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Abstract—Modulation recognition (modrec) is an essential
transmitter fingerprinting task that enables future spectrum-
sharing applications such as access management and enforce-
ment. Traditional supervised modrec requires labeled training
data for all target modulations, which cannot be readily met
with the advent of new, customized and data-driven waveforms.
Thus, a keystone question for the applicability of modrec is:
Can we perform automatic recognition of previously unobserved
modulations by adapting and reusing models that were trained on
different but related modulations?

To this end, we develop MODELESS (MODulation rEcogni-
tion with LimitEd SuperviSion) that exploits knowledge from
observed modulations to classify samples from unobserved ones.
Our solution is grounded in zero-shot transfer learning, which
employs side information among observed and unobserved classes
to transfer learned classifiers. In particular we quantify the
similarity among the theoretical constellation diagrams of un-
observed and observed modulations and employ them in a zero-
shot transfer learning framework. Our framework is general,
as it can produce predictions for arbitrary modulations as
long as their theoretical constellations can be specified. We
evaluate MODELESS on synthetic and real-world traces and in
comparison with zero-shot counterparts from the literature. We
demonstrate near-ideal classification accuracy in the majority of
the testing cases and draw recommendations for future research
into classification tasks with sub-par performance.

I. INTRODUCTION

While Dynamic Spectrum Access (DSA) is projected to
become a key capability in future wireless networks, its prac-
tical success hinges on the ability to automatically measure,
characterize and enforce spectrum utilization while operating
with limited prior knowledge of transmitter characteristics.
Modulation recognition (modrec) is one such critical spectrum
analysis capability. A growing body of feature-based [6]
and deep-learning based [24] modrec approaches has gained
traction due to their computational efficiency. However, these
methods pose stringent data collection requirements, as they
assume the availability of labeled training data for all target
modulations [10], [30], [7], [14]. In other words, a modrec
engine (e.g. a third-party spectrum enforcer) needs to have
controlled access to target transmitters, in order to collect
labeled spectrum traces for supervised training.

The training data requirement presents a fundamental chal-
lenge for practical modrec deployments in emerging wireless
networks. First, in following the evolution of radio front-end
capabilities, we see a rapid increase in the modulation families
(e.g. high-order SISO modulations). Second, companies often

perform proprietary modifications of their respective modu-
lation implementations. Finally, modulation implementations
evolve from fixed to dynamic and data-driven [20], [37],
embedding fine-grained modulation adaptation in response to
channel conditions; with commercial products already becom-
ing available [1]. In the face of ever-growing modulation
variety, a fully-supervised modrec framework quickly becomes
infeasible [35], [21], [15], [4] as it will require equally
diversified labeled training data. These factors increasingly
challenge traditional modrec algorithms and underpin the
need for robust modulation classification with limited training.
Thus, the goal of our paper is to develop a framework for
automatic recognition of previously unseen modulations.

In this paper, we develop MODELESS, which strives to
determine the modulation family and order of previously unob-
served modulations. MODELESS assumes two types of input:
domain knowledge and measurement data. In the modrec
context, the domain knowledge comprises the theoretical un-
derstanding of a modulation’s constellation diagram, whereas
the measurement data consists of IQ samples from spec-
trum measurements. Further, we differentiate between seen
and unseen modulation classes. For the seen classes, during
training, we have both domain knowledge and measurement
data, whereas for the unseen classes, we only have the domain
knowledge. Using the domain knowledge, we create similarity
representations across seen and unseen modulation classes,
which are then used in the modulation recognition process.
Intuitively, modulations with similar constellations will have
similar representations. MODELESS exploits this property to
make robust predictions for previously unseen classes. Our
framework is inspired by max-margin learning and employs
embeddings for both the domain knowledge (i.e. the similarity
of theoretical constellations computed via the Earth Mover’s
Distance), and the features derived from observations. We
train an SVM class decision function via a joint supervised
feature embedding and discriminator learning. During testing,
we employ the trained score function to predict the class for
instances arising from both known and unknown classes.

We evaluate MODELESS on synthetic and real data [21]
with two popular modulation families: PSK and QAM,
each represented with four classes (2/4/8/16PSK and
16/32/64/128QAM). We consider all combination where two
out of the eight classes (25%) were not observed in training.
When the two unseen classes are from different families,
MODELESS has near-ideal performance regardless of modula-978-1-6654-4108-7/21/$31.00 ©2021 IEEE



tion complexity. With target classes from the same family, our
method requires further consideration of the training mixture.

Our paper makes the following contributions:
• Novelty: We conceptualize modulation recognition of pre-
viously unseen signals and draw on domain knowledge to
design a data-driven similarity embedding framework that ex-
ploits IQ constellations’ geometry to automatically determine
transferable traits between seen and unseen modulations. We
employ state-of-the-art classification features and lightweight
SVM classifiers for robust detection. Our framework is highly-
applicable as it does not require expert input or prior knowl-
edge of the modulation implementation.
• Generality: MODELESS seamlessly extends to new modu-
lations beyond the set considered in this paper. Furthermore, it
can employ alternative similarity embeddings, signal features
and classifiers, allowing further expansion as the field evolves.
• Applicability: We study MODELESS’ performance in syn-
thetic and over-the-air (OTA) spectrum traces and outline
its strengths and limitations across key criteria including the
amount of training data, knowledge transferability and param-
eter settings. We propose guidelines for in-situ deployments.

II. RELATED WORK

Modulation recognition has been tackled as either unsuper-
vised (i.e. likelihood-based) [23] or supervised (i.e. feature-
based) [6] classification problem. While likelihood-based ap-
proaches are optimal, they are computationally-expensive and
sensitive to sensor imperfections and channel conditions [30],
which limits their applicability. Feature-based approaches ex-
tract features from measured IQ samples and offer a lower-
complexity alternative, which has been extensively utilized in
recent work [10], [30], [7], [14], [2], [9]. In terms of features,
prior work employs order statistics (OS) [10], high order
cumulants (HOC) [30], [7], [9], kernel density functions [2],
local sequential patterns [34] and fractal dimensions [36].
Various classification techniques have been employed ranging
from support vector machines [9], [34], [36] to artificial
neural networks [18], [32], [21], [26], [27]. All of these
approaches require sufficient training data prior to classifica-
tion, which is a practical challenge [40], [5], [37], [20], [1].
Thus, our key contribution is the design and implementation
of a modrec framework for unseen modulations. In terms
of feature engineering and classifier selection, our work is
orthogonal to prior literature, as we focus on the design of
similarity embeddings for the modrec domain. Our framework
is seamlessly extensible with new features and classifiers.

A few recent studies consider the application of transfer
learning within a deep neural network for modrec with limited
supervision [21], [15], [4]. Albeit limited, all of these works
require a certain percentage of actual observations (i.e. 5%-
10%) from the target classes in order to learn a corresponding
model. Our work is different as it does not require any prior
observations. Closest to MODELESS is [35], which uses zero-
shot transfer learning and requires expert-designed transfer
attributes. Our work strives to eliminate the human in the

Notation Meaning
S The set of seen modulations.
U The set of unseen modulations.
CCC Modulation similarity matrix.

{X,y} Training instances X with mod. annotations y.
l,K Shingle and dictionary sizes for LP features [34].

P = {p1, .., po} A theoretical constellation with o complex symbols.
w Learned classifier hyperplane.
Z Class similarity embedding.
ϕ Class-specific feature embedding.

TABLE I: Notation used throughout the paper.
loop by designing data-driven similarity embeddings for fully-
automated recognition of previously unseen modulations.
Zero-shot learning. Our goal in this paper is to enable
modrec with limited supervision and no expert input. Thus,
we employ a similarity-based zero-shot learning approach.
Zero-shot learning has been extensively considered in the
image segmentation literature, where too, the lack of sufficient
labeled training data has plagued progress in robust image
classification [8], [22]. Recent progress can be considered in
terms of transfer features representation and classifier design.
For transfer representations, prior work has used attribute-
based [28], [12], [11] and similarity-based approaches [39],
[16], [19]. Attribute-based work requires semantic description
of key class attributes that can be employed for knowledge
transfer. For example, the semantic attributes for a seen class
“cats” may include “four legs”, “fur” and “paws”, whereas
these for an unseen class “dogs” may include “fur”, “sharp
teeth” and “paws”. Several of the semantic attributes of
the seen class directly transfer to the unseen class, which
underpins zero-shot classification. While intuitive, attribute-
based zero-shot learning inherently requires expert input in
the attribute design phase, which is prohibitive in the modula-
tion recognition context. Similarity-based methods typically
employ data-driven computation of inter-class similarities,
and as such, do not require expert input. Thus, similarity-
based approaches such as [16], [19] are very-well suited for
our goal. A key question tackled in this paper is how to
design similarity embeddings for the modrec domain? Beyond
new representations, various zero-shot learning classifiers have
been considered: from traditional SVM [33] to novel deep
learning architectures [38]. MODELESS employs lightweight
SVM, however, it is extensible to other classifiers.

III. PRELIMINARIES AND NOTATION

We first discuss modrec preliminaries and our running
notation (also summarized in Table I for further reference).
Feature-based supervised modulation recognition. The raw
input data for feature-based supervised methods is a sequence
(r1, r2, ..rm) of m consecutive IQ samples, where ri ∈ C
is the i-th instantaneous complex signal sample. Following
a feature extraction procedure [30], [7], [9], [10], [2], [34],
[36], samples are mapped to a fixed-dimensional feature vector
(instance) x ∈ Rd of size d. Instances are further associated
with modulation labels to form a training dataset of n instances
{X,y}, where X ∈ Rn×d is the set of measured instances
stacked in a matrix and and y ∈ M = {c0, c1 . . . ck+k′}n×1

is a class vector encoding the modulation types giving rise to
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Fig. 1: An overview of the MODELESS pipeline.

each instance. While prior feature-based approaches require
observations for all target classes (i.e. M = S), MODELESS
assumes that M is comprised of a subset of seen S and
unseen U modulations, and thus, it targets the recognition of
the previously unseen classes U .
Feature families. High order cumulants (HOC) [3], [30],
[9], [7], [3] and order statistics (OS) [10] are two families
of features that have been extensively used in the literature.
In terms of HOC, subsets of the fourth- {C40, C41, C42} and
sixth-order cumulants {C60, C61, C62, C63} have received the
most attention [30], [9], [7], [3]. OS [10] offer an alternative
global summary of the IQ samples’ distribution. The k-th OS
of a random real sample is its k-th smallest value.

Both HOC and OS features capture the global statistical
properties of IQ samples, however they ignore the local se-
quence of samples. A recently proposed feature representation,
called Local Pattern (LP) [34], exploits the local order of IQ
samples. The key idea is to learn representative transitions of
amplitude and phase sequences. A sequence of IQ samples
(r1, r2, ..rm) is transformed into amplitude and phase time
series of the same length. A sliding window of length l is
employed to obtain m − l sub-sequences, called shingles of
length l. A set of K representative shingle shapes (shingle
dictionary) across all modulations is then learned in an un-
supervised manner using a Gaussian Mixture Model (GMM)
framework [34]. All observations are then encoded based on
the learned dictionary to obtain the feature representation X.

We study the applicability of the above features to
MODELESS (§V). Our overall framework is flexible as any
combination of features, including such proposed in the future,
can be employed without any changes to the framework.
Zero-shot modrec v.s. supervised modrec. The goal of
classical supervised modrec is to learn a classifier which
maps measured modulation instances to one of the known
classes f(x) → S = {c0, c1 . . . ck}, for which a classifier
was trained. Zero-shot learning, in contrast, seeks to “adapt”
a learnt classifier to predict a set of unobserved modulations U ,
which were not available during training, i.e., f0(x) → U =
{ck+1 . . . ck+k′}. There are two streams of zero-shot learning
approaches, which are applicable to our problem: attribute-
based and similarity-based. Attribute-based methods require
the explicit definition of a trait that transfers between seen and
unseen classes (e.g. ”is furry” or ”is a mammal”), and as such,
require that the target domain grants itself to a semantic de-
scription generated by humans. Similarity-based approaches,
in turn, are data-driven and determine the transferable traits
across domains in the form of automatically-computed sim-
ilarity matrices. In the context of modrec, attribute-based

approaches will require extensive expert intervention both to
design the attributes and to extend them as new modulations
arise. Similarity-based methods, in contrast, are more applica-
ble as they automatically determine transferable traits based
on domain-informed functions. Thus, MODELESS employs a
similarity-based transfer learning framework. Our classifier
closely follows the framework proposed in [39]. Our novel
contribution is in the design of similarity embeddings, which
exploit the theoretical shape of modulation constellations.

IV. METHODOLOGY

In this section, we describe our zero-shot similarity-based
framework MODELESS for modulation recognition. Its steps
are depicted in Fig. 1. We first estimate a pair-wise similarity
matrix CCC among the theoretical constellations of both known
and unknown modulations employing a sparse Earth Mover’s
Distance formulation based on Gaussian Mixture Models
(GMMs). We further embed modulation similarity vectors
via a sparse coding as mixtures of known classes resulting
in an embedding matrix ZZZ. Next, we train a class decision
function for instances via a joint supervised feature embedding
and discriminator learning. Finally during testing, we employ
the trained score function to predict the class for unlabeled
instances arising from both known and unknown modulations.

A. Similarity across modulations

We approach the problem of modrec with limited supervi-
sion within a similarity-based zero-shot framework [39]. We
take as an input the theoretical constellations of seen and un-
seen modulations and employ their pair-wise similarity in the
transfer learning process. A key question for our framework is:
How to compute the pair-wise similarities among theoretical
constellations with different number of symbols? We model
modulation constellations as two-dimensional distributions in
the IQ space and quantify pairwise modulation similarities
using the Earth Mover’s Distance (EMD) [29]. Originally
defined as an edit-distance for histograms, EMD computes
the cost of an optimal transformation of one histogram (or
distribution) into another, where an elementary edit operation
is the transportation of a unit of mass from one histogram
bin to another bin. The costs of such elementary movements
is quantified by a ground distance, i.e. a distance among
histogram bins. EMD is a true metric if the underlying ground
distance is also a metric [29] and these nice theoretical
properties underpin its wide adoption in image classification.

A given modulation’s theoretical constellation P =
{p1, · · · po}, pi ∈ C is specified by a set of complex num-
bers corresponding to the noise-free positions of constellation
symbols in IQ space, where o is the number of symbols



(also known as modulation order). We model a theoretical
constellations P as Gaussian mixture model (GMM) GP with
the same number of components as the number of symbols
in P , where all components have the same likelihood and
a fixed variance σ. This model is illustrated for the QPSK
constellation in the left pane of Fig. 1. Note that this model
assumes that (i) all symbols are equi-probable (ii) the noise
around symbols has zero covariance and (iii) the phase offset is
fixed. While we demonstrate that under the above assumption
we can successfully predict unknown classes, we believe that
the performance for challenging cases may be improved by
re-visiting the above assumptions in future research.

While the classical EMD [29] can be employed for arbitrary
(even non-parametric) distributions, we employ a recent EMD
formulation tailored to GMMs to quantify distances among
modulations constellations [13]. Given two GMM models GP

and GQ the goal is to quantify the cost of transforming one
into the other formalized as a sparse coding problem:

dEMD(GP , GQ) = minf
1

2
||y−ADf ||22+τ ||f ||1, s.t. f ≥ 0,

(1)
where y is a concatenated vector of the prior weights (in
our case uniform) of GMM components for both modulations
GP and GQ, A is an indicator 0/1 matrix encoding the
relationship between components and “transportation” paths
among them, D is a diagonal ground distance matrix for each
path between GMM components, f is the optimal transporta-
tion schedule and τ is a regularization parameter controlling
the sparsity of the transportation schedule f . This sparse
formulation is more robust to noise and is more efficient
to compute than a general (non-GMM) formulation [13]. It
naturally allows for a wide range of ground distances to be
incorporated. We employ the Lie group ground distance, as
detailed in [13], in IQ space for our modrec application.

Note that while dEMD(GP , GQ) allows us to quantify the
distance between any two modulations, we need to quantify a
similarity between two modulations to enable similarity-based
zero-shot learning. To this end, we transform the distance into
a similarity by using an RBF kernel function [31] as follows:

c(P,Q) = e−λdEMD(GP ,GQ), (2)

where λ is a parameter controlling the rate of decrease of the
similarity as a function of the EMD distance. We evaluated
MODELESS’s sensitivity to λ by varying it from 0.1 to 1 in
increments of 0.1 and determined that it does not affect the
classification performance (figure omitted in interest of space).
Thus, we set λ = 0.2 and quantify the similarities among all
pairs of modulations (both known and unknown). Fig. 2(left)
shows the EMD-based similarity matrix CCC for 8 modulations
(four PSK and four QAM) in medium SNR regime (10dB).
Darker colors present higher similarity. We note that in-family
similarity (e.g. between the PSK or QAM classes) is higher
than between classes from different families. This property
holds across all SNR regimes and underpins MODELESS’s
high performance in classification of unseen modulations.
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Fig. 2: (left) Class-level similarity matrix CCC using EMD. (right) Class-level
embedding ZZZ for target modulations 16PSK and QAM16 at SNR 10dB. PCA
dim. reduction is used to visualize the 6D embeddings ZZZ in 2D.

B. Sparse modulation similarity embedding

The similarity matrix CCC embeds all modulations in a
“dense” similarity space purely based on the theoretical con-
stellation and without additional semantic knowledge about the
modulations. The key premise in the similarity-based zero-shot
learning framework we adopt [39] is that the source domain,
or all modulations in S and U , can be represented as a sparse
mixture of the similarity vectors of known classes. Particularly
ci ≈

∑︁
j∈S zijcj , where cj is the j-th row of CCC and zij is

the mixture proportion of the j-th (known) modulation in the
i-th modulation embedding. More importantly we can learn to
“match” the source domain embedding zi to a target domain
(features) embedding ϕ(xu) obtained by embedding instances
from unknown classes xu during testing, i.e. when the zero-
shot modrec is deployed. We next present the approach for
modulation (source) embedding ZZZ, while the feature (target)
embedding ϕ(x) is discussed in the following subsection.

The input for the modulation embedding function is the
similarity matrix CCC. The embedding process for modulation i
is formulated as a sparse encoding optimization as follows:

z(i) = argmin
z

1

2
||ci −

∑︂
j∈S

zjcj ||2 +
γ

2
||zzz||2, s.t.

∑︂
j

zj = 1

(3)
where the first term in the optimization promotes accurate
mixture representation and the second term shrinks the small
proportions in z according to a regularizer parameter γ. The
embedding is constrained to be on the simplex, i.e. it can
be viewed as a distribution over the known classes in S. We
learn the embedding for all modulations z(i),∀i ∈ S ∪ U by
employing a quadratic programming solver resulting in the
modulation similarity embedding matrix ZZZ ∈ R|U∪S|×|S|.

Fig. 2(right) shows and example similarity embedding ZZZ at
a mid-range SNR of 10 dB for unknown modulations 16QAM
and 16PSK. The remaining six modulations are treated as
known. To produce this 2D visualization, we apply principal
component analysis (PCA) on the 6-dimensional embeddings
in ZZZ. Of note is that we use PCA only for this illustrative ex-
ample, whereas the MODELESS framework uses all embedding
dimensions. What stands out is that the unknown modulations
are “clustered” with other known members from the same
family with the exception of BPSK which acts as an outlier.

Our framework is general, as it allows the addition of new
modulations as long as their theoretical constellation can be
specified. Our evaluation (§V) demonstrates that the discrim-
inative power of the similarity embedding persists across all



SNR regimes. The classification performance with new classes
will depend on whether the trained classifier captures traits
from that class’s family (e.g. if a newly added modulation
has nothing in common with previously observed classes, it
is likely that the classification will be poor). Our discussion
(§VI) considers unique benefits and further exploration.

C. Joint supervised feature embedding and classifier learning

The modulation similarity embedding ZZZ employs solely the
theoretical modulation properties, and no IQ data samples.
Next, we employ this embedding along with training data
{X,y} from known classes yi ∈ S to learn a max-margin
class scoring function f(x, y), which can be used to predict
both known and unknown modulations, i.e. y can be an index
from S and U . The scoring function has the following form:

f(x, y) =
∑︂
s∈S

zysw
Tϕs(x), (4)

where zys is the proportion of known class s in the modulation
similarity embedding of candidate class y, w is a classifier
hyperplane (akin to those employed in SVM) and ϕs(x) is a
class-specific feature embedding of the instance x with respect
to class s. Our objective is to learn the classifier hyperplane
and class-specific embedding functions ϕ() such that training
instances maximize the scoring function for their true class.

The zero-shot similarity approach from [39] proposes dif-
ferent feature embedding families ϕ. In our evaluation we
employ the rectified linear unit (ReLU) [17], which is defined
as ϕs(x) = max(0,x − vvvs) and “focuses” on the patterns in
dimensions of x which exceed the class-specific thresholds
which we learn in vvvs, while ignoring (zeroing out) other
dimensions. Alternative embedding families can also be con-
sidered, however, we leave this for future exploration.

To learn the joint feature embedding functions ϕs() and
classifier w we adopt the max-margin scheme from [39],
formalized as the following constrained optimization problem:

min
V,w,ϵ,η

1

2
∥w∥22 +

λ1

2
∥V∥2F + λ2

∑︂
y,s∈S

ϵys + λ3

∑︂
i=1...n
y∈S

ηiy,

(5)

s.t.
n∑︂

i=1

Iyi=y

ny
(f(xi, y)− f(xi, s)) ≥ ∆y,s − ϵys,∀y, s ∈ S

(6)
f(xi, yi)− f(x, y) ≥ ∆yi,y − ηiy,∀i = 1 . . . n, y ∈ S

(7)
ϵys ≥ 0,ηiy ≥ 0,v ≥ 0,∀v ∈ V, (8)

where λi are non-negative regularization parameters, ϵ and η
are slack variables, ny is the number of instances of class y,
Icond is an indicator function with value 1 when the condition
cond is true and 0 otherwise, and ∆ys is a structural loss
between similarity vectors of the corresponding known classes
defined as ∆ys = 1− cccTy cccs.

The optimization (Eq. 5) is a max-margin objective impos-
ing shrinkage on the class-specific threshold vectors stacked

in matrix VVV via a Frobenius norm and trading off margin
width for training error expressed by the two sets of slack
variables. The set of constraints in Eq. 6 limits the alignment
loss for known class distributions, while the constraints in
Eq. 7 limit the classification loss much like in standard SVMs.
The overall objectives enable a balance between margin width,
classification loss for instances and alignment loss for the
distributions of known classes.

The constrained max-margin formulation can be optimized
within an alternating optimization scheme in which the clas-
sifier {w, ϵ,η} and the class-specific threshold vectors in
VVV parametrizing the feature embedding functions ϕ() are
optimized in turn [39]. The first group can be solved by a
standard SVM while the second is optimized via a concave-
convex procedure by exploiting the structure of the con-
straints [39]. This description is a synthesized version of the
overall optimization. For detailed discussion refer to [39].

D. Classification of unknown modulation instances

Given an arbitrary instance vector x, we predict its class
based on the scoring function f() from Eq. 4, which employs
the modulation ZZZ and feature ϕ() embeddings and the clas-
sifier w learned in the previous sections. Namely, the class
decision function for an unlabeled instance is:

ŷ = argmax
y∈S∪U

f(x, y). (9)

Note that MODELESS can provide predictions for instances
arising from both known and unknown classes, i.e. without
observing instances from the latter during training.

Parameter optimization. Our method employs several pa-
rameters: shingle and dictionary sizes (l,K) for local pattern
features, the EMD sparsity parameter τ , the RBF kernel
λ, the shrinkage regularizer γ in the modulation similarity
embedding, and the regularizer parameters λi in the max-
margin learning. An important question is how to set those
parameters. We can employ one of two cross-validation tech-
niques: instance-based and class-based. Instance-based cross-
validation is the standard stratified partitioning of the train-
ing, which maximizes predictions for the known classes S,
however, it cannot help us directly optimize the zero-shot
predictions for unknown classes U . To optimize the latter, we
can employ a class-based cross-validation in which we leave
out known classes from S in turn, train MODELESS on the
remainder, and quantify modrec accuracy on the left-out class.

V. EVALUATION
A. Experimental setup

Data. We evaluate MODELESS on synthetic and over-
the-air (OTA) real spectrum traces. We employ eight popu-
lar digital modulations from two families: 2/4/8/16PSK and
16/32/64/128QAM. Our synthetic dataset is generated with the
MATLAB Communication Toolbox across ten SNR regimes
(from 0 to 20dB in increments of 2) and across three realistic
channel models: AWGN, Rayleigh and Rician. We also utilize
an OTA dataset from [21], collected with USRB B210 radios
across SNR settings (0-20dB in increments of 2).



MODELESS implementation. Our framework is implemented
in MATLAB. Experiments were executed on a Linux server
with 256GB of RAM and 96 Intel Xenon 2.0GHz processors.
We implement the similarity embeddings calculation follow-
ing [13]. The local sequential pattern feature extraction is
based on [34]. For the transfer learning framework (both train-
ing and prediction) we adopt the implementation from [39].
Evaluation strategy. In all experimental settings we eval-
uate the accuracy of MODELESS, defined as the frac-
tion of correctly-predicted instances over all instances.
Evaluation criteria: First, we assess the sensitivity of our
framework to the mixture of unseen modulations in both
synthetic and OTA traces. We consider two unseen mixture
types: in-family and cross-family. For the in-family test case,
the unseen pool is comprised of multiple modulations from the
same family (e.g. several PSKs or several QAMs), whereas for
the cross-family test case the unseen pool is comprised of a
mix of modulations from different families. We then evaluate
performance as a function of the training pool (i.e. seen modu-
lations) size and mixture. We also study the effects of instance
size on performance. Finally, we evaluate performance across
varying SNR. Training: Unless otherwise noted, we use all
eight modulation classes in each experiment. We designate
the experiments in terms of the test (i.e. “unseen”) classes
and note that all remaining classes were used in training (i.e.
were considered as “seen” classes). Parameters: Training and
testing instances of each modulation contain 512 complex IQ
samples. We train on 2000 instances of each modulation and
test on another set of 2000 instances. For the LP feature
extraction, we set the shingle and dictionary size to 3 IQ
samples and 30 representative vocabularies. §V-D evaluates
the effects of parameter selection on MODELESS’ performance
and informs the above parameters.
Baselines. We compare with ModRec-0 [35], which is the
only prior work that tackles modrec of unseen classes. It
employs an attribute-based zero-shot framework with high
order cumulants (HOC), which requires expert-defined at-
tributes for transfer. In contrast, MODELESS does not re-
quire expert knowledge as it employs similarity between
known theoretical constellations. We consider variants of
MODELESS employing different features: HOCs [7], local
patterns (LP) [34] and the combination of HOCs and LPs.
Comparison to fully-supervised [30], [7], [14], [10], [34] or
partially-supervised [21], [15], [4] methods is not possible
as they would require actual samples for unobserved classes,
unlike MODELESS and ModRec-0.

B. MODELESS performance

We evaluate MODELESS’ performance with synthetic and
OTA traces. First, we explore MODELESS’s performance
with different state-of-the-art features: High Order Cumulants
(MODELESS-HOC), Local Patterns (MODELESS-LP) and their
combination (MODELESS-H+L). Second, we seek to compare
MODELESS to ModRec-0[35]. Finally we test these four
counterparts on real-world traces. We report results using
two classes for testing and the remaining six for training.
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Fig. 3: Average accuracy as a function of increasing SNR.

Considering our 8 modulation classes (§V-A), for two vs.
all testing/training there exist a total of C2

8 = 28 test
combinations. 16 of them are cross-family (i.e. we seek to
classify one PSK and QAM modulation) and 12 are in-family
combinations (i.e. both target modulations are either from the
PSK or QAM family). We employ MODELESS on each of
these combinations while increasing the SNR level.

Fig. 3 presents average accuracy across all 28 combinations
for synthetic data under AWGN channel (left) and OTA (right)
traces. The dashed line indicates a random guess, which
in our case is 0.5, as we are classifying two modulations.
MODELESS-LP achieves the highest performance, followed
by ModRec-0 in both synthetic and real data. MODELESS-
HOC and MODELESS-L+H on synthetic data suffer an average
accuracy drop of 12% and 4%, respectively, compared to
MODELESS-LP. This performance drop is even more substan-
tial with real data, whereby the average accuracy deteriora-
tion is 18% for MODELESS-HOC and 13% for MODELESS-
L+H. These results point to several important insights. First,
MODELESS-LP outperforms the state-of-the-art and obviates
the requirement of expert input. Second, features that capture
local signal properties (i.e. LPs [34]) are more conducive to
zero-shot learning than global statistics (i.e. HOCs [7]).

To further understand MODELESS-LP’s performance, we
break down the accuracy of each test combination across three
SNR regimes (Table II): 2, 10 and 20dB for synthetic and
4, 10 and 20dB for OTA data. All cross-class combinations
(i.e. 1-16) achieve near-perfect classification at SNR 10 and
20dB and perform substantially better than a random guess at
2(4)dB. These trends persist across synthetic and OTA traces.
However, with a few exceptions, all the in-class combinations
(17-28) gain a random guess. We hypothesize that this poor
performance is due to our exhaustive training strategy, which
uses all seen classes in the training phase. Effectively, this
leads to training data being dominated by instances from the
opposite class, which has a detrimental effect on classification
performance. We further explore this phenomenon in §V-C and
show that indeed, balanced selection of the training mixture
and feature design can boost the in-class modrec performance.
C. Less is more: effects of the training mix

In this section, we set out to evaluate the effects of the
training mixture on in-family and cross-family modulation
classification. We consider the following training mixtures: (i)
in-family, whereby the training phase incorporates instances



Train Test Acc. Synth.
(SNR, dB)

Acc. OTA
(SNR, dB)

PSK QAM PSK QAM 2 10 20 4 10 20
4/8/16 32/64/128 2 16 .9 1 1 .54 .99 1
4/8/16 16/64/12 2 32 .91 1 1 .57 .99 1
4/8/16 16/32/128 2 64 .94 1 1 .55 1 1
4/8/16 16/32/64 2 128 .92 1 1 .56 .99 .99
2/8/16 32/64/128 4 16 .68 1 1 .76 .99 .99
2/8/16 16/64/128 4 32 .67 1 1 .7 .99 .99
2/8/16 16/32/128 4 64 .72 1 1 .84 .99 .99
2/8/16 16/32/64 4 128 .75 1 1 .76 .99 1
2/4/16 32/64/128 8 16 .9 1 .99 .92 .98 .96
2/4/16 16/64/128 8 32 .9 1 1 .93 .92 .85
2/4/16 16/32/128 8 64 .91 1 1 .96 .98 .91
2/4/16 16/32/64 8 128 .91 1 1 .96 .95 .95
2/4/8 32/64/128 16 16 .9 1 1 .93 .98 .98
2/4/8 16/64/128 16 32 .91 1 1 .93 .96 .96
2/4/8 16/32/128 16 64 .94 1 1 .96 .96 .97
2/4/8 16/32/64 16 128 .88 1 1 .96 .97 .99
8/16 16/32/64/128 2/4 - .5 .5 .5 .9 .5 .5
4/16 16/32/64/128 2/8 - .5 .5 .5 .88 .5 .5
4/8 16/32/64/128 2/16 - .5 .5 .5 .9 .77 .96
2/16 16/32/64/128 4/8 - .5 .99 .95 .62 .73 .60
2/8 16/32/64/128 4/16 - .5 .5 .97 .67 .8 .75
2/4 16/32/64/128 8/16 - .5 .5 .5 .5 .52 .51
2/4/8/16 64/128 - 16/32 .53 .5 .5 .5 .47 .54
2/4/8/16 32/128 - 16/64 .5 .5 .5 .51 .5 .5
2/4/8/16 32/64 - 16/128 .5 .5 .5 .5 .5 .5
2/4/8/16 16/128 - 32/64 .51 .5 .5 .51 .5 .49
2/4/8/16 16/64 - 32/128 .52 .5 .5 .51 .5 .5
2/4/8/16 16/32 - 64/128 .5 .5 .55 .5 .5 .5

TABLE II: Accuracy break down across testing combinations.

only from the same family as the testing classes; (ii) balanced
cross-family with exclusion, in which we take an equal amount
of classes from the PSK and QAM family by excluding some
classes from the over-represented family (e.g. if the seen
classes are 4/8PSK and 16/32/64/128QAM we would exclude
16/32QAM to balance the two families); (iii) balanced cross-
family without exclusion in which we simply add more samples
from the underrepresented family in order to balance the two
classes (e.g. in the above example of seen classes 4/8PSK and
16/32/64/128QAM we would double the samples in QPSK
and 8PSK to balance the two families); and (iv) exhaustive
training, whereby all non-test classes are used in training. We
note that for our pool of 8 classes, we can produce at most
one in-family, three balanced cross-family with exclusion, one
balanced cross-family without exclusion and one exhaustive
training mixtures per target combination.

1) Effects of training mixture on cross-family modrec: Our
results in §V-B indicate near-perfect classification accuracy
for all cross-family test combinations and across a wide
range of SNRs. We now evaluate the effects of the training
mixture on the classification performance. We choose the
16PSK+16QAM test combination and gradually increase the
training dataset from two to six classes adding one class per
family at a time (i.e. 8PSK+32QAM; 4/8PSK+32/64QAM and
2/4/8PSK+32/64/128QAM). The accuracy remains near 100%
in all training cases (figure omitted in interest of space), which
emphasizes the robustness of cross-family classification to the
training mixture and underpins MODELESS’ applicability to
real-world cross-family modrec with limited supervision.

2) Effects of training mixture on in-family modrec: We also
evaluate the training mixture effects on in-family classification.
Our hypothesis is that employing exhaustive training for in-

Test Train Acc.

16
/3

2
Q

A
M

64/128 QAM (in-family) 0.87
4/8 PSK, 64/128 QAM (cross-fam. w. exclusion) 0.50
4/16 PSK, 64/128 QAM (cross-fam. w. exclusion) 0.50
8/16 PSK, 64/128 QAM (cross-fam. w. exclusion) 0.48
2/4/8/16 PSK, 64/128 QAM (cross-fam. w/o exclusion) 0.50
2/4/8/16 PSK, 64/128 QAM (exhaustive) 0.50

2/
8

PS
K

4/16 PSK (in-family) 0.99
4/16 PSK, 16/32 QAM (cross-fam. w. exclusion) 0.50
4/16 PSK, 16/64 QAM (cross-fam. w. exclusion) 0.78
4/16 PSK, 16/128 QAM (cross-fam. w. exclusion) 0.90
4/16 PSK, 16/128 QAM (cross-fam. w/o exclusion) 0.50
4/16 PSK, 16/32/64/128 QAM (exhaustive) 0.50

4/
16

PS
K

2/8 PSK (in-family) 0.50
2/8 PSK, 16/32 QAM (cross-fam. w. exclusion) 0.88
2/8 PSK, 16/64 QAM (cross-fam. w. exclusion) 0.96
2/8 PSK, 16/128 QAM (cross-fam. w. exclusion) 0.97
2/8 PSK, 16/128 QAM (cross-fam. w/o exclusion) 0.99
2/8 PSK, 16/32/64/128 QAM (exhaustive) 0.97

TABLE III: Effects of training mixture on in-family modrec (SNR=20dB).

family classification leads to the opposite class dominating
the training outcomes, which hampers the knowledge transfer
with in-family test cases. We thus, evaluate the performance
across all in-family combinations while controlling the mixture
of training classes. Table III reports the accuracy for three
combinations (16/32QAM, 2/8PSK and 4/16PSK) at SNR
20dB. For the first and second combination, in-family training
gains a significant performance boost, lifting the accuracy from
0.5 (a random guess) with exhaustive training to 0.99. In
the third case, we see the opposite trend: in-family training
gains a random guess, while both cross-family and exhaustive
training result in near-perfect classification. These results show
that careful selection of the training mixture can be beneficial
in some test combinations, whereas others require further
investigation into training mixture and feature extraction.

D. Effects of parameter selection

In this section, we evaluate the impact of input parameters
on performance. We investigate the effects of local sequential
pattern extraction, specifically focusing on shingle and dictio-
nary size. We also consider the instance size (i.e. the number

(a) Syn. 4/16PSK 20dB ET (b) OTA 4/16PSK 20dB ET (c) Syn. 8/16PSK 20dB ET

(d) OTA 8/16PSK 20dB ET (e) Syn. 8/16PSK 20dB BT (f) Syn. 8/16PSK 10dB BT

Fig. 4: Effects of feature parameter selection l,K on accuracy. Depicted
are two in-family combinations from synthetic and over-the-air data. (a) - (d)
use exhaustive training (ET); (e), (f) use balanced training without exclusion
(BT). Overall, higher shingle and dictionary size lead to better performance,
however, the optimal values vary depending on the training mixture, channel
conditions (i.e. synth. vs. OTA) and SNR.
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Test
↓ Train 2dB 10dB 20dB

2dB 0.9 0.5 0.5
10dB 0.5 1.0 1.0
20dB 0.5 0.5 1.0
Mixed 0.5 1.0 1.0

Fig. 7: Effects of training SNR on accu-
racy for 16PSK+QAM16.

of IQ samples per measurement instance), which relates to the
amount of data per class we need in order to perform modrec.

1) Effects of feature extraction: As detailed in §IV there
are two essential parameters in the feature extraction frame-
work [34]: shingle l and dictionary size K. While fully-
supervised modrec was not sensitive to these parameters [34],
MODELESS’ performance is affected by their selection. We
evaluate the accuracy across varying shingle and dictionary
sizes with different training mixtures and SNR. Fig. 4 shows
our results for two representative test cases from the PSK
family: 4/16PSK and 8/16PSK with synthetic and OTA data.
(4a)-(4d) use exhaustive training (ET), whereas (4e)-(4f) use
balanced without exclusion (BT). Overall, higher shingle and
dictionary size lead to better performance, however, the op-
timal l,K vary depending on the training mixture, channel
conditions and SNR. Thus, further exploration is needed in
feature design/tuning for zero-shot transfer learning.

2) Effects of input sample size: We now evaluate the
effects of the input instance size (number of IQ samples) on
classification accuracy. Fig. 5 shows the result for two cross-
family test cases: 8PSK+16QAM (red) and 16PSK+16QAM
(blue). The accuracy increases with the size of the input in-
stance. In addition, the 16PSK+16QAM combination achieves
maximal accuracy at instance size of 512 IQ samples, whereas
the 8PSK+16QAM combination requires four times smaller
instance size (128 IQ samples) to achieve the same accuracy.
Based on these results we postulate that (i) higher order
modulations and (ii) test cases with similar modulation or-
ders require larger instance sizes. These findings inform the
instance size of 512 IQ samples for our evaluation.

E. Effects of SNR and channel conditions

The SNR and channel conditions can significantly impact a
modulation’s constellation shape and in turn, the performance
of our methodology. Thus, we first evaluate MODELESS under
two realistic channel models: (i) Rician and (ii) Rayleigh, and

in comparison with AWGN. Fig. 6 presents average accuracy
across all 28 combinations for synthetically-generated data,
and shows that MODELESS is robust to channel conditions.

We then evaluate MODELESS across various combinations
of testing and training SNR, seeking to understand whether
training should be SNR-aware (i.e. training performed on
the same SNR as testing) or SNR-blind. Fig. 7 presents our
result for one test combination: 16PSK+16QAM. Vertically,
are the training SNRs of 2, 10, 20dB and a mix of the three.
Horizontally are the testing SNR: 2, 10 and 20dB, respectively.
Each result in the table presents the accuracy achieved for
the particular testing/training combination. For very low SNR
regimes (i.e. 2dB), SNR-aware training is necessary. For a
wide range of SNR settings, however, training on mixed
signals gains perfect modulation recognition, which underpins
MODELESS’ potential for SNR-blind modrec.

VI. DISCUSSION

While our analysis shows promise for modrec with limited
supervision, there are several avenues for further exploration.

Counteracting biases in application data distribution. As
noted earlier (§V-A), some application data streams may gain
non-uniform symbol distribution creating biases in the symbol
representation. In addition, malicious transmitter activity may
intentionally bias the application data stream to obfuscate the
used modulation and hamper modrec efforts [25]. While the
local sequential pattern features are robust to constellation
bias [34], further investigation of the similarity embeddings
is necessary to make them robust to such biases.
Data-driven training mix selection. We show that the training
mixture has a clear impact on classification accuracy in some
test combinations. Future work should investigate principled
and data-driven approaches to training mix selection to facili-
tate uniform modrec performance across all test combinations.
Further exploration that includes modulation families be-
yond PSK and QAM would advance our understanding of
MODELESS’ applicability and underpin a richer set of test
combinations. This will allow performance analysis with
one or more than two unknown classes, shedding light on
performance across various degrees of supervision. Finally,
extension to unknown number of unseen classes will aid
the generalizability of our approach and its applicability to
real-world spectrum sensing, where the number of unknown
modulations may not be apriori available.

VII. CONCLUSION

This paper tackles automatic recognition of previously
unseen modulations using limited supervision. Our method,
dubbed MODELESS employs data-driven similarity embed-
dings, state-of-the-art signal features and lightweight SVM
classification for robust modrec. MODELESS does not require
extensive expert input and is, thus, highly applicable in the face
of constant waveform innovation. We evaluate MODELESS’
performance on both synthetic and real over-the-air data



and demonstrate near-perfect classification accuracy in cross-
family modrec across a wide range of SNR regimes (from 6 to
20dB) and in both synthetic and real traces. We also pinpoint
key drawbacks in in-family classification and draw paths for
future research to tackle these limitations.

Our work addresses a key disconnect between modrec
training requirements and labeled data availability, which will
further widen with the advent of new radio technologies.
MODELESS shows promising results on a particularly chal-
lenging over-the-air dataset, which underlines its potential for
robust modrec with limited supervision in the wild. Our pro-
posed framework is highly-modular and allows for experimen-
tation with alternative similarity embeddings, signal features
and classifiers, which constitutes a solid foundation for future
work in modrec with practical applications to shared-spectrum
access, security and enforcement.
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