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ABSTRACT
Obtaining an accurate specification of the access control policy
enforced by an application is essential in ensuring that it meets our
security/privacy expectations. This is especially important as many
of real-world applications handle a large amount and variety of data
objects that may have different applicable policies. We investigate
the problem of automated learning of access control policies from
web applications. The existing research on mining access control
policies has mainly focused on developing algorithms for inferring
correct and concise policies from low-level authorization infor-
mation. However, little has been done in terms of systematically
gathering the low-level authorization data and applications’ data
models that are prerequisite to such a mining process. In this paper,
we propose a novel black-box approach to inferring those prereq-
uisites and discuss our initial observations on employing such a
framework in learning policies from real-world web applications.
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1 INTRODUCTION
As applications adopt more complex access control policies, it be-
comes harder to provide accurate specifications of the enforced
policies. Such an accurate specification is vital both for verifying
the security/privacy provisions in an application and for offering
a clear expectation of those provisions to end users. In this paper,
we explore whether we can learn access control policies from an
existing application. As human users, it is intuitive that when we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’23, June 7–9, 2023, Trento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0173-3/23/06. . . $15.00
https://doi.org/10.1145/3589608.3594743

work with an application we can make inferences about its enforced
access control policies. However, we note that such inferences can
take time to form and may not be necessarily accurate. Is it possible
to develop a systematic methodology that automates such a learn-
ing process in order to infer a comprehensive access control policy
enforced by an application? This is the question that we explore
more specifically in this paper in the context of web applications
which constitute a majority of everyday applications nowadays. In
this context, we consider learning relationship-based access control
policies (ReBAC) [8, 11, 19] that support expressing authorization
in terms of relationship patterns between application entities.

While approaches to mining access control policies [5, 7, 16, 21]
are useful in addressing the above problem, we note that they can
only provide a part of the solution. Policy mining focuses on infer-
ring high-level policies in a target domain from existing lower-level
authorization information (e.g., access control lists). This process
also often requires access to a model of application data. For exam-
ple, a ReBAC policy miner typically requires two inputs: a system
graph that contains information about entities and their relation-
ships and a set of lower-level authorizations implemented in the
application. In the literature, ReBAC miners have assumed the
provision of both inputs, and have primarily focused on develop-
ing efficient approaches for inferring correct and concise policies.
However, to realize our goal of learning policies from real-world
applications, we need to systematically gather both of those inputs,
preferably in an automated fashion. Furthermore, we propose to
approach these problems in a black-box manner, i.e., making in-
ferences through observing user interactions with the application.
Such an approach assumes a minimal dependency on web protocols,
and is in contrast to developing white-box approaches that have to
depend heavily on the availability and specific languages/models of
application internals (e.g., server-side source code, database, etc.).

In this paper, we present our preliminary results in developing a
black-box framework for learning web application access control
policies by automated inference of the data model of applications
and observing applicable authorizations to that data. We develop
algorithms to infer fine-grained attributes of application data ob-
jects as they are communicated between a web application’s client
and server code (i.e., web requests/responses). We also develop
techniques to re-identify previously inferred data objects and their
attributes in a web application’s pages to make an accurate obser-
vation of applicable authorizations. Our experimental results on
two real-world applications show the feasibility of our framework.

2 BACKGROUND
An application comprises users, resources, and logical components
that may be related to one another based on contextual information.
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We employ the relationship-based access control (ReBAC) [8, 11,
19] model to specify authorizations in such an application with a
rich data model. To capture the authorization state, we employ an
attributed system graph that represents the relationship data among
application entities as well as the entity attributes as a directed
attributed graph. Suppose 𝐿 is the set of relationship types. Then,
we denote a system graph as 𝐺 = ⟨𝑉 , 𝐸, 𝜂⟩. Here, 𝑉 is the set of
nodes in the system graph, which we refer to as data objects. Data
objects correspond to application entities such as users, resources,
and logical components. 𝐸 ⊆ 𝑉 ×𝑉 × 𝐿 represent various labeled
(from 𝐿) relationships that exist between the data objects. The
attribute assignment 𝜂 is a function that takes a data object 𝑣 ∈ 𝑉

as input and produces the set of attributes associated with 𝑣 , which
we denote as 𝜂 (𝑣). We represent 𝜂 (𝑣) as a set of key-value pairs
{𝛼1 : 𝑑1, 𝛼2 : 𝑑2, . . . , 𝛼𝑛 : 𝑑𝑛}, where 𝛼𝑖 is an attribute name and 𝑑𝑖
is the corresponding data value. We use dot notation to indicate an
element within a concept (e.g., 𝐺 .𝑉 refers to system graph nodes).

To form meaningful system graphs, we employ a graph schema,
G = ⟨V, E⟩, to constrain the types of nodes and edges. Here, V =

{𝜏1, 𝜏2, . . . , 𝜏𝑛} indicates a set of data types. Each data type 𝜏 defines
a group of data objects𝑉𝜏 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}𝜏 that have some shared
attributes. So, users, resources, and each logical entity are assigned
different data types. E ⊆ V ×V × 𝐿 constraints the relationships
that can exist between two data objects. In the above notations, we
use an abstract character 𝑛 ≥ 1 to indicate the upper bounds of the
corresponding elements. Let function 𝜏 (𝑣) return the type of a data
object. Then, for every 𝑣 ∈ 𝑉 , it holds that 𝜏 (𝑣) ∈ V . Also, for every
relationship ⟨𝑣𝑖 , 𝑣 𝑗 , 𝑙⟩ ∈ 𝐸, it holds that ⟨𝜏 (𝑣𝑖 ), 𝜏 (𝑣 𝑗 ), 𝑙⟩ ∈ E. We say
such a system graph 𝐺 is well-formed with respect to schema G.
The well-formedness is implied when we discuss system graphs.

The ReBAC model controls access based on a set of rules. The
ReBAC rules employ relationship patterns that specify different ar-
rangements of labeled edges between the entities in a system graph.
We denote a relationship pattern 𝜙 as a sequence of relationship
labels [𝑙1, 𝑙2, . . . , 𝑙𝑛], where 𝑙𝑖 ∈ 𝐿 and 𝑛 ≥ 1. We use −𝑙 to repre-
sent an edge with label 𝑙 ∈ 𝐿 traversed in the inverse direction. A
ReBAC policy 𝜌 = {𝜙 [∧ 𝜙]} consists of a set of ReBAC authoriza-
tion rules, where each rule is a conjunction of a set of relationship
patterns. E.g., the rule “[friend, friend, owns] ∧ [city,−city, owns]”
allows access by only friends of friends living in the same city as
the owner. An access request, ⟨𝑢, 𝑟 ⟩ ∈ 𝑉 ×𝑉 , will be permitted if it
matches a rule in 𝜌 , otherwise denied. A request ⟨𝑢, 𝑟 ⟩ matches a
rule if it matches every pattern 𝜙 in the rule, i.e., there is a path
from 𝑢 to 𝑟 in 𝐺 such that the sequence of edge labels in the path
matches the sequence of the labels in 𝜙 . Alternatively, we say 𝜙

applies to ⟨𝑢, 𝑟 ⟩ in such a case. We can characterize a ReBAC policy
that is enforced in an application by calculating the access decision
𝛿 corresponding to every combination of ⟨𝑢, 𝑟 ⟩. We refer to such a
collection of ⟨𝑢, 𝑟, 𝛿⟩ as lower-level authorizations, denoted asZ.

3 OVERVIEW OF PROBLEM & SOLUTION
We learn the ReBAC policy from a web application in a black-box
manner. To this end, we observe the user interactions with a web
application and analyze the application’s responses to various user
operations. A user can navigate through an application to view dif-
ferent data objects or can create a data object by inputting its details.

The client machine and the application server need to communi-
cate to render appropriate content on the user interface. We collect
such client-server communication (i.e., web requests/responses)
whenever a user interacts with an application, which includes user-
generated content, the data that the client provides to the server,
and the data generated by the server in response to client data. We
refer to such a collection of web-based interactions as traces.

We generate the authorizations corresponding to what users can
view on an application page both at coarse and fine-grained levels.
Specifically, we consider two types of policies that control access to
application data, namely object-level policy and attribute-level policy.
The former specifies what data objects can a user view on awebpage
(e.g., Alice can view Bobby’s post but not Carol’s), while the latter
specifies what attributes of a visible data object are accessible to a
user (e.g., Alice can view only the name of Bobby’s post but Bobby
can view the location of the post as well). We produce the set of
relationship patterns for both these authorization levels.

Our proposed framework undertakes a two-fold approach. First,
it observes the various user operations that result in accumulating
data in aweb application (by inspecting theweb requests/responses)
to infer a model of the application data encompassing the entities
and their relationships. Second, using the inferred data model, our
approach determines the lower-level authorizations that are appli-
cable to application data by observing the resources that users can
access on application pages. Those include authorization informa-
tion on fine-grained data object attributes for application resources
(e.g., title, author, and time for a post in an online social network).

We remark on some of the assumptions that we make in our
solutions. First, we can observe the complete set of lower-level
authorizations enforced in a web application. If a user can view
a data object on any page, that user is permitted to access the
object. If a user is not able to view a data object on any page of
the application, then we consider the user as being denied access
to that object. Secondly, for the convenience of navigating and
exploring various data objects, we assume that we have listings
pages in a web application. We refer to a listings page as a web
page that displays a list of all existing resources of one type. Such
listings pages existed in the web applications that we experimented
on and an expert who has knowledge of the application provided
us with such listings pages for every type of resource. Finally, the
lower-level authorizations enforced over existing resources do not
invalidate during a complete run of our framework. The entities
can be added as well as relationships can be formed during the
creation of entities. But, the authorizations over existing resources
cannot change when the application has new additions.

4 BLACK-BOX DATA MODEL INFERENCE
In this section, we describe our process for inferring a model of
the data implemented in a web application, which includes: 1) data
typesV , 2) data objects𝑉𝜏 for every 𝜏 ∈ V , 3) data object attributes
𝜂 (𝑣) associated with every 𝑣 ∈ 𝑉 , 4) relationship constraints E =
{⟨𝜏 (𝑣𝑖 ), 𝜏 (𝑣 𝑗 ), 𝑙⟩} where 𝜏 (𝑣𝑖 ) and 𝜏 (𝑣 𝑗 ) are members ofV , and 5)
relationships between data-object pairs 𝐸 = {⟨𝑣𝑖 , 𝑣 𝑗 , 𝑙⟩} where 𝑣𝑖 ∈
𝑉𝜏 (𝑣𝑖 ) and 𝑣 𝑗 ∈ 𝑉𝜏 (𝑣𝑗 ) . Our methodology functions in a black-box
manner by collecting web traces. Although we need only the system
graph to carry out the policy mining task, we are also inferring
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its schema because it plays an important role in determining the
relationships that can exist in the corresponding system graph.

4.1 Obtaining Information about Data Objects
Initially, we parse the given web interaction traces and obtain the
potential data object attributes associated with each request. Then,
we merge the obtained attributes to determine different data types.

Parsing Request/Response Contents in Traces. During the data-
model inference, we refer to each request 𝛾 in the given traces as an
instance of a data-object creation. In other words, each request cor-
responds to a data object, and so the properties associated with the
request can be used to characterize the corresponding data object.
We divide the set of object attributes that we need to infer from the
given traces into client-generated, including user-generated, and
application-generated properties. To capture both kinds of these
properties, we utilize especially two kinds of information in our
traces for every 𝛾 , namely, request content Q𝛾 that comprises infor-
mation provided by an end-user when creating a certain type of data
object and response content S𝛾 that comprises information that is
generated by the application when a data object is created in order
to identify the object during future retrievals. For each instance of
data-object creation, we parse Q𝛾 to obtain the values provided by
a user for different fields on the creation page and append them
to A𝛾 as a set of “field-value” pairs. Parsing Q𝛾 also reveals client-
provided values that complement user-provided values, such as
the ID of the post associated with a comment. Furthermore, we
parse S𝛾 to obtain application-generated values. For instance, for a
parametric response such as JSON, we simply append the key-value
pairs in the content to A𝛾 . On the other hand, for a listing-based
response such as HTML, we calculate the difference in the page
content before and after the addition of the data object to the page.
In this way, we can differentiate the values that are generated by the
application from static, styling-oriented elements on a web page.

Pruning & Merging Data Object Attributes. We want to prune all
spurious data object attributes that are not relevant to real data such
as styling elements that are introduced when a data object is added
to a page. Additionally, we want to observe commonalities between
the attributes of various requests 𝛾 and group them into different
data types based on the similarity of their attributes. To this end, we
perform a bottom-up hierarchical clustering, where each request 𝛾
is initially placed in a separate cluster. In each iteration, we merge
the clusters whose object attributes have the highest similarity,
until the number of clusters equals an expert-provided value. For
every pair of requests 𝛾𝑖 and 𝛾 𝑗 , we measure the similarity based on
the number of common keys {𝛼} and their corresponding values
{𝑑} in A𝛾𝑖 and A𝛾 𝑗 . Thus, our approach produces a set of clusters
that each represent a different data type 𝜏 in our data model and
each request in a cluster 𝜏 corresponds to a data object 𝑣 of that type,
i.e., 𝑣 ∈ 𝑉𝜏 . Moreover, the attributes that are repeating across all the
objects within a cluster 𝜏 can be safely ignored from consideration
since they do not add any specific knowledge about the respective
data objects, and we obtain 𝜂 (𝑣) for every 𝑣 ∈ 𝑉𝜏 . For example, we
remove the “class” property if it is used for styling all objects of a
particular type, but retain the “id” property.

4.2 Inferring Data-Object Relationships
The pruned and merged graph that was produced still constitutes
an unpolished data model because of the absence of relationships.
To determine the relationships that can exist between a pair of data
types, we observe the commonalities between their respective data
objects, based on their attributes that we inferred previously. There
are two ways in which we determine the connections between a
pair of data objects – 1) when both objects have the same values for
some attribute, i.e., ∃𝛼𝑖 , 𝛼 𝑗 , it holds that 𝜂 (𝑣𝑖 ).𝛼𝑖 = 𝜂 (𝑣 𝑗 ).𝛼 𝑗 , and 2)
when one object contains the value or a part of the value associated
with another object. If we visualize the above process in terms of a
graph, then, in the former case, we obtain the relationship pattern
[𝛼𝑖 ,−𝛼 𝑗 ] from 𝑣𝑖 to 𝑣 𝑗 for each data value that is shared between
both objects. (Recall that we use the notation −𝑙 to traverse an edge
⟨𝑣1, 𝑣2, 𝑙⟩ in the reverse direction.) For instance, if comments are
present on the same page as their post, then we obtain a pattern
[URL,−URL] that connects individual posts with their comments.

In the latter case, we again have two cases. Suppose the value of
an attribute, say “URL”, for a comment object 𝑣𝑖 is a query string,
e.g., “https://example.com/comments?postid=1&postname=sample-
post”. Then, we parse the query string to obtain values “1” and
“sample-post”, which are the values of attributes, say “id” and “name”,
associated with a post object 𝑣 𝑗 . So, we obtain relationship patterns
[URL, contains,−id] and [URL, contains,−name] from a comment
to its post. Otherwise, for data values other than query strings,
we segregate the common and distinct components within the
values of some attribute associated with all data objects of a par-
ticular type and determine if the distinct components are equal to
or are contained within some other objects’ values. For instance,
an attribute “container-id” associated with comments has values
“object-1”, “object-2”, “object-3”. Observe that “object” is common
between all values. If the posts in the application have an attribute
called “id” with values “1”, “2”, “3”, then we obtain the pattern
[container-id, contains,−id] from a comment to its respective post.

Thus, our approach produces a mapping {𝜙 : [⟨𝑣𝑖 , 𝑣 𝑗 ⟩]} between
relationship patterns and the pairs of data objects that are connected
by the corresponding pattern. Relationships exist between two dif-
ferent data objects (because we do not consider loops in our system
graphs) of either the same type (e.g. friend relationship between two
users) or two different types. Subsequently, we consider that the
relationship patterns that we calculated by linking the attributes be-
tween two data objects correspond to potential relationships types
between those objects. Specifically, for each relationship pattern 𝜙

in {𝜙 : [⟨𝑣𝑖 , 𝑣 𝑗 ⟩]}, we add a relationship ⟨𝑣𝑖 , 𝑣 𝑗 , 𝑙⟩ into 𝐸, where 𝑙 is
an abstract label that is unique for each 𝜙 and (𝑣𝑖 ∈ 𝑉𝜏𝑖 , 𝑣 𝑗 ∈ 𝑉𝜏 𝑗 ).
Additionally, for every ⟨𝑣𝑖 , 𝑣 𝑗 ⟩, we add the edge ⟨𝜏 (𝑣𝑖 ), 𝜏 (𝑣 𝑗 ), 𝑙⟩ into
E. Finally, we prune redundant relationships by employing two
kinds of heuristics: 1) removing relationships that exist between
all pairs of data objects (irrespective of the data type) and 2) re-
moving relationships that can be derived from other relationships.
We want to ensure that, similar to data object attributes, we find
meaningful object relationships and remove any “noise” that can be
caused when there are different semantics associated with the same
artifact. Consequently, to ensure that 𝐸 is well-formed with respect
to E, we remove the edges ⟨𝑣𝑖 , 𝑣 𝑗 , 𝑙⟩ corresponding to each pruned
relationship constraint ⟨𝜏 (𝑣𝑖 ), 𝜏 (𝑣 𝑗 ), 𝑙⟩, where (𝑣𝑖 ∈ 𝑉𝜏𝑖 , 𝑣 𝑗 ∈ 𝑉𝜏 𝑗 ).
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5 INFERRING LOW-LEVEL AUTHORIZATIONS
USING INFERRED DATA MODEL

Previously, we presented our approach for mining an application’s
data model. Our goal is to mine the ReBAC policy enforced in the
application. Mining ReBAC policies requires two inputs, namely
the data model and the complete set of lower-level authorizations
(§ 3). So, in this section, we tackle the problem of mining lower-level
authorizations that, in our context, specify if a user can access a
data object and its associated attributes. We use inferred data model
along with a set of observations in the form of web traces.

5.1 Generating Traces for Authorization Mining
To mine the lower-level authorizations, we need traces that can
describe the contents of different pages relative to different users
when they are logged into a web application. Suppose U be the
set of users in an application and P be all the pages that users can
navigate to. Then, in the context of authorization mining, we denote
the traces T𝛾 corresponding to a request 𝛾 as ⟨𝑢, 𝑝,S𝛾 ⟩ where the
target application produces content S𝛾 when 𝑢 ∈ U navigates to
𝑝 ∈ P. The content S𝛾 associated with a request will then be used
for re-identifying data objects and their attributes present in S𝛾 .

To precisely mine an application’s policy, a miner requires com-
plete knowledge of the lower-level authorizations. So, we need to
have a request for every user navigating to every accessible page.
If a user can view a data object and its attributes on any of those
pages, then we regard the user as being permitted to access the
object. Otherwise, the user is denied access to the object. We exploit
the notationZ from § 2 to represent the authorizations for a given
user 𝑢 ∈ U asZ(𝑢) and to represent the authorizations for a given
user 𝑢 and the content S𝛾 in response to a request submitted by the
user as Z(𝑢,S𝛾 ). Thus, we calculate the complete set of authoriza-
tions for each user as Z(𝑢) = ⋃

𝑝∈P
Z(𝑢,S𝛾 ), where T𝛾 = ⟨𝑢, 𝑝,S𝛾 ⟩.

Finally, we repeat the above process for every user 𝑢 inU.

5.2 Re-identifying Data Objects from Traces
We determine if an object in our data model 𝑣 ∈ 𝑉𝜏 , for some 𝜏 ,
is present in content S𝛾 . But, to decide if some data object exists
in the content of some traces, we must have some means to re-
identify that particular object out of all the information present in
the content. Our approach comprises two steps, namely calculating
the identifying information about each data object, which we also
refer to as anchors, and then re-identifying the data objects and
their attributes from the traces by using the obtained anchors.

Mining Anchors from Data Model. There is no abstract notion
of data objects in the real data as found in traces. A data object is
usually characterized by a set of attributes. Therefore, in order to re-
identify a data object 𝑣𝑖 ∈ 𝑉𝜏 , ∃𝜏 ∈ V , from some traces, we must
basically check for the existence of its associated attributes 𝜂 (𝑣𝑖 )
in the traces’ content S𝛾 . More specifically, we need to determine
the unique values [𝑑𝑖 ] ⊆ 𝜂 (𝑣𝑖 ) .𝛼𝑖 , ∀𝛼𝑖 , that can distinguish 𝑣𝑖
from all other 𝑣 ∈ 𝑉 . (The comparison between data values for
determining uniqueness is based on matching the attribute name as
well as its value.) We refer to such a set of data values that can be
used to uniquely identify a data object from the contents of traces
as anchors. The anchors corresponding to a data object provide

a means to identify if the object is present in some content S𝛾 .
We have no prior knowledge about the contents of a page in the
application that a user can navigate to. We can have any type of as
well as any number of data object(s) on a certain page when visited
by a certain user. Moreover, the set of traces given to us T𝛾 , for
every 𝛾 , is simply a collection of observations about what different
users are authorized to see in the application. As a result, there is no
ordering between data objects or provision of any other metadata
as such that can aid in pointing out an object from a traces’ content.

Observing Lower-Level Authorizations using Anchors. We utilize
the anchors in our data model to, initially, determine what objects
and their attributes a user is authorized to view on a given page
of the application, i.e, Z(𝑢,S𝛾 ), when the user is logged in. For
each data object that is present in page content S𝛾 , we now need to
determine whether the data values associated with the object, other
than those included in the anchors, are present in S𝛾 . To this end,
we first figure out the order in which data objects appear in S𝛾 ,
by retrieving the positions of the first and last occurrences of the
objects’ anchors. Assuming that the values of different data objects
do not completely overlap in S𝛾 , we employ a “rolling window” to
obtain a portion of S𝛾 that potentially encompasses all the attribute
values corresponding to a visible object. We consider the boundary
of the window corresponding to a data object to be between the
last occurrence of the previously placed object’s anchor and the
first occurrence of the immediately next object’s anchor. Finally, to
determine the set of lower-level authorizations for every user, i.e.,
Z(𝑢), we aggregate all the data objects and their attributes that
are visible to the currently logged-in user on any page of the target
application. That is, by repeating for each 𝑝 ∈ P and 𝑢 ∈ U, and
aggregating the visible data elements, we obtain our desired result.

6 IMPLEMENTATION AND EVALUATION
We performed experiments on two social network web applications,
namely Elgg [1] and Funkwhale [3], to evaluate our approach. Elgg
allows users to add friends, create photo albums as well as view
their friends’ albums and comment on them. Funkwhale is a music-
sharing application that allows users to create libraries and upload
audio files to them as well as access remote libraries. We employed
a state-of-the-art ReBAC mining algorithm from the literature [13]
and mine a ReBAC policy for each system based on the system
graph and lower-level authorization inferred by our prototype. We
first describe our experimental setup followed by observations.

6.1 Setup and Configurations
We employed mitmproxy [4] in our prototype implementation for
capturing the HTTP conversations between client and server. We
executed every experiment 10 times and reported the average result.

6.1.1 Experiment Procedure & User Simulation. Our implementa-
tion first crawls the web application simulating operations like a
normal user and collects HTTP traces, which are inputted into our
algorithm for mining the data model. Then, our implementation
crawls through every page, while logging in as different users, and
the collected HTTP traces, along with the data model, are used for
mining the access log. Finally, our implementation executes the
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Table 1: Evaluation of Mined Attribute-Level Policy Based on Different Rules and Data Types. (Meaning of Relationships in
Rules: 𝑏=belongs-to-post, 𝑐=commented, 𝑓 =friends-with, 𝑖=in-library, 𝑜=owns-library, 𝑝=posted,𝑤=follows-library.)

Application Rule Data Type Mined Ground-Truth (visible atts.) |⇕| |⇑| |̸⇑| |⇓|

Elgg

[𝑝] Post 27 19 16 6 5 3
[𝑓 , 𝑝] Post 23 15 12 6 5 3
[𝑝,−𝑏] Comment 20 12 11 3 6 1
[𝑐] Comment 24 16 15 3 6 1

[𝑓 , 𝑝,−𝑏]∧[𝑓 , 𝑐] Comment 20 12 11 3 6 1

Funkwhale [𝑜,−𝑖] Audio file 35 28 24 6 5 4
[𝑤,−𝑖] Audio file 29 23 20 6 3 3

ReBAC miner while inputting the inferred data model and autho-
rizations, and the mined policy is presented for expert evaluation.

To generate request-response traces, we use UI.Vision RPA Web
Driver [2] for user simulation which facilitates submitting music
and image files during the crawling process. We provide the crawler
with the set of user credentials and possible atomic actions (e.g.,
posting a photo). The crawler then logs into an application and
randomly selects an operation among the set of available atomic
operations for the currently chosen user. Our crawler initially logs
into the admin account and creates a set of users for each applica-
tion – 10 users for Elgg and 15 users for Funkwhale. Throughout the
crawling phase, mitmproxy captures HTTP dumps of these simu-
lated interactions. Our crawling process includes 3 data types, about
200 data objects, and about 2000 relationships for each application.

6.1.2 Evaluation Methodology. Our evaluation is in terms of the
correctness of mined policy at both the object level and attribute
level. That is, in each application and for each data object type, we
compare the object attributes that are visible in an authorized user’s
interface with those specified in themined policy. Also, based on the
mined attributes, we make observations about the authorizations
of data objects associated with those attributes. For ground truth,
we rely on a manual inspection of the application. For assessing
object-level policies, we employ an application’s documentation
as the ground truth. For assessing attribute-level policies, a hu-
man expert determines fine-grained visibility of object attributes
in the application interface by logging in as users with different
relationship patterns (e.g., logging in as owner). The expert may
also inspect an application’s database for verifying the data objects
and their attributes. We emphasize that the ground-truth policy or
access to the database is used only for evaluation purposes.

6.2 Observations
The second column of Table 1 shows the rules in our mined object-
level policy for both Elgg and Funkwhale applications. By checking
against the ground truth, we observed that our approach was able
to capture all the authorizations enforced on data objects, i.e., our
object-level policy is precise. To gain better insight into the perfor-
mance of mining attribute-level policies, we categorize the mined
rules into: 1) those that are correct with respect to the ground truth,
2) those that are not present in the ground truth but not incorrect,
3) those not present in the ground truth and incorrect, and 4) those
that are present in the ground truth but are not in the mined policy.
These four categories are shown in the last four columns of the
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Figure 1: Visual Comparison of the Performance of Mining
Attribute-Level Policies for Elgg and FunkwhaleApplications

table using the notations |⇕|, |⇑|, |̸⇑|, and |⇓|, respectively, along with
the mined attribute-level rules and the ground-truth attribute-level
policy. Each row in the table represents, for a given object-level rule,
what attributes of a certain type of data object are accessible (i.e.,
visible) to the users who satisfy the pattern in the rule. Below we
summarize our results based on the four performance categories:
|⇕| For both applications, this is the dominating category. We are

able to mine most of the authorizations enforced on data
object attributes that are visible to users satisfying the corre-
sponding relationship pattern with a data object.

|⇑| This category is often comprised of fewer cases that seem like ex-
tra inferences. But a closer comparison with the application
database reveals that such attribute values describe identify-
ing characteristics of an object such as its id, date-time, and
parent-id, and are usually server-generated.

| ̸⇑| This category comprises extra inferences that do not add any
real meaning to data objects. Such attributes are neither
client- nor server-generated; they mostly cover style compo-
nents and other metadata that serve the purpose of giving a
general description of the application and/or its data objects.

|⇓| This category happens due to the constant update of content
containing certain attributes, usually to enhance the user
experience. For instance, the date-time in Elgg is displayed
as “just now” when creating an object but gets updated to,
say, “2 minutes ago” when generating authorization traces.

Although not applied in the above results, it is possible to work
around the classes of |⇑| and |̸⇑|. The contents of HTML tags usually
result in displaying data on the user interface. So, if we annotate
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those object attributes that are tag contents as visible, then during
authorization mining we can simply focus on the visible attributes
and ignore the others. Similarly, it is possible to develop heuristics
to deal with the class of |⇓|, but we chose not to for maintaining the
generality of our approach and to manifest the existing challenges.

Figure 1 presents a visual demonstration of Table 1. The results
for both Elgg and Funkwhale are shown side-by-side on the x-axis.
The y-axis measures, for each application, the number of attribute-
level rules that fall into each of the four performance categories
averaged over all the object-level rules and data types, which are
individually described in the table. We can observe that, for both
applications, we were able to mine most of the attributes associated
with all data objects. Interestingly, the number of correct attributes
are more for Funkwhale than Elgg. From a technology standpoint,
Funkwhale uses extensive AJAX communications with its web
server to handle insertion requests/responses and render the user
interface. The AJAX response contains JSON data, i.e., a list of key-
value pairs that we consider as application-generated content. So,
we could avoid retrieving extra components such as style elements
when inferring attributes directly from an application’s content.

7 RELATEDWORK
Mining Access Control Policies. This problem has been widely

studied for role-based access control (RBAC) [16, 17], attribute-
based access control (ABAC) [7, 12, 21], and more recently for
relationship-based access control (ReBAC) [5, 6, 13]. These works
assume that lower-level authorizations and information about users
and resources are already provided for the mining task. In contrast,
we treat a web application as a black box and mine its enforced
ReBAC policy by simply observing human interactions with the
application. By collecting web traces, we infer the data model com-
prising relationships among users and resources as well as infer
the lower-level authorizations comprising what users can see on an
application page. Also, using the mined data model and authoriza-
tions, we produce two levels of policies – a course-grained object-
level policy that controls access to data objects and a fine-grained
attribute-level policy that controls access to object attributes.

Black-Box Vulnerability Detection. The problem of detecting vul-
nerabilities in web applications has been widely studied. This in-
cludes alleviating data disclosure vulnerabilities by monitoring
HTTP traffic for users’ data items [18], validating the enforcement
of access control policies that are not clearly documented [14], and
effectively crawling a web application by considering its internal
state to discover more vulnerabilities [9]. Additionally, researchers
have focused on identifying logic vulnerabilities based on different
user interaction patterns [20] as well as on detecting state viola-
tion attacks by extracting invariants and session values from inter-
actions between clients and stateless web application [15]. More
recently, the problem of employing differential traffic analysis for
vulnerability detection in mobile apps has been considered [22],
along with enhancing black-box crawling and scanning of web
applications to detect cross-site scripting vulnerabilities [10]. From
a black-box analysis perspective, while these prior works focused
on behavioral patterns of user interaction and navigation structure
of web application pages, our focus is on the users’ data objects
themselves including recognizing uniquely identifying resource

parameters and different kinds of associations that can be inferred
from them in the context of multi-user applications.

8 CONCLUSION
We proposed a methodology to infer the enforced ReBAC policy
rules in a web application by observing client-server interactions
during the creation of data objects and their visibility in the ap-
plication as viewed by different users. Our experiments on two
social networking applications demonstrated precise mining of
object-level policies in both cases. We were also able to mine the
attribute-level policies fairly accurately considering their visibility
in each application’s interface. As future work, we plan to investi-
gate the efficacy and further automation of our trace generation, and
expand our experiments to a larger set of real-world applications.
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