σ

2
n)

p(s ∈ n) =
N(s;µn,σ

2
n)

∑k
i=1 R(s;µi) +N(s;µn,σ

2
n)

M-Step:µj =

∑

s s · p(s ∈ j)
∑

s p(s ∈ j)

σ2
j =

∑

s (s− µj)2 · p(s ∈ j)
∑

s p(s ∈ j)

wj =

∑

s p(s ∈ j)

|s|
,

where s ∈ j refers to s belongs to signal component j. The
EM steps are repeated until convergence (change in parameters
is less than a threshold).

Once we have learned the model that best represents the
raw spectrum data we can calculate the likelihood of each
original data sample to be generated by each of the compo-
nents in our learned mixture model. We call these likelihoods
association probabilities and note that they are essential in our
further analysis of transmitter characteristics. We now explain
our approach to calculating these association probabilities.

Let us denote the matrix of raw spectrum measurements
over time and frequency with S. Each element of the matrix
is stf , where t is the the row of the matrix (representing a time
sample) and f is the column (representing a frequency sample).
The association probability with each Rayleigh component Ri

can be calculated using the probability density function (PDF)
of a Rayleigh distribution as follows:

Ri(stf , µi) =
πstf
2µ2

i

exp−
πs2tf
4µ2

i

(2)

Fig. 3. An example of MultiScale with maximum resolution lmax = 3.

where µi is the mean of the i-th Rayleigh distribution. Simi-
larly, the association probability with the Gaussian component
N can be calculated using the PDF of a Gaussian distribution:

N(stf , µn,σ
2
n) =

1

σn
√
2π

exp
(stf − µn)2

2σ2
n

(3)

We use the so calculated association probabilities in our
further analysis of transmitter characteristics.

D. Mixture initialization

Unsupervised machine learning methods such as RGMM
enable us to analyze transmitter characteristics without prior
knowledge of signatures. Obtaining a robust mixture model
to represent raw spectrum measurements, however, is not triv-
ial. The robustness of the Rayleigh-Gaussian Mixture Model
depends on the initialization of our RGMM algorithm. To
initialize RGMM we need a rough estimation of the distri-
butions of signal in a raw spectrum scan. To this end we use a
generic clustering algorithm called Gaussian Mixture Models
(GMM) to find an estimate of the signal distributions. The
input to GMM is the raw data and a guess of the number of
distributions k to be found. In our implementation we increase
k from 1 to 5 and evaluate the best fit based on the Bayesian
Information Criterion (BIC). The output of GMM clustering
is a set of normal distributions characterized with a mean,
standard deviation and mixing weights. We use the mean of
these distributions to initialize RGMM.

We propose two initialization techniques, both of which
are based on GMM. The first initialization technique takes
all the raw data of interest as an input, runs GMM and uses
the means of the fitted distributions to initialize our RGMM
algorithm. We dub this initialization method OnePass. The
key benefit of this initialization approach is fast calculation
of the seed values for RGMM. The drawback, however, is
that if we consider a spectrum scan that features multiple
transmitters, some of these transmitters might either be omitted
or more components than the existing transmitters might be
discovered. The reason for such deviations is that it is harder
to model data with a large number of generating processes (i.e.
transmitters).

To reduce the number of generating processes and achieve
robust initialization we design a divide-and-conquer approach
dubbed MultiScale that calculates the initialization in a bottom-
up fashion. MultiScale divides the raw data in sub-spaces
with increasing resolution as illustrated in Figure 3. At the
highest resolution MultiScale runs GMM in each sub-space
to find the representative distributions. MultiScale then groups
the discovered distributions in decreasing resolution until it
produces a single set of initialization values.
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Algorithm 1: MultiScale

1 Input:S data, (nf , nt) # partitions, l level, lmax - max level
2 Output:({λi}, µn,σn) Rayleigh transmitters and noise parameters
3 if l = lmax then
4 ({λi}, µn,σn)←Rayleigh-Fit(S, {λlmax})
5 return ({λi}, µn,σn)

6 if l < lmax then
7 Λ← ∅
8 Partition S into nf × nt regions Sf,t

9 for ∀Sf,t do
10 ({λi}, µn, σn)← MultiScale(Sf,t, (nf , nt), l + 1, lmax)
11 Λ← Λ

⋃
{λi}

12 {λi}← Cluster(Λ)
13 if l < lmax then
14 return ({λi}, 0, 0)

15 else if l = 0 then
16 ({λi}, µn, σn)←Rayleigh-Fit(S, {λi})
17 return ({λi}, µn,σn)
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OnePass -68.4 -73.1 -86.6

Fig. 4. Illustration of the benefits of MultiScale over OnePass. MultiScale
discovers a robust initialization.

MultiScale is presented in Alg. 1. It is a recursive function
that computes model fits in sub-regions of the frequency-time
domain and aggregates the parameters up to obtain a fit for the
whole space. The input to our function consists of the power
measurement data S, the number of partitions in which the
domain is to be recursively split in time nt and frequency nf ,
the current resolution level l initialized at 0 and the maximum
level lmax. The maximum level parameter lmax controls the
maximum resolution at which we will be obtaining the fit. The
output of MultiScale is the set of Rayleigh parameters {λi}
and the mean µn and standard deviation σn used to initialize
RGMM.

MultiScale begins with l = 0 and increases l until l = lmax

at which point the function reaches the base case of the recur-
sion. The base case of the recursion (l = lmax) corresponds
to the highest resolution of the frequency-time space (Lines
3-5). We perform a Rayleigh mixture fit with our default
initialization {λlmax} based on GMM (Line 4) and return the
obtained model parameters. The internal recursion levels are
described in Lines 6-17. At each internal level we initialize
an empty set of Rayleigh parameters Λ (Line 7) and partition
the current time-frequency space S into nf × nt regions Sf,t

(Line 8). Next, we recursively invoke MultiScale for each
of the subspace regions while incrementing l, and add the
parameters of obtained Rayleigh components to Λ (Lines 9-
11). We cluster the set of all Rayleigh parameters returned
from the higher resolution using a threshold-based approach
that groups all components less than 2dBm apart. Finally, if we
are at an internal recursion level (i.e. non-zero level), we return
the clustered set of Rayleigh parameters (Lines 13-14), while
at level 0 we perform one fit over the whole data initiating with
the aggregated parameters from higher resolutions and return
the final fit including the noise component (Lines 15-17).

We demonstrate the benefits of MultiScale over OnePass
in Figure 4. The figure presents results using a spectrum scan
of two FM channels, one sensed at -71dBm and the other at
-87dBm, collected over the course of 600 seconds. To the left
is an illustration of the raw data. The top figure presents a
heatmap of the raw signal over time and frequency, while the
bottom figure presents the average values measured in each
frequency bin. The table to the right presents results from
MultiScale with increasing resolution and OnePass initializa-
tion. OnePass identifies one extra transmitter, while MultiScale
extracts exactly two transmitters when run with resolution
lmax = 2 or higher.

Naturally, one might ask what is an appropriate maximum
resolution lmax with which to run MultiScale. As seen in our
example, the number of components discovered by MultiScale
plateaus after a certain resolution (arguably, at the resolution
equal to the numbed of transmitters). Using this observation,
we can initialize using MultiScale with increasing lmax until
the number of discovered components stops increasing.

The drawback of MultiScale over OnePass is that Multi-
Scale takes more time to obtain an initialization. We observe,
however, that initialization does not need to be run every time
TxMiner is ran, rather we can use the same initialization until
RGMM obtains models with which the raw data values are
poorly associated. Such poor association will be an indicator
that a new initialization should be computed.

E. Post-processing

While RGMM allows mining of the number of transmitters
and their power level, it does not allow time-frequency analysis
of the collected data. Such time-frequency analysis enables
characterization of other important properties such as band-
width and temporal behavior. In order to mine time-frequency
properties we implement a post-processing procedure that
makes use of the association probabilities we calculate fol-
lowing the fitted mixture model (Equation (2) and (3)).

The association probabilities provide intuition about the
time-frequency properties of sensed transmitters, however, the
inherently noisy nature of spectrum scans makes it hard to
mine transmitter characteristics directly from the association
probability matrices. Towards this end we make the follow-
ing observation. Since transmitters occupy adjacent time and
frequency samples, transmitter scans are coherent in the time-
frequency domain. That is, adjacent values that are of similar
magnitude are likely to be due to the same transmission. This
observation allows us to apply spatial regularization to smooth
the association probabilities and reduce the noisiness of the
post-processed signal. For the purpose of spatial regularization
we use a machine learning technique called Belief Propagation.

In the remainder of this section we detail our spatial
regularization approach and describe how we use the regular-
ized data to extract transmitter characteristics. Along with our
methodology, in Figure 5 we present an illustrative example of
mining transmitter characteristics in two transmitter scenarios:
a TV broadcast and a WiMax TDMA. Our RGMM method has
fitted two components in each transmission: one representing
the power of the transmitter and one capturing the noise. We
detail each of these figures as we describe our post-processing
technique.
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Fig. 5. Illustrative example of TxMiner post-processing. The importance of belief propagation in “salt-and-pepper” signals such as the TV-UHF transmission
is well emphasized.

Time-frequency regularization using Belief Propaga-
tion. The inherently noisy nature of RF signals causes our
association probability matrices to suffer from salt-pepper
noise. We can see the effect of salt-pepper noise in our example
on Figure 5. The first column from left to right represents
the original PSD data over frequency and time. The more
white the color is, the higher the measured power. The second
column presents results before and after the regularization.
The “In Belief” plots are the association probabilities before
smoothing, while the “Out Belief” plots are the resulting
smoothed association probabilities. Darker colors represent
lower values. We see that the “In Belief” suffers from salt-
pepper noise, whereby neighboring cells differ in their values.
The latter makes it hard to determine if adjacent values belong
to the same transmitter, which in turn makes it hard to detect
transmitter characteristics.

We propose to alleviate this problem via spatial regulariza-
tion using a machine learning technique popular in the image
segmentation literature [3]. In particular, we formulate an
energy minimization problem where we consider adjacent cells
in the PSD matrix (both in frequency and time) as neighbors.
The goal of the energy minimization problem is to determine
a solution that aligns with the mixture model available from
the previous step and is spatially smooth. Formally, let us
use xi ∈ {1, ..k, noise} to denote the index of the mixture
distribution, with which the data si is associated. Then we
consider the following form of the energy:

E(X) =
∑

i

− log pMM (si ∈ xi)+
∑

ij

V (xi, xj , si, sj). (4)

Here, pMM (si ∈ xi) is a unary term and simply depends
upon the output association probabilities from the mixture
model. Intuitively, this term favors assignments that are ob-
tained from the inference when fitting the model. The second
term considers all pairs of neighbors (i and j), and smooths
the data by using a function V (·) that depends upon the
corresponding observations si and sj in the PSD matrix S:

V (xi, xj , si, sj) =

{

− log e−β|si−sj | if xi = xj

− log[1− e−β|si−sj |] Otherwise

Note that the pairwise term favors similar assignments to si
and sj only when the values xi and xj are similar. Intuitively,
the pairwise term will favor dissimilar assignments to adjacent
cells only when there is a large difference in observations in
the PSD matrix.

An assignment that minimizes the above energy would aim
to provide a solution that is coherent in time and frequency
and aligned with the solution provided from the mixture
model procedure. However, determining the minimum energy
assignment for such energies has been determined to be NP-
complete. Reasonable approximation can be computed via
message passing schemes such as loopy Belief Propagation
[18]. In this paper we specifically, use the sum-product version
of loopy belief propagation, where given the mixture model
inferences, we formulate the energy and obtain a solution via
loopy message passing until convergence.

The “Out Belief” plots in Figures 5(b) and 5(f) show
the result after running the loopy BP. We can observe that
the resulting signal is more regularized in the time-frequency
domain and does not suffer from salt-pepper noise.

Mining transmitter characteristics. The smoothed associ-
ation probabilities obtained in the previous step enable efficient
extraction of transmitter signatures in order to mine transmitter
characteristics. In this analysis we determine key transmitter
properties including: bandwidth, active time and type (in-
cluding TDMA, FDMA, broadcast and frequency hopping).
Towards this end we compact the association probabilities
from the time-frequency domain in one-dimensional space in
either frequency or time. We call these compacted probabilities
temporal and frequency transmitter signatures and denote them
as P t and P f . A temporal P t

i and frequency P f
i signature is
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TABLE I. RULES FOR DETERMINING TRANSMITTER TYPE.

Type Rule
Broadcast σT < THRT and σF < THRF

TDMA σT > THRT and σF < THRF

FDMA σT < THRT and σF > THRF

Hopping σT > THRT and σF > THRF

calculated for each Rayleigh distribution i fitted onto the raw
spectrum measurements. We calculate P t

i and P f
i as follows:

P t
i =

∑F
f Ri(sft, µi)

F
and P f

i =

∑T
t Ri(sft, µi)

T
(5)

Here F and T denote the total number of frequency and time
samples in our time-frequency matrix.

Our illustrative example in Figure 5 presents the time and
frequency signatures of a TV broadcast and WiMax TDMA
transmitter. Since a broadcast channel occupies all the time-
frequency samples, we see that the signatures of such trans-
mitters have low variance over time and frequency(Figure 5(c)
and 5(d)). In contrast, a TDMA transmitter such as WiMax
occupies a fixed bandwidth, however, its active time is non-
contiguous. The latter is reflected in its signatures (Figure 5(g)
and 5(h)): the frequency signature has low variability, whereas
the time signature varies, capturing the intermittent presence
of this transmitter over time.

We use these observations to design our detection of
transmitter bandwidth, active time and type. Specifically, we
calculate the transmitter bandwidth by determining the span
of non-zero frequency signature. Similarly, we determine the
transmitter active time by calculating the span of non-zero time
signature. Lastly, we use the variance of transmitter signature
to determine the transmitter type. Let us denote the variance
of the time signature by σT and the variance of the frequency
signature by σF . We can then determine the transmitter type
by following the rules in Table II-E. THRT and THRF

denote thresholds of time and frequency signature variance
against which we decide the type of transmitter. Since the
magnitude of the variance depends on the magnitude of the
transmitter signature, we pick a percentage of the maximum
signature value as our threshold. Of note here is that the
threshold can be adjusted if we had prior knowledge about the
expected transmission. Since we assume no such knowledge,
we use 20% on the maximum signature as a threshold for the
following evaluation of TxMiner.

III. EVALUATION

In this section we evaluate TxMiner. We start by de-
scribing the datasets we utilize in our evaluation. We begin
our evaluation by looking at accuracy of detecting active
radio transmitters. Following, we evaluate TxMiner’s ability to
extract individual transmitter characteristics such as transmitter
count, bandwidth and type. We compare TxMiner with a
state-of-the-art algorithm for occupancy detection called edge
detection [17]. Our evaluation shows that TxMiner outperforms
edge detection in both controlled settings as well as in real
world measurements. We show that TxMiner has high accuracy
in detecting occupancy of individual transmitters and their
bandwidths. Furthermore, TxMiner is capable of detecting
transmitter count and bandwidth in multi-transmitter scenarios.

Fig. 6. Spectrum Observatory architecture.

A. Measurement Setup and Data

Our evaluation makes use of data collected by the Spectrum
Observatory, which provides a distributed spectrum monitoring
platform. The Spectrum Observatory continuously scans the
spectrum from 30MHz to 6GHz and consists of two compo-
nents as shown in Figure 6: (i) local spectrum measurement
equipment at various locations, and (ii) the storage and analysis
component in the cloud. The observatory makes use of hetero-
geneous RF sensors at the various locations ranging from high-
end CRFS RfEyes3, to the commonplace USRPs, to low-end
RF Explorers such as RTL-SDR dongles. Each station’s RF
sensor is equipped with a multi-polarized antenna that covers
the entire 25MHz-6GHz band. The RF sensor is connected to
a local PC that runs a scanner service controlling the speed and
granularity of spectrum scans. Spectrum data is stored locally
on the PC and uploaded to the cloud via the upload service.
Data is then stored and summarized in the cloud in order to
be displayed by the Spectrum Observatory’s frontend.

We use raw data collected by the observatory point in
Microsoft’s campus in Redmond, WA. The spectrum data is
collected with variable frequency granularity depending on
frequency band and constant speed of one sweep every three
seconds. We make use of several datasets to evaluate TxMiner.

Ground truth. We use measurements in the TV-UHF
band as our ground truth. We establish our TV-UHF ground
truth by combining spectrum measurements in this band with
information from the FCC CDBS, AntennaWeb, TVFool, and
white space databases from Spectrum Bridge and iConnectiv,
which indicate the channels that are idle or occupied. The TV-
UHF traces were collected using a stationary RfEye sensor
scanning the spectrum every 3 seconds with a frequency step
of 160kHz. We make use of this dataset to evaluate accuracy
in occupancy detection and detection of transmitter bandwidth.
We also use this data to create an artificially mixed dataset
(see below) that provides basis for more elaborate evaluation
of transmitter count and bandwidth.

Controlled. We utilize a few controlled transmissions to
evaluate TxMiner’s ability to detect custom transmitters. We
record traces from three modes of wide-range outdoors WiMax
transmission: one using 1.75MHz bandwidth, a second using
3.5MHz and a third transmitting at 7MHz. We also performed
spectrum scans during on-campus wide-range outdoor trials
of FCC-certified white spaces radios running proprietary DSA
protocols. Both the WiMax and the trial traces were collected
with a stationary RfEye scanning every 3 seconds with a
frequency step of 160kHz.

Artificially mixed. We generate artificially-mixed signals
drawn from our TV-UHF ground truth. We intertwine over

3http://www.crfs.com/products/rf-sensor-rfeye-node/
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Fig. 7. Occupancy and bandwidth detection. (a) Ground truth, (b) occupancy accuracy and (c) bandwidth accuracy. TxMiner outperforms edge detection in
both occupancy and bandwidth accuracy. Edge detection fails in nearly 50% of the cases to accurately detect an occupied channel. Furthermore, it often detects
bandwidth where there is no active transmitter or does not detect anything where there is an active transmitter.

the same frequency band different transmissions or alternate
transmission with idle period. By doing so we can emulate
single- or multiple-transmitter TDMA schemes, which allows
us to establish a ground truth set and quantitatively evaluate
TxMiner’s ability to tease out multiple transmitters and their
bandwidths.

B. TxMiner Performance

Occupancy accuracy. We begin our evaluation by
analysing accuracy in detecting occupancy status. For this
experiment we run TxMiner over the entire TV-UHF band
(512-698MHz) in 6MHz steps and calculate the accuracy of
occupancy detection. In each 6MHz bin there are F samples,
depending on the scan configuration. For each of these samples
we find if it is occupied or idle. Our accuracy metric then
captures the fraction of correctly-detected samples divided by
the total number of samples F . Intuitively, an accuracy of 1
corresponds to correct detection of all frequency samples in
a given bin. For some cases, however, our measurements do
not agree with the ground truth. Particularly, we measure 5 of
the 31 channels in TV-UHF as idle, where they are supposed
to be occupied according to the ground truth. In such cases,
our accuracy metric would be 0, however this is still a good
indicator that TxMiner can persistently detect the occupancy
status. In a nutshell, for good accuracy prediction, we want our
occupancy accuracy to be either 0 or 1; anything in between
indicates weak prediction.

Figure 7 presents our results for detection accuracy in
the UHF band. Figure 7(a) plots the measured occupancy
as an average PSD over the capture period. Channels that
are supposed to be occupied are designated with yellow.
Figure 7(b) presents our occupancy results, where the blue
markers correspond to TxMiner and the red ones represent
Edge Detection. As we can see, TxMiner typically has a
prediction accuracy of 0 or 1 and outperforms Edge Detection
in nearly 50% of the cases. For example, channel 23 (the
third channel in Figure 7(b)) is idle but is surrounded by two
low-power channels, thus edge detection fails to recognize it,
while TxMiner detects it successfully. The reason for the poor
performance of edge detection is that it often fails to recognize
a rising or falling edge, which forces longer frequency spans
to be incorrectly recognized as idle or occupied.

Bandwidth detection. Next we evaluate TxMiner’s ability
to detect transmitters’ bandwidths. First, we focus on our TV-
UHF data where we run an experiment in the entire band from
512 to 698MHz in 6MHz steps. At each step we calculate
the bandwidth of the detected transmitter. Figure 7(c) presents
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Fig. 8. Bandwidth detection of different transmitters. TxMiner is persistently
able to detect the bandwidth of different transmitter and the detected values
are very close to the expected ones.

a comparison between TxMiner and Edge Detection. The y-
axis on the graph presents the ratio between detected and
expected bandwidth, where expected bandwidth in this case
is equal to that of a TV channel in the US – 6MHz. As we
can see, TxMiner successfully detects the bandwidth of active
transmissions and detects a bandwidth of 0MHz where we
have measured no transmission or where there is no expected
transmission. At the same time Edge Detection often fails to
detect the bandwidth of active transmitters, or detects a 6MHz
transmitter in channels that are not occupied. The reason for
the poor performance of Edge Detection is that it often times
fails to account for a rising or falling edge. The latter results
in larger areas being detected as idle or occupied than there
actually exist.

Next we evaluate TxMiner’s capability to persistently de-
tect transmitter bandwidth in different transmission scenarios.
Particularly we look at the TV-UHF band, three TDMA
WiMax transmissions with known bandwidths of 1.75MHz,
3.5MHz and 7MHz and two proprietary TDMA DSA trans-
missions with bandwidths of 4MHz and 3.5MHz. For TV-
UHF we present average and standard deviation of detected
bandwidth across all the channels we identify as occupied.
For all the WiMax and DSA transmissions we present average
and standard deviation across five distinct periods from the
captured traces. All but the DSA2 scan periods are of 100s
duration. For DSA2 we use a 300s scan duration because the
TDMA nature of this transmission makes it so we cannot
capture enough transmission samples within 100s. Figure 8
presents our results. As we can see, TxMiner is persistently
able to recognize the bandwidth of each transmitter type.
Furthermore, the detected bandwidths are very close to the
expected bandwidths.

We also evaluate TxMiner’s performance in cases with
narrow-band transmissions such as those in the radio FM
band. TxMiner detects this entire band as occupied. Figure 9
presents our results for accuracy of bandwidth detection. In
this experiment we ran TxMiner over the entire FM band from
88MHz to 108MHz in steps of 400kHz. The graph presents
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Fig. 10. Transmitter detection with increasing number of transmitters.
TxMiner is able to detect the number of transmitters as they increase and
clearly outperforms edge detection, which cannot identify more than one
transmitter.

for each 400kHz chunk the bandwidth accuracy expressed
as the ratio between detected bandwidth and step size (in
this case 400kHz). As we can see, majority of the detected
channels have bandwidth accuracy of either 0.98 or 0.88,
which corresponds to a bandwidth of 392kHz and 352kHz,
respectively. The 392kHz bandwidths likely correspond to
HD radio transmissions, which by specification occupy wider
bands. The 352kHz transmissions correspond to stations that
were sensed with very strong signal, in which case we would
see the squelch tones as a separate peak. Finally, we see
transmissions whose bandwidth accuracy is lower. Those are
likely to be radio transmissions that were sensed with low
power, thus their bandwidth does not span the entire 400kHz
band.

Transmitter type detection. As detailed in Section II-E we
make use of the variance of the time and frequency signatures
of a transmitter to determine the transmitter type. We now
demonstrate TxMiner’s ability to determine the transmitter
type of our ground truth transmissions. We focus on a TV
broadcast operating on channel 22 (518-524MHz). We use
20% of the maximum signature to determine the variance
thresholds. For the TV broadcast THRF = 20 and THRT =
9.66. The calculated variance of this transmitter’s signatures
are 3.73 and 18.31 for time and frequency, respectively. Both
the variances are lower than the respective thresholds and thus
the transmitter is correctly identified as a broadcast.

Detection of multiple transmitters. Next we evaluate
TxMiner’s performance in scenarios where multiple transmit-
ters are present. To emulate such scenarios we artificially mix
and amplify measured signals.

Our first evaluation focuses on TxMiner’s ability to detect
an increasing number of transmitters of the same bandwidth.
For this experiment we mix over time measured signals from
the TV-UHF band and artificially amplify them (by adding
10, 15 or 20dBm) to make the difference between transmitters
more pronounced. We then run TxMiner and count the num-
ber of detected transmitters. Figure 10 plots the number of
detected transmitters as a function of the number of expected
transmitters. We present three results for TxMiner averaged
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Fig. 11. Evaluation cases of multiple transmitters with different bandwidths.
(a) 6MHz transmission followed by two simultaneous transmissions at 1.4MHz
and 3MHz; (b) three consecutive transmissions with bandwidths of 4.375MHz,
2.34MHz and 0.78MHz.

TABLE II. DETECTION OF MULTIPLE TRANSMITTERS.

TX 1 TX 2 TX 3
E.BW
(MHz)

D.BW
(MHz)

E.BW
(MHz)

D.BW
(MHz)

E.BW
(MHz)

D.BW
(MHz)

Case1 6 5.84 3 2.84 1.4 1.26
Case2 4.375 4.26 2.34 2.68 0.78 0.63

over five runs and compare TxMiner’s performance with Edge
Detection. As we can see, TxMiner clearly outperforms edge
detection. The reason for the poor performance of Edge
Detection is that it only considers an average of the measured
signal and unlike TxMiner, does not take into account the
time-frequency properties of the signal. In contrast, TxMiner
is capable of detecting the number of transmitters with high
accuracy. We see that the accuracy of TxMiner is lower in the
10dBm margin scenario, where the algorithm sometimes fails
to differentiate between signals.

Next we evaluate TxMiner’s ability to extract multiple
transmitters with variable bandwidths. For this experiment too
we use artificially mixed and amplified signals. We study
two cases of spectrum occupancy presented in Figure 11.
Each of these cases includes a different configuration of three
transmitters. In case 1 we have a 25 second transmission with
6MHz bandwidth, followed by two concurrent transmissions,
one 3MHz wide and one 1.4 MHz wide and separated by
an idle zone. The second case features three consecutive
transmissions each of 25 seconds. Table II presents for each
case and each transmitter the expected and the detected
bandwidth (E.BW and D.BW, respectively) for each case and
transmitter. As we can see, TxMiner successfully detects all
the expected transmissions and is also accurate in detecting
their bandwidths.

C. Impact of Scan Duration

In this section we evaluate the impact of scan duration
on the accuracy of occupancy detection. The presented results
indicate how quickly can TxMiner begin detecting transmitters
after a spectrum scan is initiated. To this end, we run TxMiner
on all the channels in the TV UHF band while changing the
number of time samples we consider. We start with a scan
duration of 3 seconds, which in our setup corresponds to two
sweeps, and double the scan duration up to 192 seconds (65
sweeps). Figure 12 presents average and standard deviation
of accuracy (as calculated in section III-B) over all the TV
channels for each scan duration. As we can see, even for small
scan durations the average accuracy is high which indicates
that TxMiner can detect transmitters successfully even after
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Fig. 12. Accuracy with changing scan duration. TxMiner achieves high
detection accuracy with scan durations as short as 3 seconds (2 sweeps).
The stability of transmitter detection across different channels, regardless how
noisy they are, is guaranteed at a scan duration of 96 seconds (33 sweeps).

two frequency sweeps. Notably, the deviation across channels
for small scan times is high as well, which would not be
desirable for stable performance across various scenarios. This
deviation depends on how noisy the channel is: intuitively the
more noisy the channel the more samples TxMiner needs in
order to perform accurate transmitter detection. As the scan
duration increases up to 96 seconds (33 sweeps), we see that
the standard deviation becomes minimal, which indicates that
Txminer can persistently achieve high accuracy in about 33
sweeps across different transmission scenarios.

IV. TXMINER IN THE WILD

So far we have shown that TxMiner is capable of detecting
transmitter characteristics in various RF bands and occupancy
scenarios. This capability can be harnessed for creation of a
RF inventory that gives information about transmitter char-
acteristics over frequency, time and space. To demonstrate
this capability we utilize data collected by the Spectrum
Observatory over a day at a single location and seek transmitter
patterns. In this section we present results from wide-band
and long-term analysis of spectrum occupancy using TxMiner.
First, we map spectrum occupancy by analyzing the number of
transmitters and their type over wide frequency band. We then
propose a technique to detect rogue transmitters and utilize it to
detect a rogue transmitter in the Spectrum Observatory traces.
Finally, we make a case for TxMiner-based support of DSA
systems through longitudinal analysis of the DSA opportunity
in parts of the UHF band.

A. Mapping spectrum occupancy.

When mapping spectrum occupancy, it is important to look
at occupancy states both over a wide frequency range as well
as over long time. We now demonstrate TxMiner’s capability
to support such analysis by drawing a map of transmitters in
a wide frequency range.

Mapping number of transmitters. Our analysis of num-
ber of transmitters focuses on two frequency bands including
30-173MHz and 700-900MHz. We choose these bands to
demonstrate TxMiner’s ability to detect the number of trans-
mitters in bands that are typically occupied by narrow-band
transmitters such as 30-173MHz and parts of 700-900MHz
and other characterized with wide-band transmitters such as
portions of 700-900MHz band.

Figure 13(a) plots the number of transmitters detected
in each 1MHz chunk. In ranges that are characterized with
narrow-band transmissions TxMiner detects up to 4 transmit-
ters in a single 1MHz chunk. In contrast, where wide-band
transmitters are present, TxMiner detects contiguous 1MHz
chunks as occupied by a single transmitter. Further analysis
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Fig. 13. Number of transmitters (a) and transmitter type (b) detected over
a wide frequency range. TxMiner successfully detects multiple transmitters
in a single 1MHz chunk in bands that are characterized with narrow-band
transmissions. Simultaneously, TxMiner detects wide-band transmitters by
extracting a single transmitter in each 1MHz chunk of a contiguous band.
Lastly, TxMiner identifies transmitter type in bands occupied by a single
transmitter.

of the powers of the detected transmitters can indicate which
1MHz chunks are occupied by a particular transmitter. In
interest of space we omit results of such analysis.

Transmitter type detection. Along with transmitter count
we utilize TxMiner to detect transmitter type in a wide
frequency band. Figure 13(b) presents a bar-graph with de-
tected transmitter types in 1MHz chunks occupied by a single
transmitter. Each bar presents the percentage of transmitter
types detected in the two frequency bands of interest. As
we can see, majority of the transmitters in both bands are
broadcast. We observe a higher percentage of TDMA, FDMA
and frequency hopping transmitters in the 700-900MHz band
in comparison with the 30-173MHz band. The latter can be
explained with the nature of the incumbent transmitters in these
bands: while 30-173MHz is characterized with narrow-band
broadcast transmissions such as FM radio, the 700-900MHz
band hosts technologies such as public safety land mobile
communicationsthat are non-broadcast transmissions.

B. Identifying rogue transmitters

To illustrate TxMiner’s capability to detect rogue transmit-
ters we define a rogue coefficients Cβ and CT that capture
the likelihood that the transmitter sensed in a time-frequency
chunk is rogue by analyzing the bandwidth β and active time
T of the detected transmitter. Towards this end we require
prior knowledge of the characteristics of the transmitter that
is expected to operate in a given band. We note that such
prior knowledge can be obtained by considering the previous
transmitter characteristics discovered by TxMiner. Thus, our
rogue coefficients captures the difference between the expected
and the detected transmitter characteristics as follows:

Cβ =
βd

βe
and CT =

Td
Te

(6)

where βd and βe are the detected and expected transmitter
bandwidth, while Td and Te are the detected and expected
active time. These coefficients vary between 0 and 1, where
1 indicates that the detected and expected transmitters are
the same, 0 indicates that there is no transmitter, where a
transmitter is expected and anything between 0 and 1 indicates
that the detected and expected transmitters are different. Of
note is that since this method requires prior observations of
incumbent characteristics it will fail detecting rogues if (i)
the rogue is spoofing an incumbent, or (ii) if the rogue has
the same active time pattern as the incumbent but transmits
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Fig. 14. Characteristics of a single TDMA transmitter over 24 hours.
TxMiner successfully identifies transmitter bandwidth and active time over
a long period, and can thus inform DSA technologies about the transmission
opportunity in a given frequency band.

at different times. We leave a more robust rogue transmitter
detection technique as a future work.

We calculate the rogue coefficient for all TV bands and
identify that one TV channel is occupied by a non-TV trans-
mitter. The channel in question is channel 20 (506-512MHz),
for which TxMiner calculates rogue coefficients Cβ = 0.61
and CT = 0.22. While the expected transmitter here is a
TV broadcast with 6MHz bandwidth and continuous active
time, the detected transmitter exhibits different characteristics
as captured by the rogue coefficients. A closer look at the
occupant indicates that the transmitter has a bandwidth of
4MHz and transmits in a TDMA fashion.

C. Support for DSA systems.

Dynamic spectrum access is a concept most often applied
in the context of TV White Spaces, where the primary trans-
mitters have static behavior. Thus these bands are well-suited
for database-driven management. There are plethora of radio
bands such as radar and satellite bands that are seldom used
by their incumbents, which provide a great opportunity for
dynamic spectrum access beyond TV White Spaces. However,
these bands pose challenges in operation of secondary users
due to the highly-dynamic nature of incumbents. In order for
secondary users to fully utilize the potential of these bands they
need a mechanism to evaluate the transmission opportunity
in both frequency and time by assessing not only if there is
an incumbent but also how much bandwidth and time does
it occupy and whether the temporal occupancy patterns are
predictable or not. TxMiner can provide such information. To
illustrate how, we analyze one proprietary DSA transmission
that exhibits TDMA behavior.

Figure 14 presents our analysis of a 6MHz band (506-
512MHz) over 24 hours. TxMiner identifies a single transmit-
ter in this band that is sensed at -94dBm and is active for about
20% of the entire 24-hour period. We analyze the frequency
and temporal characteristics of this transmitter in Figure 14(a)
and 14(b). In analyzing the temporal characteristics we con-
sider three metrics: (i) the active time duration, (ii) the active
time cycle, that is the time from the beginning of one active
period to the beginning of the next active period, and (iii) the
gap between consecutive active times, that is the time between
the end of one active period and the beginning of the next. In
Figure 14(a) we plot a CDF of the average active time, cycle
and gap in intervals of 100s over the 24-hour period. Since the
transmitter is active only 20% of the time, 80% of the values
are zero. Based on the values that correspond to transmitter

activity we can see that the average duration has a median of
5 seconds and does not vary much over different 100 seconds
snapshot. In contrast, the gap has a median of 9 seconds, which
is larger than the active time, and varies significantly (from 5
to 42 seconds). Lastly, the cycle has a large variation (between
9 and 48 seconds). These temporal characteristics indicate that
the observed transmission is a-periodic and the transmitter is
inactive for a larger fraction of the time. Finally, we analyze
occupied bandwidth. Figure 14(b) plots the ratio of detected
bandwidth vs. analyzed bandwidth (which is 6MHz in this
analysis) in each 100s period. As we can see, the fraction of
occupied bandwidth is persistently around 0.6, which indicates
that 40% of the analyzed band is idle.

This analysis can inform a secondary DSA transmission
as follows. If the 80/20 ratio of incumbent presence persists
longer than 24 hours, the secondary transmitter can use the
entire band for transmission in 80% of the day. In periods
where the incumbent is active, due to the a-periodic nature of
the incumbent it would be hard to predict opportunities for
secondary transmission without real-time sensing. Depending
on the sensing efficiency of the secondary transmitter, it can
decide whether to opt for sensing and transmission based on
the average gap duration supplied by TxMiner. Finally, 2MHz
of the 6MHz analyzed band is persistently available, thus
the secondary transmitter can decide to utilize this portion
continuously without the need of complex sensing techniques
if this would satisfy the application requirements.

V. RELATED WORK

Prior work on spectrum analysis can be classified into four
categories: wide band spectrum occupancy analysis, envelope
detection for identifying unknown signals, multiple signal clas-
sification, and detection of transmitters with known signatures.

Several studies have analyzed large-scale spectrum mea-
surements to identify portions of spectrum that are not
used [16, 12], or identify patterns of primary users that allow
opportunistic spectrum reuse [11, 4]. This body of work
assumes no knowledge about the transmitter. They typically
apply a threshold for noise, and any signal above this threshold
is assumed to be occupied, anything below is assumed to be
free. [4] analyses spectrum from China, and models the arrival
of users in the cellular bands. [11] analyses spectrum from
30 MHz to 6 GHz, and studies opportunities for dynamic
spectrum access in these bands. However, none of these
analyses share the goal of TxMiner, and are unable to predict
transmitter characteristics from a wideband spectrum trace.

Another set of techniques, which is primarily used by prac-
titioners, is to tease apart unknown transmissions from known
transmitters. This is frequently used to identify interferers in
the spectrum, for example, in the wireless carrier spectrum.
The most common technique is that of envelope detection [8].
A circuit (or these days software) tries to fit a curve around
the max-hold (or mean) of signals. Although this technique
is useful in determining anomalies in the curves, it does not
provide much insight into the distributions that make up the
max-hold or mean.

Some classic techniques from the signal processing litera-
ture such as MUSIC [15] are also able to detect the number of
signals arriving at an antenna. Unlike TxMiner, however, they
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do not tackle detailed transmitter characterization, including
bandwidth, temporal characteristics and type.

Most closely related to our work are SpecNet [10], DoF [9],
AirShark [14] and DECLOAK [13]. SpecNet is a system
for large-scale spectrum measurements, which harnesses high-
end spectrum analyzers contributed by SpecNet participants
and provides basic functionality for SNR-driven occupancy
detection. In contrast, our Spectrum Observatory makes use of
lower-end spectrum sensors and incorporates TxMiner for ad-
vanced transmitter characterization. DoF builds cyclostationary
signatures for different transmitters in 2.4 GHz, such as Wi-Fi,
Bluetooth, etc., and mines spectrum data for these signatures
to determine the users of the spectrum. AirShark tried to
solve a similar problem, but using commodity Wi-Fi chipsets.
DECLOAK focuses on OFDM transmissions only and uses a
combination of cyclostationary features with Gaussian Mixture
Models to extract transmitter characteristics. While all three
techniques are useful, they only work when the transmitter
patterns are known. TxMiner takes the next step, and identifies
transmitters when their patterns are not known.

VI. DISCUSSION & FUTURE WORK

To summarize, in this paper we have presented the first
system, called TxMiner, that is able to mine raw spectrum mea-
surement data and identify properties of transmitters operating
in that spectrum. TxMiner is based on a simple observation
from signal propagation theory that fading follows a Rayleigh
distribution. We use this principle to build machine learning
algorithms (RGMM) that attributes spectrum measurements to
different transmitters. We use TxMiner to create a spectrum
map that features transmitter count and characteristics. We
demonstrate detection of rogue transmitters and analysis of
DSA opportunity in licensed bands.

Although the knowledge gleaned by TxMiner is very
useful, it is still the first step. We believe that many more
details can be learnt about transmitters, which will enable
several additional applications of spectrum analysis. We list
some of our research efforts in this direction below.

Collocated transmitters: Since TxMiner looks at power
profiles of transmitters, it is unable to distinguish two collo-
cated transmitters with similar power profiles. In such cases
the two transmitters together will be classified as a single
transmitter. To this end we can use prior knowledge of the
occupants’ characteristics to determine the number of active
transmitters.

Mobile transmitters: TxMiner is currently unable to
detect transmitter mobility. We note that the properties of
signal distributions can be applied to this problem as well.
Particularly, the signal distributions of mobile transmitters
are different than those of static in that they change over
time depending on the speed and direction of the transmitter
with respect to the RF sensor. Using this observation, we are
designing methods for identification of mobility and speed.

Integration with Known Transmitter Signatures: Prior
work [9, 14] has looked at identifying transmitters with known
temporal signatures. TxMiner can leverage such techniques to
eliminate known transmitters from spectrum scans and focus
on unknown transmitters, thus improving detection time and

accuracy. Furthermore, such knowledge can enhance identifica-
tion of more complex transmitters such as a mobile performing
power control in which case our basic algorithm will detect
multiple transmitters.

Despite these limitations, the current implementation of
Txminer revolutionizes spectrum mapping by allowing extrac-
tion of transmitter count and characteristics, detection of rogue
transmitters and identification of opportunities for dynamic
spectrum access. Our future research efforts in this direction
will open doors toward efficient use and better understanding
of spectrum bands nationwide.
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