
OSNAC: An Ontology-Based Access Control Model for Social Networking Systems

Amirreza Masoumzadeh
School of Information Sciences

University of Pittsburgh
amirreza@sis.pitt.edu

James Joshi
School of Information Sciences

University of Pittsburgh
jjoshi@sis.pitt.edu

Abstract—As the information flowing around in social net-
working systems is mainly related or can be attributed to
their users, controlling access to such information by individual
users becomes a natural requirement. The intricate semantic
relations among data objects, different users, and between
data objects and users further add to the complexity of
access control needs. In this paper, we propose an access
control model based on Semantic Web technologies that takes
into account the above mentioned complex relations. The
proposed model enables expressing much more fine-grained
access control policies on a social network knowledge base than
the few existing models. We demonstrate the applicability of
our approach by implementing a proof-of-concept prototype of
the proposed access control framework.

I. INTRODUCTION

Social network(ing) systems (SNSs) are increasingly be-
coming a major type of online applications that facilitate dig-
ital social interaction and information sharing among a large
number of users. The scale of active entities, interactions,
and digital content in these complex environments brings
about new security and privacy challenges. Users constantly
provide contents and information to these systems, either
explicitly, such as by uploading a photo, or implicitly by
leaving behind interaction traces, such as by responding to
an invitation. Because they are related to the users, such
contents may include privacy-sensitive information. Besides
data protection challenges for such contents from a system
perspective, preserving users’ privacy against other users of
the system is a unique requirement in SNSs. As per a general
goal of SNSs, users are motivated to expand their social
connectivity and awareness through interactions and content
sharing with each other. However, as the social connections
of a user grows, so does the complexity of privacy implica-
tions. The increased variety of social connections requires
more fine-grained control on privacy-sensitive information.

Current major SNSs such as Facebook and MySpace pro-
vide some privacy control settings to their users. However,
the access and privacy control features provided by these
systems are usually limited, and not so flexible and ro-
bust. Moreover, they seem to be implemented incrementally
without detailed formal modeling, which is not appropriate
for such systems with huge user base and high volume of
privacy-sensitive content. Several desirable control features
are missing and there exist no basis of verifying consistency

in policy specification and enforcement. For instance in
Facebook, a user can choose to hide her relationship status
with a second party. But one can learn about that relationship
if the second party happens to not hide it. In other words,
users cannot control disclosure of some intuitively privacy-
sensitive information. As an example of inconsistency in
policy enforcement, even if a user disables being publicly
listed in Facebook she will be still listed in the public listings
of the groups she has joined.

Early access control models for social networks focus
on computing trust values for users based on which they
make access decisions [1][2][3][4]. However, they do not
consider complexities of the protected resources in SNSs.
Digital resources in SNSs are comprised of various data
types. Also, different annotation methods such as tagging
and commenting are common in these systems. These all
introduce a variety of semantic relations among objects.
In particular, it is important to ensure the protection of
not only the basic data entities and values, but also their
relations. For instance, a person tagged in a photo might
not be only concerned about being tagged, but also about
who else has been tagged in the same photo, and who
actually owns the photo. In order to truly capture the fine-
grained protection requirements in SNSs, it is important
to have an appropriate data model. We rely on ontology
modeling of knowledge using Semantic Web technologies.
Some recent work also propose to use ontologies [5][6], but
fail to provide protection for relations, which is central to
our approach. Moreover, unlike in traditional systems where
security administrators are in charge of access control policy,
in an SNS, users should be recognized as the main authority
over access control policies regarding the information related
to them. A flexible authority model is required to determine
each user’s authority over different resources. This feature
has not been addressed in existing work.

In this paper, we propose an access control model that
takes into account the intricate semantics of the privacy-
sensitive knowledge base, and also respects the individual
users’ right to have a flexible control over access control
policy on contents related to them. The access control model
is designed to be as close as possible to knowledge ontology
level and neutral in terms of application-level semantics in
order to be suitable for generic social information systems.

We leverage the Semantic Web technologies i.e., OWL,
SWRL, and SPARQL in particular, to model SNS knowledge
and express and enforce access control policies, which can
ensure practicality of our approach. Our contributions in this
work can be summarized as follows.
• We propose Social Networking systems Ontology

(SNO) to capture the information semantics in an SNS.
We elaborate and discuss various scenarios regarding
our proposed access control model based on SNO.

• We propose Ontology-based Social Network Access
Control (OSNAC) model which addresses the protec-
tion of semantic-rich information in a knowledge base
ontology such as SNO, using an access control ontology
and access control policy rules. It supports both user-
defined authorization rules and system-level authority
policy. The model also supports advanced policy rules
that provide flexible controls for users in SNSs in
addition to the basic policies. These include delegation
of authority, various definable interdependencies among
user authorizations, and the ability to enable multiple
authorities to enforce a composite policy regarding a
protected resource.

• We provide an architecture and the prototype imple-
mentation of an OSNAC engine that automatically
enforces access control policies on queries submitted
to an SNS knowledge base.

The rest of the paper is organized as follows. In Section
II, we provide a brief introduction to the standards used, and
propose an ontology for representing knowledge in an SNS.
In section III, we present our proposed access control model,
including the access control ontology, various supported
policies, the enforcement model, and support for negative
authorization. We provide details about our prototype imple-
mentation and results in Section IV. In Section V, we review
related literature, and subsequently conclude the paper in
Section VI.

II. PRELIMINARIES

A. Semantic Web Standards

Web Ontology Language1 (OWL) is a W3C recommen-
dation to express meanings and semantics, which builds
on RDF/RDFS. It consists of three main constructors:
owl:Class defines an abstract notion for a class of objects,
owl:ObjectProperty relates objects (class instances) to objects,
and owl:DataTypeProperty relates objects to datatype values
(e.g., strings or binary values). We have chosen OWL
DL sublanguage as it provides semantic features adequate
for expressing knowledge in an SNS, does not have in-
tractability issues, and there exist various tools and packages
that support it. Semantic Web Rule Language2 (SWRL)
allows combining Horn-like rules with an OWL knowledge

1http://www.w3.org/TR/owl-ref/
2http://www.w3.org/Submission/SWRL/

base, thereby enabling new knowledge reasoning tools.
We use SWRL to express our access control policy rules.
SPARQL3 (SPARQL Protocol and RDF Query Language) is
a syntactically-SQL-like language for querying RDF graphs
via pattern matching. We use SPARQL for access control
enforcement purpose.

B. SNS Ontology

We propose Social Networking systems Ontology (SNO)
that models key entities and their relationships typically
found in SNSs; partly because we could not find an appro-
priate ontology in the literature. Based on this, we elaborate
and discuss various scenarios regarding our proposed access
control model. Note, however, that our access control model
is not tied or limited to this specific ontology. The current
version of the ontology comprises of 14 concepts and 10
object properties. Figure 1.a depicts an overview of SNO.

The Entity concept is the root to all concepts in SNO, with
three immediate descendants: DigitalObject, Person, and Event.
The DigitalObject concept models any object with digital,
typically visualizable content. The Person concept models
human users in the context of SNSs. The DigitalObject concept
is specialized by subconcepts such as Note, Photo, Wall, and
Annotation. The Note concept represents a textual content. The
Wall concept models the posting board on the homepage of
a person in an SNS, such as the one Facebook provides.
The Annotation concept represents special digital objects that
instead of directly representing a content, annotate one
object (e.g., a wall, a photo, etc.) using another object (e.g.,
a textual comment, a person, etc.). The two objects are
related to an annotation object, using properties Annotates
and AnnotatesWith, respectively. Annotation itself is specialized
by Comment, Tag, and WallPost. Comment annotates an object
with a note. PhotoPersonTag is a specialized tag that annotates
a photo with a person. WallPost annotates a wall with an
object, e.g., a photo. We choose to represent annotation
as a concept, rather than a relation, in order to be able
to capture more semantics regarding it. For instance, it is
usually important to know who has tagged a person in a
photo; that might be different from the owner and the tagged
person.

Figure 1.b shows a piece of an instantiated knowledge
based on proposed SNO. The knowledge describes Alice’s
name, where she resides, her friendship with Bob, Carol,
and David, and events she attends. Alice also owns photo
photo1, in which Bob is tagged by Carol. This PhotoPersonTag
is represented by pPersonTag1. Using SNO concepts and
relations, more complex semantics can be represented, which
is not shown in the sample instantiation. For instance, the
tag mentioned earlier may need to be posted on Alice’s wall.
For this purpose, a WallPost instance should be created, e.g.,
wallPost1, having relations Annotates(wallPost1, aliceWall) and

3http://www.w3.org/TR/rdf-sparql-query/

Entity

Digital
Object

Person Event

Annotation Photo VideoClip

Tag Comment WallPost

PersonTag

PhotoPersonTag

Wall Note

xsd:string

xsd:…

xsd:time

xsd:string

isFriendOf

hasFullName

residesIn

attendsowns

hasContent

creationTime

annotates

annotatesWith

italic

class

rdfs:subClassOf

properties

XSD

Individuals

Person

Alice

Bob

David

Carol

isFriendOf

Pittsburgh

isFriendOf

isFriendOf

Event

Conf-X

DanceFestival

attends

PPersonTag1

PhotoPersonTag

Photo1

Photo

owns

annotates

annotatesWith

created

Alice Smith residesIn

hasFullName

(a) (b)

annotates

IMG DATA

hasContent

Figure 1. Social Networking systems Ontology (SNO) (a), and its instantiated knowledge (b)

Sy
st

em
-

le
ve

l
U

se
r-

le
ve

l

Personal Authorization

Delegative
Authorization

Dependent
Authorization

Multi-Authority
Specification

Direct
Authorization

Basic Authority Specification

Figure 2. OSNAC Policy Framework

AnnotatesWith(wallPost1, pPersonTag1). Throughout the paper,
we use namespace sn to refer to SNO concepts and relations.

III. OSNAC: ONTOLGY-BASED SOCIAL NETWORK
ACCESS CONTROL MODEL

We propose Ontolgy-based Social Network Access Con-
trol (OSNAC), a rule-based access control policy model for
SNSs based on Semantic Web standards. The model relies
on an ontology such as SNO (introduced in Section II-B)
that models the SNS knowledge. OSNAC also uses an access
control ontology (ACO, described in Section III-A) to model
the policies. We assume a closed-world policy model where
authorization rules define valid accesses.

Figure 2 shows the overall OSNAC policy framework.
Access control rules are specified at two levels: user and
system. At the user level, every user can express personal
authorization rules regarding protected resources. For more
flexible authorizations, users can leverage delegative and
dependent authorization as well as multi-authority specifica-
tion rules. At the system level, the rules govern the overall
privacy policy of the system. Basic authority specification
rules determine which users have authority over which
protected resources. They empower users by recognizing
the authorizations defined at user-level as permissions. In

other words, they aggregate user-level authorizations by de-
termining the appropriate authority for protected resources.
In contrast, direct authorization rules indicate permissions
that are valid independently of users’ policies. System-level
policies are specified by administrators according to applica-
tion semantics of a particular SNS, which are naturally less
frequently updated than the user-level policies. Note that a
higher-level policy component in Figure 2 can be considered
performing aggregation of its lower-level components. We
elaborate on the various components of the framework in
the rest of the section.

A. Policy Expression at Ontology Level

Since knowledge resources are captured in an ontology,
the access control policies need to semantically express them
using ontology concepts. Our approach is to capture the
other components of policies also using ontology. This way,
access control policies and protected knowledge resources
can naturally be integrated to facilitate an efficient and
semantics-rich access control decision. For this purpose,
we propose the Access Control Ontology (ACO). We use
namespace ac to refer to ACO concepts and relations. We
consider the relations to be the main protection objects in an
ontology-based knowledge base. However, current semantic
languages such as OWL do not support statements about
the relation instances, which is necessary for specifying
authorizations on them. In order to support this, we use a
reification approach in ACO. Figure 3 shows the concepts
and relations in ACO, that can be categorized as follows.
• reified properties: A property relates a subject to an ob-

ject. Class ac:p property serves as an abstract reification
of an SNO property. Properties ac:hasSbj and ac:hasObj
relate class ac:p property to its corresponding subject
and object of the property in SNO, respectively. Corre-

canDo/
canRead/…

hasSbjp_property

sn:Entitysn:Person

p_canDo

hasSbj hasObj

sn:Person authorizes p_isFriendOf

sn:Person

hasSbj /hasObj

p_canRead
p_canCreate

p_canDelete

…

Figure 3. Access Control Ontology (ACO)

sponding to each property sn:x, there exists class ac:p x,
which is a subclass of ac:p property. Thus, a relation
in SNO such as sn:isFriendOf(Alice, Bob) is correspond-
ingly represented in ACO using an instance of class
ac:p isFriendOf; its subject and object are related using
relations ac:hasSbj(Alice) and ac:hasObj(Bob), respectively.

• permissions: A permission specifies an authorized ac-
tion by a subject on a resource. This is expressed
abstractly using property ac:canDo between classes
sn:Person and ac:p property. Actual permissions are
defined using ac:canDo descendants, i.e., ac:canRead,
ac:canCreate, and ac:canDelete.

• permission authorizations: A permission can be autho-
rized by different authorities. As in the case of SNO
properties, a permission property such as ac:canRead
is reified as a class such as ac:p canRead. In this
case, properties ac:hasSbj and ac:hasObj relate the reified
permission class to its access subject and resource,
respectively. Reified permission classes are used to
specify authorizations by individual authorities; prop-
erty ac:authorizes relates an instance of sn:Person to a
reified permission instance such as ac:p canRead.

Access control policies use the above-mentioned concepts
and relations, and follow standard SWRL syntax. However,
we deviate slightly from strict syntax for readability pur-
pose. We also introduce a shorthand for expressing reified
properties as follows.

[?x← p(s,o)] ≡ [ac:p p(?x) ∧ ac:hasSbj(?x,s) ∧ ac:hasObj(?x,o)]

The shorthand expression, on the left-hand side of the
equation, asserts variable ?x is an instance of the reified
property p that relates s and o. The right-hand side of the
equation shows this in standard SWRL syntax. In defining
rule formats, we refrain from stating the full grammar due
to space considerations and mainly provide the rule syntax
only for read permission, as the syntax for create and delete
authorization rules is similar.

B. Basic Policy Rules

Among the different categories of access control policy
rules depicted in Figure 2, personal authorization, direct au-

thorization, and basic authority specification rules constitute
the basic functionality of the framework.

1) Personal Authorization: A personal authorization rule
expresses a permission granted by an individual user to
others. The actual effectiveness of such a rule is determined
according to system authority policies. Table I shows the
format of a personal authorization rule. The first expression
in the antecedent of the rule defines the protection resource
?rsc to be of an instance of property p between s and o.
The second expression specifies the permission for subject
sbj as read operation on the resource. The consequence of
the rule states that personal authority u authorizes such a
permission. A rule may be extended with more predicates
in the antecedent for the purpose of specification of the
resource and subject, as shown in the following example.

Example 1: Suppose Alice has specified the following
personal authorization rule.

sn:isFriendOf(?sbj,Alice) ∧ sn:photoTag(?pTag)
∧ [?rsc← sn:anonatesWith(?pTag,Alice)]
∧ [?prm← ac:canRead(?sbj,?rsc)]
⇒ ac:authorizes(Alice, ?prm)

Based on the above rule, Alice authorizes her friends to
read the photo-tags she has been marked with. The resource
is any sn:annotatesWith relation that relates to Alice. The first
predicate provides specification for subjects using a relation,
i.e., being Alice’s friend. The second predicate provide more
specification regarding the resource by stating that its subject
is a photo-tag. The rest is similar to the format of the rule
described above.

2) Direct Authorization: Direct authorization rules allow
the system to grant permissions to users without involvement
of user authorities. Similar to a personal authorization rule,
the antecedent specifies the protection resource. However,
ac:canDo descendants are used in the consequence. The
format of a direct authorization rule is shown in Table I.

Example 2: The following direct authorizations entitle
everyone to read the relations that are defined about them.

[?rsc← sn:property(?sbj,?o)]⇒ ac:canRead(?sbj, ?rsc)
[?rsc← sn:property(?s,?sbj)]⇒ ac:canRead(?sbj, ?rsc)

The above two rules state that a subject can read a property
instance of which she is either the subject or the object,
respectively.

3) Basic Authority Specification: For most of the access
requests in an SNS, user-level authorizations would be
mainly applicable instead of the direct authorizations. In
this respect, the role of system-level rules is to determine
policy authorities for resources. Authority specification rules
use ac:authorizes predicates in the antecedent and ac:canDo
descendants in the consequence (Table I). This means that
permissions are granted based on personal authorizations.
Although an SNS may define a set of authority specifi-
cation rules customized for its own application semantics,
here, we propose a generic, basic authority model for an

Table I
BASIC ACCESS CONTROL POLICY RULES

Type Rule Format
Personal Authorization . . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:canRead(sbj,?rsc)] ⇒ ac:authorizes(u, ?prm)
Direct Authorization . . . ∧ [?rsc← sn:p(s,o)] ⇒ ac:canRead(?sbj, ?rsc)
Basic Authority Spec. . . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:canRead(?sbj,?rsc)] ∧ ac:authorizes(u, ?prm)⇒ ac:canRead(?sbj, ?rsc)

ontology-based knowledge base system. We assume there is
a unique principal authority for every object (class instance),
assigned using property ac:hasPrincipalAuthority. The principal
authority is most probably the originator of the object, and is
determined by the system. In practice, principal authorities
can be inferred based on other properties captured in SNO
such as sn:owns or sn:created, that may be defined between
an sn:Person instance and an sn:SNEntity instance. Assuming
there is a principal authority for every object, it is safe to
consider the same authority to be effective for any property
instances associated with that object. Hence, the authority
over an object property instance can be determined based on
the principal authorities of the related objects. For instance,
access to sn:isFriendOf(Alice,Bob) is under the authority of
both Alice and Bob. This is truly aligned with potential
privacy requirements of both authorities. The authority over
a datatype property instance is also the principal authority
of the only related object. The basic authority model can be
expressed using the following rule.

[?rsc← sn:property(?s,?o)] ∧ [?prm← ac:canRead(?sbj,?rsc)]
∧ ac:hasPrincipalAuthority(?s,?u1)] ∧ ac:hasPrincipalAuthority(?o,?u2)]
∧ ac:authorizes(?u1, ?prm) ∧ ac:authorizes(?u2, ?prm)
⇒ ac:canRead(?sbj, ?rsc)

(1)

The above rule grants a (read) permission on a property
only if both the principal authorities of the objects associated
with the property authorize that permission.

C. Advanced Policy Rules

Advanced policy rules extend user-level policies by al-
lowing distribution of user authorities. This is achieved by
allowing authorization predicates both in the antecedent and
consequence of rules.

1) Delegative Authorization: Delegation has been shown
to be useful in conjunction with access control models (e.g.,
[7]). In the context of the proposed model, we observe
that delegating authority improves the flexibility of policies.
Based on a delegative authorization, a user delegates its
authority over a specific resource to another user. According
to the rule format depicted in Table II user u1 delegates
authorization on a specific permission to authority u2. In
other words, user u1 respects the authorizations made by
user u2 on the specific permission. One usage of delagative
authorizations could be to relax authority on the protected
relations. The basic authority specification rule stated in
Section III-B3 (rule (1)) requires both the end authorities
of a relation to authorize a permission, in order for it to

be granted. However, such a mutual agreement might be
too restrictive for some users and resources. The two end
authorities can use delegative authorizations to respect one
another’s decisions on the specific permission(s) of choice,
without changing system-level rules.

Delegative authorizations are very flexible and secure in
terms of delegation power. First, an authority can flexibly
customize the permission. For instance, it can restrict the
target subjects to have certain characteristics, or the re-
source/operation to be of certain type. Second, subsequent
updates to the delegative authorization rule will be applied
seamlessly, without a need to worry about grant/revoke
propagation issues that delegation models usually deal with.
This is because unlike traditional delegation models, the
permissions are not explicitly transferred; the authorization
rule is the sole means of delegation. Third, since delagative
authorizations are at the user level, there is no need to
assure that the delegator actually has the authority on the
permission. Only the valid delegations will be effective
based on the system-level authority specification rules.

2) Dependent Authorization: Delegative authorizations
can be considered as a part of a larger family of rules,
that we call dependent authorizations. According to a de-
pendent authorization rule, one authorization can be inferred
based on another authorization. One type of such a rule is
shown in Table II, in which the authorization predicate of
antecedent and consequence of the rule are only different
in their permissions (resource and/or operation). Due to
space considerations, we only summarize the list of possible
types in Table III, by indicating if the authority, subject,
and/or permission differ in the authorization predicates of
antecedent and consequence of the rule.

Type 1 dependent authorization is useful in scenarios
where the same policy applies to a union of permissions.
Personal authorization rule(s) for one of the components of
the union can be defined, and authorization for the other
components can be defined as dependent authorization to
the first one. Types 2 and 3 are useful in similar situations,
where the policy is good for a union of subjects, and
subjects and permissions, respectively. Type 4 dependent
authorization represents delegative authorizations, where one
user delegates authority on a specific permission to another
user. Types 5, 6, and 7 are a mixture of delegation and
types 1, 2, and 3, respectively. The following example briefly
shows how various dependent authorization rules enhance
the policy expressiveness.

Example 3: In the scenario depicted in Figure 1.b, sup-
pose Alice has a more restrictive policy in mind for dis-

Table II
ADVANCED ACCESS CONTROL POLICY RULES

Type Rule Format
Delegative Authorization . . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:canRead(sbj,?rsc)] ∧ ac:authorizes(u2, ?prm) ⇒ ac:authorizes(u1, ?prm)

Dependent Authorization Type 1 (It has various types; refer to Table III):
. . . ∧ [?rsc1 ← sn:p1(s1,o1)] ∧ [?prm1 ← ac:canRead(sbj,?rsc1)] ∧ [?rsc2 ← sn:p2(s2,o2)]
∧ [?prm2 ← ac:canRead(sbj,?rsc2)] ∧ ac:authorizes(u, ?prm1) ⇒ ac:authorizes(u, ?prm2)

Multi-Authority Spec.

Disjunctive:
R = {Ri}
Ri = . . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:canRead(sbj,?rsc)] ∧ ac:authorizes(ui, ?prm) ⇒ ac:authorizes(pa, ?prm)

Conjunctive:

. . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:canRead(sbj,?rsc)] ∧
n∧

i=1

ac:authorizes(ui, ?prm) ⇒ ac:authorizes(pa, ?prm)

Table III
PARAMETERS OF AC:AUTHORIZES IN DEPENDENT AUTHORIZATION

Antecedent Consequence
Type Authority Sbj. Prm. Authority Sbj. Prm.
1 u s p1 u s p2
2 u s1 p u s2 p
3 u s1 p1 u s2 p2
4 u1 s p u2 s p
5 u1 s p1 u2 s p2
6 u1 s1 p u2 s2 p
7 u1 s1 p1 u2 s2 p2

closing the annotations on Photo1 than for the content of the
photo. Using rule (i) she can make sure whenever somebody
is authorized for an annotation, she also grants authorization
for the photo content. Now, suppose Alice wants to delegate
to Bob authorization on the photo content that is restricted
among her colleagues and friends-of-friends circle. Rule (ii)
performs delegations for colleagues, and Rule (iii) makes
sure someone in her friends-of-friends circle gets at least
the same authorizations as her colleagues based on the
delegation.

Rule (i) (type 1):
[?rsc1 ← sn:annotates(?s1,Photo1)]
∧ [?prm1 ← ac:canRead(?sbj,?rsc1)]
[?rsc2 ← sn:hasContent(Photo1,?c)]
∧ [?prm2 ← ac:canRead(?sbj,?rsc2)]
∧ ac:authorizes(Alice, ?prm1) ⇒ ac:authorizes(Alice, ?prm2)

Rule (ii) (type 4):
[?rsc← sn:hasContent(Photo1,?c)] ∧ sn:isColleagueOf(Alice, ?sbj)
∧ [?prm← ac:canRead(?sbj,?rsc)] ∧ ac:authorizes(Bob, ?prm)
⇒ ac:authorizes(Alice, ?prm)

Rule (iii) (type 6):
[?rsc← sn:hasContent(Photo1,?c)] ∧ sn:isColleagueOf(Alice, ?sbj1)
∧ [?prm1 ← ac:canRead(?sbj1,?rsc)]
∧ sn:isFriendOf(Alice, ?friend) ∧ sn:isFriendOf(?friend, ?sbj2)
∧ [?prm2 ← ac:canRead(?sbj2,?rsc)]
∧ ac:authorizes(Bob, ?prm1) ⇒ ac:authorizes(Alice, ?prm2)

3) Multi-Authority Specification: There are scenarios in
SNSs where more authorities are desired to weigh in an
access control decision than just the directly related authori-
ties. We support multi-authority specification in two ways. A
principal authority may use multiple delegative authorization
rules as described in Section III-C1 to enable a disjunctive

multi-authority. Such a multi-authority is disjunctive in the
sense that a permission authorization by any corresponding
authority in the set is a sufficient condition for that permis-
sion to be considered authorized by the principal authority.
Alternatively, a principal authority may create a conjunctive
multi-authority, in which every involved authority is required
to authorize a permission in order that it would be considered
authorized by the principal authority. Table II shows a rule
set and a single rule that establishes disjunctive and conjunc-
tive multi-authority, respectively, where principal authority
pa shares the authority with users u1, u2, . . ., and un.

D. Access Control Enforcement
A basic access request is a triple 〈sbj, rsc, opr〉, where

sbj is the user who requests the access (instance of
sn:Person), rsc = p(s, o) refers to the property instance to
be accessed (instance of ac:p property), and opr is the mode
of access requested (read/create/delete).

Definition 1 (Access Authorization): Given an access re-
quest 〈sbj, p(s, o), opr〉, the access is granted if and only if
the following sentence is satisfied in the knowledge base

[?rsc← p(s,o)] ∧ ac:canDo(sbj,?rsc)

where predicate ac:canDo is substituted with its proper
descendant corresponding to opr. The access is denied
otherwise.

We note that in the case of information retrieval from
an SNS knowledge base multiple relations may be queried
and evaluated simultaneously in order to retrieve a result set
of interest. Conceptually, for each valid variable assignment
in a query, every bound relation needs to be considered as
one basic access query. However, access authorization per
such relations is not efficient, and needs modification of
the retrieval engine. Alternatively, we augment a query with
access check primitives and evaluate the access-augmented
query using the retrieval engine.

Definition 2 (Query Access Authorization): Let 〈sbj,Q〉
be a query access request, where QW =

n∧
i=1

sn:pi(si,oi),

represents a conjunctive WHERE clause (conjunction of a
set of predicates). A retrieval engine automatically enforces
the access control policy and retrieves the authorized result

by evaluating Q′W =
n∧

i=1

{sn:pi(si,oi) ∧ [?rsci ← sn:pi(si,oi)] ∧

ac:canRead(sbj, ?rsci)}.
Each relation predicate in the original query is followed by
two predicates for access control purpose: the first predicate
bounds the relation to a resource variable, and the second
predicate checks if the subject has permission to access the
resource. A query that is augmented with access primitives
can be directly processed by a query retrieval engine on
the ontology. The access control information is seamlessly
captured in the ontology by using an ontology reasoner on
the authorization rules.

Example 4: Suppose Bob requests access to the list of
Alice’s friends who reside in Pittsburgh. This is a complex
query that involves accessing the list of Alice’s friends,
where they live, and their names. The following is a
SPARQL-like syntax for this query.

SELECT ?x ?fname
WHERE { sn:friendOf(Alice,?x)

∧ sn:residesIn(?x, Pittsburgh)
∧ sn:hasFullname(?x, ?fname) }

The access-augmented WHERE clause is as follows.

sn:friendOf(Alice,?x) ∧
∧ [?rsc1← sn:friendOf(Alice,?x)] ∧ ac:canRead(Bob, ?rsc1)
∧ sn:residesIn(?x, Pittsburgh)
∧ [?rsc2← sn:residesIn(?x, Pittsburgh)] ∧ ac:canRead(Bob, ?rsc2)
∧ sn:hasFullname(?x, ?fname)
∧ [?rsc3← hasFullname(?x, ?fname)] ∧ ac:canRead(Bob, ?rsc3)

By executing the augmented query in Example 4, if Bob
does not have access to even one of the relations in the query
corresponding to a specific Alice’s friend, that person’s
information will not be retrieved. Thus, the result set reflects
the authorized information according to the access control
policies.

E. Supporting Negative Authorization

The OSNAC policy model relies on (positive) authoriza-
tions. If the system cannot resolve a corresponding positive
system authorization (i.e., descendants of ac:canDo) for an
access request, then the request is denied. Although posi-
tive authorizations can be used to express security policies
in general, it is sometimes desirable to express intended
policies using a mixture of positive and negative autho-
rizations. Unfortunately, OWL and SWRL do not support
negation-as-failure due to open-world assumption of the
Semantic Web. This prevents us from reasoning collectively
on positive and negative authorizations. To be more specific,
if an authorization cannot be inferred its negation cannot
be inferred either. Our proposed workaround to support
negative authorization is to introduce separate predicates for
negative authorizations and resolve the conflicts at the query
processing time using SPARQL, once the inference is done.
For this purpose we extend ACO, that was described in Sec-
tion III-A, as follows. Analogous to property ac:canDo and

its descendants, we define property ac:cannotDo and its corre-
sponding descendants (i.e., ac:cannotRead, ac:cannotInsert, and
ac:cannotDelete), that represent negative permissions. There
exist also reified versions of this negative permissions (e.g.,
ac:p cannotRead). Analogous to a positive authorization, a
negative authorization can be expressed by a user using
property ac:authorizes between the corresponding sn:Person
instance and a reified negative permission instance. Thus, a
personal negative authorization can be expressed as follows.

. . . ∧ [?rsc← sn:p(s,o)] ∧ [?prm← ac:cannotRead(sbj,?rsc)]
⇒ ac:authorizes(u, ?prm)

The last step to enable negative authorization is to specify
corresponding basic authority specification rules, in a man-
ner similar to what is described in Section III-B3 but for
negative permissions. Our approach satisfies the need for the
common use of negative authorizations. Users will be able
to express negative exceptions to positive authorizations, and
even use advanced policy rules to distribute their power to
specify such denials. Note that there is no need for fine-
grained conflict resolution, as conflicts are taken care of
at the retrieval step. We follow a denial-takes-precedence
approach, when both ac:canDo and ac:cannotDo are resolved
for a specific access.

Definition 3 (Query Access Authorization with Negation):
Let 〈sbj,Q〉 be a query access request, where QW =
n∧

i=1

sn:pi(si,oi), represents a conjunctive WHERE clause. A

retrieval engine automatically enforces the access control
policy with negative authorizations and retrieves the
authorized result by evaluating

Q′W =

n∧
i=1


sn:pi(si,oi)
∧ [?rsci ← sn:pi(si,oi)] ∧ ac:canRead(sbj, ?rsci)
∧ OPTIONAL{ ?sbji ac:cannotRead ?rsci}
∧ FILTER(!bound(?sbji))


IV. IMPLEMENTATION

A. Design and Architecture

We have developed a prototype implementation of an
SNS knowledge-base that is protected based on the proposed
OSNAC model. The implementation has been done in Java
language based on the Jena Semantic Web framework4.
We leverage Jena’s TDB for persistent storage of social
network (SNO) and access control (ACO) ontologies. In an
initialization phase, based on the SNS knowledge captured
in SNO, ACO is populated with the corresponding reified
properties and permissions as described in Section III-A.

Figure 4 illustrates the architecture of the prototype imple-
mentation. Access control policy rules are provided by users
and system administrators, using separate interfaces, and are
stored in the policy rule-base. Rules are expressed using
SWRL as explained in Section III. However, since SWRL is

4http://jena.sourceforge.net/

Query Execution

SNS Policy Administration Interface

Rule APIs

User-level
rules

System-level
rules

Ontology APIs

ACO
(Access Control Ont.)

Access Inference Engine

SPARQL Engine

Query Modifier

User Request
Processor

SNS Application Interface

SNS User (Interacting with App.) SNS User (As Authority) System Admin

request

resu
lts

SPARQL Query

Access-Augmented
SPARQL Query

results

SNO
(SNS Ontology)

Figure 4. Architecture of the Prototype Implementation

not directly supported in Jena, we programmatically convert
rules to Jena’s own rule language in a policy compilation
phase. Note that there is no loss of expressiveness in this
process. At run time, the User Request Processor accepts
the requests from a user (in fact, from the SNS on behalf
of a user), and passes it to the Query Modifier module,
where it is augmented with access control primitives (refer
to Section III-D). The modified query is then sent to the
SPARQL Engine. The SPARQL Engine interacts with the
SNO and ACO to retrieve the query results. In the retrieval
process, the Access Inference Engine employs Jena general
purpose rule engine to infer access primitive predicates (i.e.,
ac:authorizes and ac:canDo) based on the knowledge stored in
the ontologies and according to the access control policy
rules. Finally, the authorized query results are returned to
the User Request Processor.

B. Access Control Enforcement

We have conducted tests on the access control engine by
submitting SPARQL queries on a sample populated SNO
(extended version of Figure 1.b). The engine successfully
returns only the authorized information that is expected
according to the sample access control policy rules.

We also developed a data generator that randomly pop-
ulates an SNO ontology. Table IV shows the performance
results of the prototype access engine based on the following
input parameters: the number of users, friendship links,
photos, and maximum number of people been tagged in a
photo. Since the inference engine that Jena provides only
works in memory, we were not able to run the experiment
for very large ontologies. Our experiments show that the first
access control inference is relatively expensive. However,
subsequent access checks are performed almost instanta-
neously. This is because in the first round the inference
model caches some of the inferred axioms, which enhances
performance for subsequent inference. In fact, the first access
check can be considered as part of the initialization phase,
which can be triggered with a dummy access request.

Table IV
PROTOTYPE PERFORMANCE RESULTS

Data Generation Parameters Access Check Times (s)
#Person #Photo #Tag/Photo #isFriendOf Init. First Subsq.

25 5 5 60 2.9 0.4 0.004
50 25 5 150 4.8 33.0 0.004
75 50 10 175 5.9 163.1 0.005

100 75 10 275 10.4 1816.6 0.006
125 125 10 500 16.5 4584.3 0.006

V. RELATED WORK

Access control research in social network area is still
in its early stages. Early access control solutions for SNSs
propose trust-based access control policies that are inspired
by research developments in trust and reputation computa-
tion in social networks. FOAF-Realm5 is one of the earliest
approaches that tries to quantify the knows relations in
the context of FOAF (Friend Of A Friend) ontology. It
support rules that control friends’ access to resources in
a social network by stating the maximum distance and
minimal friendship level (a trust metric) [1][2]. Carminati
et al. propose a conceptually-similar but more complete
trust-based access control model [3]. Villegas et al. propose
to use a slightly different trust measure by automatically
classifying nodes in zones [4]. A general drawback of trust-
based access control models is the usability issues, as it
could be very hard to comprehend and specify appropriate
trust thresholds, and hence be left with even less protection
than simple, conventional access control approaches. While
these approaches focus mainly on subject specification based
on distance and trust measures, we take a more abstract
approach and focus instead on accurately capturing the in-
formation semantics using an ontology-based access control
policy. Trust information can be straightforwardly used in
our approach if captured in the ontology, independently from
underlying trust computation mechanism.

The closest work to this paper is probably the Semantic
Web-based access control framework by Carminati et al.
[5], which also leverages OWL and SWRL. They define
three type of policies, namely, access control policy, filtering
policy, and admin policy. Access control policies are positive
authorization rules; filtering policies can limit someone’s
access to information by herself (i.e., not conceptually a
security issue); and admin policies can express who are
authorized to define those policies. Although they outline an
access control framework, lack of formal descriptions and
implementation leaves behind many ambiguities. In compar-
ison, we propose a more detailed and semi-formal semantics
for our model, and show the applicability by implementing
a proof-of-concept framework. Also, our model captures
the notion of individual authorities, and provide access
control policies to protect the relations in the knowledge
ontology as a more expressive and flexible alternative to
entity protection. Ryutov et al. propose a rule-based access

5http://www.foafrealm.org/xfoaf/0.1/

control model for semantic networks, based on a constrained
first order logic [6]. The authors have implemented this
model in a RDF-like framework. While the model is based
on logic rules similar to our approach, notions such as as
attaching policies and separating policy at subject and object
level are introduced but inadequately elaborated and justified
in their work. Also, relations are mainly used in the access
control rules, but not as of the protection objects; it seems
that their approach only protects the objects at entity level.
There are also other access control approaches for social
networks that go beyond our focus in this work, such as
protection against third-party applications [8].

In the area of Semantic Web, several works have proposed
access control solutions for RDF stores, although not in the
context of SNSs. Reddivari et al. propose a rule-based model
and architecture, called RAP [9]. Access control policy
is written using Jena framework rules, and supports both
permit and prohibit predicates, similar to OSNAC features.
Although no experimental results are reported, RAP does
not seem to be very efficient access control architecture. for
a given query to the RDF store, the result set is retrieved
first; Then for every triple in the result, the access inference
is performed separately, and it will be included in the
final result set if it is granted. Our query augmentation
approach seems to perform more efficiently, as it seamlessly
uses access primitive predicates in the query. This way,
excessive overhead of access checks will be avoided by the
query engine itself. There are other approaches to access
control on RDF stores that are comparatively less grounded
[10][11][12], or support a specific policy such as multi-level
security [13].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed OSNAC, an ontology-
based access control model based on Semantic Web stan-
dards that empowers the individual users of a social network-
ing system to express fine-grained access control policies
on their related information. We proposed an ontology
for SNSs to further demonstrate our approach. The key
idea in OSNAC is to express the policies on the relations
among concepts in the social network ontology. We also
provide policy means for the system to define an authority
model, that decides which users’ policies are effective on
what protected resources. Moreover, the advanced policy
rules provide more flexibility to the users, in delegating
their power, and sharing the authority over specific objects,
i.e., enabling multi-authority specification. We have also
implemented a framework prototype of the proposed model
in order to show the applicability of our approach.

Although OSNAC provides powerful access control fea-
tures to the users of the SNSs, even savvy users of such
systems should not have to be able to compose access control
policy rules manually. An SNS employing OSNAC may sim-
ply provide a user interface similar to the current practices,

but with more flexible options to its user; then, provide the
access control engine with policy rules corresponding to the
user choices. Investigating user-friendly interfaces to enable
users to fully benefit from OSNAC features will be our future
work. Our experimental results also raised some concerns
about performance of ontology and rule reasoning. We will
explore ways to improve this aspect in our implementation,
and theoretically analyze the complexities introduced by
ontological data and each policy component.

Acknowledgements. This research has been supported by
the US National Science Foundation award IIS-0545912. We
thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] S. R. Kruk, “FOAF-Realm: control oyur friends access to the
resource,” in Proc. FOAF Workshop, 2004.

[2] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki, and
H. C. Choi, “D-FOAF: Distributed identity management with
access rights delegation,” in Proc. 1st Asian Semantic Web
Conference. Springer, 2006, pp. 140–154.

[3] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access
control for social networks,” in Proc. OTM 2006 Workshops,
ser. LNCS, vol. 4278. Springer, Oct 2006, pp. 1734–1744.

[4] W. Villegas, B. Ali, and M. Maheswaran, “An access control
scheme for protecting personal data,” in Proc. 6th Annual
Conference on Privacy, Security and Trust, 2008, pp. 24–35.

[5] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu,
and B. Thuraisingham, “A semantic web based framework
for social network access control,” in Proc. 14th ACM
Symposium on Access Control Models and Technologies.
ACM, 2009, pp. 177–186.

[6] T. Ryutov, T. Kichkaylo, and R. Neches, “Access control
policies for semantic networks,” July 2009, pp. 150–157.

[7] E. Barka and R. S. Sandhu, “Framework for role-based
delegation models,” in Proc. 16th Annual Computer Security
Applications Conference. IEEE Computer Society, Dec
2000, pp. 168–176.

[8] M. Shehab, A. Squicciarini, and G.-J. Ahn, “Beyond
user-to-user access control for online social networks,” in
ICICS ’08: Proceedings of the 10th International Conference
on Information and Communications Security. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 174–189.

[9] P. Reddivari, T. Finin, and A. Joshi, “Policy-based access
control for an RDF store,” in Workshop on Policy
Management for the Web, 2005, pp. 78–81.

[10] S. Dietzold and S. Auer, “Access control on RDF triple
stores from a semantic wiki perspective,” in Scripting for
the Semantic Web Workshop at 3rd European Semantic Web
Conference (ESWC), June 2006.

[11] A. Dersingh, R. Liscano, A. Jost, J. Finnson, and
R. Senthilnathan, “Utilizing semantic knowledge for access
control in pervasive and ubiquitous systems,” Mobile
Networks and Applications.

[12] M. Liu, D. Xie, P. Li, X. Zhang, and C. Tang, “Semantic
access control for web services,” vol. 2, April 2009, pp.
55–58.

[13] A. Jain and C. Farkas, “Secure resource description
framework: an access control model,” in SACMAT ’06:
Proceedings of the eleventh ACM symposium on Access
control models and technologies. New York, NY, USA:
ACM, 2006, pp. 121–129.

