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ABSTRACT

Geo-social networking systems, such as Foursquare and Face-
book Places, where users perform interactions based on their
self-reported locations are growing fast nowadays. The loca-
tion-rich social network data collected in such systems could
be of research interest for various purposes. However, such
datasets are at the risk of user re-identification and conse-
quently privacy violation of the involved users if they are not
adequately anonymazied. In this paper, we study the prob-
lem of anonymizing a geo-social network dataset, based on
adversarial knowledge on location information of its users.
We introduce k-anonymity-based properties for guarantee-
ing anonymity based on location information, provide a re-
alistic model of location data in geo-social networks, and
propose corresponding anonymization algorithms. We also
evaluate the proposed solutions using a synthetic GSN data-
set.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS; K.4.1 [Computers and Soci-
ety]: Public Policy Issues—Privacy

General Terms
Algorithms, Security

Keywords

Geo-social network, privacy, anonymizaion

1. INTRODUCTION

Advances in positioning technologies and proliferation of
location-enabled mobile devices has recently given rise to
Geo-Social Networks (GSNs). These systems, which are also
referred to as Location-Based Social Networks (LBSNs), are
a type of social networking systems that primarily focus on
location of users and application related to that. Users pro-
vide their location to these systems, often using location-
enabled mobile devices and interactions between users and
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these systems and among users take place relative to the
provided location. Foursquare, Facebook Places, and Yelp
are examples of such systems.

Study of social networks is of significant interest of both
academia and industry community. And online social net-
working systems have made it possible to collect huge vol-
ume of social network data. However, publishing such data-
sets has its complications regarding users’ privacy. The re-
cent research literature on publishing social network data-
sets has shown effective ways to re-identify nodes of naively
anonymized social networks, where only user identifiers are
removed. The attacks on naively anonymized datasets range
from using nodes’ degree in a network as identifying signa-
ture [7, 6], to actively implanting nodes in a network [1],
to using other publicly available social networks for de-ano-
nymization purposes [11]. A GSN dataset can be more vul-
nerable to privacy attacks as an adversary can also lever-
age users’ location information for re-identification purposes.
Use of location information in re-identification has been well
investigated in the context of location-based services, and
various privacy preserving protocols and anonymization tech-
niques has been suggested as possible solutions.

In this paper, we investigate an anonymization approach
for GSN datasets, that considers both location and social
connections. To be more specific, we consider datasets col-
lected by systems such as Foursquare where users can be-
friend other users in the system, and check into location
venues. Such a GSN dataset is essentially a social network
of users, i.e., users and their relations with each other, and
a series of logged locations for each of the users in the net-
work. The log may contain specific location information
and the times at which a user has reported those locations.
Various privacy attacks can be launched against a naively
anonymized GSN dataset. We focus on re-identification at-
tack based on adversary’s background knowledge about user
locations. In a recent large-scale study of location data col-
lected from cellphone users [15], Zang and Bolot report that
a significant percentage of cellphone users are uniquely iden-
tifiable based on their top two or three locations. Moreover,
Noulas et al. [12] report that home and corporate/office
places are the top two locations from which people perform
check-in in Foursquare. Motivated by these studies, we ar-
gue that check-in locations in a GSN dataset can be used by
attackers to re-identify a target user. Moreover, the loca-
tion information of the target’s connections may strengthen
the possibility of re-identification. For instance, an attacker



may know that the target frequently visits a certain coffee
shop, and also knows about his/her workplace. In addition,
the attacker may know the home address of a colleague of
the target at work. Such background knowledge may eas-
ily enable re-identification of the target. We formulate the
above problem and propose k-anonymization techniques to
thwart such attacks.

In this work, unlike the literature on social network ano-
nymization, we do not consider friendship structure of a tar-
get node as a feasible background knowledge for adversaries.
That is mainly because our observations on GSNs such as
Foursquare show that users on average have much smaller
number of friends in these systems than general purpose
SNSs such as Facebook. Therefore, their social connections
is hardly representing their real friendship network. Instead,
we focus on the location information revealed by social con-
nections of a user that can assist in re-identification. Our
contributions in this work can be summarized as follows:

e We formulate a simple and abstract model of GSNs,
based on which we introduce anonymity notions for
GSN datasets, i.e., £L-anonymity and £-anonymity.

e We present an appropriate location model for GSNs,
called top m locations, that we use as underlying data
model for our algorithms.

e We propose algorithms for anonymizing a GSN data-
set according to the notions of L£-anonymity and £2-
anonymity.

e We present experimental results on running the pro-
posed algorithms on a synthetic dataset, that we simu-
lated based on published statistics about real cellphone
users’ location.

To the best of our knowledge, this is the first work to study
anonymization of GSN datasets. However, as mentioned ear-
lier, related work has studied anonymization in the context
of location-based services and social networks, separately.
The rest of the paper is structured as follows. In Section 2,
we introduce the notions of location equivalence and corre-
sponding anonymity properties for GSN datasets. Section 3
presents an appropriate location model for GSNs. In Sec-
tion 4, we propose algorithms to anonymize a GSN dataset
based on our proposed anonymity properties. We report
results gained from running the algorithms on a synthetic
dataset in Section 5. We survey briefly the related work in
Section 6, and finally, conclude the paper pointing out future
directions in Section 7.

2. K-ANONYMITY FOR GSN DATASETS

As mentioned earlier, removing explicit identifiers such as
name from GSN datasets would not provide adequate pri-
vacy for users. An adversary might be able to re-identify a
target user based on location information that exists about
her. Such re-identification may lead to privacy breaches such
as revealing exact location traces, friends, or other privacy-
sensitive attributes existing in a GSN dataset. We formally
define a geo-social network as follows.
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Figure 1: A small sample GSN

DEFINITION 1. A geo-social network is a 4-tuple GSN =
(V,E,L,L), where V is a set of users, E CV XV is a set of
relationships between users, L is a domain for location in-
formation, and L : V — L is a function that assigns location
information to users.

In the above definition, we consider the location domain to
be abstract. It may refer to georaphic coordinates, street
addresses, logical locations, or even more complex types,
such as a number of top locations associated with a user.
We will provide specific location model when proposing the
anonymization problem. Figure 1 illustrates a small GSN
dataset. Users that are connected via social links form a
social network. Each user is also assigned a location value in
the location domain. Since we are interested in anonymity
based on location information, we introduce the following
notion of location equivalence for GSN users.

DEFINITION 2. Usersu andv € V are called L-equivalent

if they are assigned the same location information, i.e., u =,
v <> L(u) = L(v).

In Figure 1, users u, v, and w are L-equivalent since all
are assigned to location value l3. Similarly, users a and =
are L-equivalent. Intuitively, anonymity can be provided
by ensuring enough L-equivalent users for every user in a
GSN dataset. The following property captures the notion
of k-anonymity based on L-equivalence, which is called Lg-
anonymaty.

DEFINITION 3. A GSN (V,E, L, L) is Li-anonymous iff
for every user v € V, there are at least k—1 other users that
are L-equivalent to v. Formally, Yv € V3Ivi,va, ..., 05-1 €
V,v =L V1 =£V2... =L Vk—1.

Based on the above property, an attacker cannot re-identify
a user with a certainty greater than 1/k by knowing about
the target’s location information. Lx-anonymity considers
only a target’s location information as background knowl-
edge and no further information about social relationships
of a target. However, for a GSN dataset, an attacker may
leverage knowledge about location information of a target’s



friends to perform more accurate re-identification attacks.
We introduce the following location equivalence relation that
takes into account a user’s friends’ location information.

DEFINITION 4. Users u and v are £2-equivalent if, in ad-
dition to themselves, their adjacent users in the social net-

work are L-equivalent. Formally, u =,2 v <> L(u) = L(v) A
{L(W)(u,u') € B} = {L(v")|(v,0") € E}.

In Figure 1, users u and v are £2-equivalent; they are £-equi-
valent, and the set of u’s friends’ location information, i.e.,
{l1,12,14}, is equal to v’s. A k-anonymity property based on
L2-equivalence is defined as follows.

DEFINITION 5. A GSN (V,E,L,L) is L3-anonymous iff
for every user v € V, there are at least k—1 other users that
are L2 -equivalent to v. Formally, Yv € V3vy,va,...,vp_1 €
Viv=,2v1 =p2 v2... =p2 Ug_1.

L3-anonymity protects against re-identification attacks based
on a target’s friends’ locations. For instance, suppose an at-
tacker knows that the target is working at the IS department
in the University of Pittsburgh. Also, the attacker knows
that she has a friend that works in the CS department and
another friend that frequently visits a specific coffee shop.
If such information is recorded as location information in a
GSN dataset, £2-anonymity ensures that there are at least k
users that may be matched against such background knowl-
edge. L?-anonymity is obviously a stronger property than
Li-anonymity, and consequently costlier to guarantee.

3. THE TOP M LOCATIONS MODEL

The anonymity properties defined in Section 2 are abstract
with regards to the location model, i.e., no specific model
is assumed. In this section, we introduce a parametric lo-
cation model, called T'L,,, the top m locations model. In
the T'L,, model, the location information consists of the top
m locations that may act as a user’s signature, assisting an
attacker to re-identify her. These can be, for instance, the
top locations based on frequency of a user’s visit, which can
be quite identifying for a user, according to the study in [15].
For geo-social networking systems such as Foursquare, the
top frequent check-ins of a user may include workplace, a
coffee shop on the way or close to work, etc. It is reasonable
also to consider locations which are unique to a user even
without frequent check-ins. Such locations may include tar-
get’s home or her close friends’ places. We formally define
TL,, as follows.

DEFINITION 6. The TL,, location domain contains val-
ues as m-tuples such as (r1,72,...,Tm), where every r; is a
rectangular region.

In the above definition, a rectangular region is a geographic
area surrounded by a rectangle. Rectangular region r is
represented using a 4-tuple (x,y,w,h), where x and y are
geographic coordinates of the top-left corner, and w and h
are width and height of the area, respectively. Zero width
and height indicate region as a point. We use dot notation

u’s top locations
Vv’s top locations
cloaking for
correspondence 1
cloaking for
correspondence 2

Figure 2: Example of Cloaking in TL,, Model

to represent members of a tuple, e.g., l.r; represents region
r1 belonging to location .

The T' L, model captures a realistic and reasonably powerful
model of an adversary’s background knowledge about a tar-
get’s location information in GSNs. According to the data
reported about sector location of cellphone users [15], more
than 80% of them are uniquely identifiable based on their top
three locations. Based on the top two locations, about 45%
are uniquely identifiable, and more than 85% have at most
one other user with the same location information. Note
that a cellular sector is not of finer granularity than specific
places people report, for instance, in Foursquare. Specific to
GSNs, based on the data reported in [12], home and office
locations are the two top places people report on average in
Foursquare, which seems enough for their re-identification.
The T'L,,, model is at the same time not so complex for ano-
nymization purposes. We elaborate on this aspect in Section
4.

4. ANONYMIZATION ALGORITHMS FOR
THE TOP M LOCATIONS MODEL

4.1 GSN z.-anonymization

We propose to use clustering algorithms to anonymize GSNs
based on T'L,,, location model. The goal is to form users into
clusters of size at least k; then report the same cloaked lo-
cation information for the users in the same cluster. Cloak-
ing multiple location points is usually performed by find-
ing a minimum bounding rectangle that includes all the
locations [10, 4]. The cloaking process in T'L,, model is
more complicated since each user’s location consists of m
regions. Consider users u and v’s T'Lo locations depicted
in Figure 2. Each user has r; and r2 regions as a point.
Combining the two location values results in a third lo-
cation value with two regions. However, there are alter-
native ways for performing this. Each of the u’s regions
can be considered corresponding to any of v’s regions for
cloaking purpose. This results in two different region cor-
respondences: {{L(u).r1,L(v).r2), (L(u).r2, L(v).r1)} and
{{(L(u).r1, L(v).r1), (L(u).r2, L(v).r2)}. As shown in Fig-
ure 2, the former correspondence results in smaller cloaked
areas for the results than the latter. Therefore, it is a bet-
ter option in terms of preserving location accuracy of the
original data points. The correspondence that results in the
smallest cloaking among the alternatives can be used as a
natural distance measure for our clustering approach. Lo-
cation information of two nodes can be combined to form



larger cluster of nodes that meet anonymity property, while
minimum cloaking is applied to preserve the location infor-
mation at best.

‘We now define this distance measure. When two T'L,, values
are considered to be combined in one cluster, correspond-
ing regions in the two values should be combined (cloaked)
into one region. Since there are m different regions in each
location value, there will be m! different combinations for
region correspondences. As mentioned earlier, we consider
the minimum expansion in area that results from cloaking
based on any of such correspondences as the distance mea-
sure between two T'L,, values. The following definition for-
mally captures the notion of distance in T'L,,. Operator
® in the following definition is an element-by-element bi-
nary operator for equally sized tuples, which outputs pairs
of elements of first and second operands. For instance,
(A,B,C)®(1,2,3) = {(A,1), (A,2),(A,3)}. Also, function
P calculates the set of all permutation tuples for a given
set. For instance, P({1,2,3}) = {(1,2,3), (1,3,2), (2,1,3),
(2,3,1), (3,1,2), (3,2,1)}.

DEFINITION 7. The distance between T L., values t and s
is calculated by the following formula:

D(t = i
(t5) ceP(<m1m m)) Z

""" (i,5)€(1,...,m)®C

MBRA(t.r;, s.rj)

where M BRA calculates the area of minimum bounding rect-
angle of two regions.

In the above definition, a correspondence is formed based
on each permutation of numbers 1,...,m, and the sum of
the minimum bounding rectangle areas of the correspond-
ing regions are calculated. The minimum value among the
calculated values for all correspondences is selected as the
distance between the two locations. In the example depicted
in Figure 2, M BRA calculates the area of each dashed rect-
angle. It is easy to see that the sum of areas of the bounding
rectangles associated with correspondence 1 is smaller than
those for correspondence 2. Therefore, the sum of the ar-
eas of the line-dashed rectangles is regarded as the distance
between the locations of u and v.

Given the above distance measure, we follow a clustering
approach similar to the Union-Split method [13], to create
clusters with minimum £ nodes, and report an anonymized
value for each cluster. However, we modify the algorithm to
accommodate our data model, which is significantly different
than the original numerical values it was proposed for. Al-
gorithm 1 shows the pseudo code for Li-anonymization. It
is a special hierarchical agglomerative clustering algorithm
that stops when each cluster has at least k¥ members. The
algorithm starts with each user as a separate cluster, with
the cluster center set as her location. In each iteration, the
distance between every pair of clusters is computed. The
pair of clusters with the minimum distance are selected to
be merged. The cluster center of the merger is set as the
minimum bounding rectangle of the correspondence between
the two clusters that results in the minimum distance. If the
merger has more than two times the desired size of anony-
mity clusters, i.e., more than 2k, the cluster needs to be

broken into two (preferably equally-sized) clusters. We per-
form this to avoid ending up having clusters significantly
larger than the required anonymity size. The larger the size
of an anonymity set, the more probable the location distor-
tion due to cloaking. One difference between our approach
and the one proposed in [13], is the use of a k-medoid clus-
tering approach (k = 2) for splitting (performed at step 8)
instead of k-means clustering.

Algorithm 1 L, — anonymize

Input: GSN dataset GSN = (V,E,TLy,L), where
|V] = n, and the anonymization parameter k.
Output: Li-anonymized dataset GSN’' = (V, E, TL,,,L’).

1: Initialize C as {¢;|]1 < j < n,cjusers = {v; €
V'}, ¢j.center = L(v;)}
2: while 3c € C, |c.users| < k do

3:  for all ¢;,c; € C do

4: Calculate distance D(c;j.center,c;.center) accord-
ing to Definition 7

5:  end for

6:  Merge Ca and Cy into Cm, where

D(cg.center, cy.center) is minimum
7. if |em.users| > 2k then
8: Split ¢, into ¢m1 and cma
9:  end if
10:  Update C
11: end while
12: GSN’' < GSN
13: for all c € C do
14:  for all u € c.users do

15: L' (u) « c.center
16: end for
17: end for

18: return GSN’

THEOREM 1. Algorithm 1 outputs an Li-anonymous data-
set as per Definition 3.

PrOOF. All the users are members of clusters since the al-
gorithm starts with every user as a single cluster and merges
them iteratively. Also, the main loop in the algorithm (steps
2-11) does not terminate until all the clusters have at least
k members, i.e., Ve € C, |c.users| > k. Therefore, assigning
the same location information to all the members of the same
cluster in steps 13-17 ensures that for every user v in a cluster
cthere are at least k—1 other users vi,vs,...,vk—1 € c.users
where v =, v1 =g v2... =g vp_1. U

The time complexity of an optimized implementation of Al-
gorithm 1 is O(m!n?logn), where m is the parameter of the
TL,, model, and n is the number of users. The m value is
not expected to be more than 3 as a reasonable background
knowledge. An optimized implementation can be achieved
by maintaining a sorted list of distances for each cluster,
and updating only the entries related to the merged cluster
at each iteration (O(nlogn)). With the assumption of rare
need for split, the algorithm needs n iterations at most to
merge the clusters.



4.2 GSN £i-anonymization

We build on our proposed algorithm in Section 4.1 to anony-
mize a GSN dataset based on Definition 5. In fact, we rely
on the clustering and cloaking performed by the Lx-ano-
nymization algorithm. Since Algorithm 1 clusters users and
make users in the same cluster Li-equivalent, we only mod-
ify edges in the social network to ensure the L;-equivalence
of neighbors of users in each cluster. We take two different
approaches for performing this. In the first approach, the
edges in the original network are preserved and only new
edges are inserted. Therefore, no edge information in the
social network is lost during anonymization. In the second
approach, edges are both inserted and removed to assure the
anonymity property. The rationale behind this approach is
to avoid too much increase in the size of the social network
due to anonymization.

Algorithm 2 shows the pseudo code for our insert-only ap-
proach. We fist perform the steps in Algorithm 1 to achieve
the resultant clusters and the £;-anonymous dataset. Next,
for any two clusters ¢; and c;, we form set Ejnier of inter-
cluster edges between the clusters (edges connecting a mem-
ber from one to a member from the other). If the set is not
empty, we ensure that all the users in one cluster have at
least a neighbor in the other cluster. If a user needs to have
a neighbor from another cluster, one of the members of that
cluster is randomly chosen to be connected. Note that c;
and c; can refer to the same cluster in the special case. In
that case, the edges are intra-cluster instead of inter-cluster.
However, the same procedure applies to guarantee Lx-equi-
valent neighbors for the users.

Algorithm 2 L3;-iAnonymize (insert-only)

Input: GSN dataset GSN = (V,E,TLy,L), where
|V| = n, and the anonymization parameter k.
Output: L3-anonymized dataset GSN' = (V, E, T L, L').

1: Ly — anonymize(GSN)

2: for all ¢;,¢; € C do

3:  Einter < {{u,v) € E|Ju € c;.users,v € c;.users}

4: if |Einter| > 0 then

5: for all u € c;.users do

6: if Av € cj.users, {(u,v) € E then

7 E’' «+ E'{u,v) € E, where v € cj.users is ran-
domly chosen

8: end if

9: end for

10: for all v € cj.users do

11: if Au € ¢;.users, (u,v) € E then

12: E' « E'{u,v) € E, where u € c;.users is ran-
domly chosen

13: end if

14: end for

15:  end if

16: end for

17: return GSN’

In the following, we prove correctness of the proposed algo-
rithm for £3-anonymization.

THEOREM 2. Algorithm 2 outputs an L2 -anonymous data-

set as per Definition 5.

PRrROOF. The first step of the algorithm generates an Ly-
anonymous dataset, and corresponding clusters with £-equi-
valent members, according to Theorem 1. We need to show
that every member of a cluster is also £2-equivalent to other
members of the same cluster. Consider an arbitrary cluster
¢ and one of its members v € c.users. For any other cluster
member u # v € c.users, u =, v according to Theorem 1.
Also, for any edge adjacent to v, say (v,v') € E’, there ex-
ists at least an adjacent edge to u, say (u,u’) € E’, where v’
and v’ are in the same cluster. This was assured by inserting
the edges in the social network in steps 2-16. Therefore, set
{LW)|(u,u') € E'} will be equal to set {L(v")|{v,v’) € E'},
which completes the proof for u =,2 v. [

The time complexity of Algorithm 2 is bounded by the time
complexity of Algorithm 1, i.e., O(m!n®logn). This is be-
cause the main loop in Algorithm 2 has time complexity
O(n?). Considering the minimum cluster size k, there will
be at most |n/k| clusters at the end, and therefore O(n?/k?)
different pairs of clusters. Each cluster has less than 2k
nodes, due to the splitting mechanism. So enumerating
members of every pair of clusters for edge insertion purpose
has complexity O(k?). Therefore, the overall complexity of
the main loop is O(n?/k?) x O(k*) = O(n?).

Algorithm 3 £3-irAnonymize (insert/remove)

Input: GSN dataset GSN = (V,E,TLy,,L), where
|V| = n, and the anonymization parameter k.
Output: £7-anonymized dataset GSN' = (V, E, T L., L').

1: L — anonymize(GSN)

2: for all ¢;,¢; € C do

3:  Einter <+ {(u,v) € E|Ju € c;.users,v € cj.users}

4:  if |Ejnter| < 6 then

5: E' « E'\ Einter

6: else

7 for all u € c;.users do

8: if Av € cj.users, (u,v) € E then

9: E' «+ E'{u,v) € E, where v € cj.users is ran-
domly chosen

10: end if

11: end for

12: for all v € cj.users do

13: if Au € ¢;.users, (u,v) € FE then

14: E' « E'{u,v) € E, where u € ¢;.users is ran-
domly chosen

15: end if

16: end for

17:  end if

18: end for

19: return GSN’

As mentioned earlier, in the second approach for £Z-ano-
nymization, we perform both edge insertion and removal,
as depicted in Algorithm 3. The algorithm performs simi-
lar to Algorithm 1, except that it removes the inter-cluster
edge set Finter from the network if the size of the set is less
than a threshold . Otherwise, it continues with inserting
corresponding inter-cluster edges for every member of the
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Figure 3: Size of the anonymity sets in the dataset
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two clusters. We set 0 to be half of the size of the smaller
cluster between ¢; and c;. Algorithm 3 has the same time
complexity as Algorithm 2, i.e., O(m!n?logn). We omit the
correctness proof for the algorithm, which is quite similar to
the proof of Theorem 2.

S. EXPERIMENTAL RESULTS

Given limitations to access a real GSN dataset, we generated
a synthetic GSN dataset to evaluate the proposed anonymi-
zation algorithms. We used T'L3 as our location model, i.e.,
each user is assigned with her top three locations. In the
generation process, we used the statistics reported in [15]
on a nation-wide cellular network in order to have realistic
distributions regarding identifiability of users with regards
to their locations. More specifically, we leveraged the distri-
bution of anonymity group sizes with regards to considering
one, two, and three top locations per cellular sector. How-
ever, we scaled down the dataset size to 1500 users (the data
reported in [15] is about 25 million users). Figure 3 shows
the size of anonymity sets for different percentile of users
in our dataset, depending on the condition of revealing one,
two, or three locations. In our synthetic dataset, each of the
three user’s regions is a point, randomly chosen on a 1000 by
1000 unit square-shaped area. These points are converted to
cloaked regions as the result of the anonymization algorithm.

Figure 4 depicts the performance of Li-anonymization, show-
ing average area of the regions in users’ location information
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as a result of choosing different k values. As expected, the
area has an increasing trend with the increase of k. However,
we notice that the regions do not grow larger after k = 20
in our dataset.

For £3?-anonymization, we experimented with both insert-
only and insert/remove approaches on our dataset. Note
that since our £3-anonymization algorithm is based on clus-
ters created by the Lg-anonymization algorithm, the same
results apply about cloaking performance. Figures 5 and 6
show the edge count ratio and overlap of the result of £3-
anonymization algorithm compared to the original dataset
for different k values, respectively. The insert-only approach
tends to insert a lot of edges into the social network for
lower k values (e.g., more than 2 times of the original size
at k = 5). Comparatively, the add/remove approach intro-
duces less variation to the edge count. Regarding maintain-
ing the original edges of the social network, the insert-only
approach has the obvious advantage of keeping the original
edges intact. But the insert/remove approach provides less
overlap for low k values, and it improves with increase in k.
In fact, both approaches seem to perform similar at larger
k values, i.e., k = 15 or higher, both in terms of edge count
ratio and overlap.

6. RELATED WORK

Various techniques have been proposed based on location
cloaking, i.e., reporting a larger area rather than a user’s
exact location, in order to provide k-anonymity for location-



based service users. Approaches such as New Casper [10],
Privé [5], and PrivacyGrid [2] cloak each query’s location
to include at least k other users. Therefore, an attacker’s
certainty about a specific user’s issuance of a query is at
most 1/k. Other approaches such as CligueCloak [4] collect
and submit £ queries with the same cloaked location at the
same time to an LBS. The problem in LBS anonymization
techniques is slightly different than the problem discussed
in this paper as it deals with anonymizing queries one at a
time. In contrast, anonymizing a location-contained dataset
involves more rigorous optimization as it needs to anonymize
all the records at the same time. Moreover, our anonymi-
zation technique deals with a more complex location model,
i.e., top m locations, rather than a single location for each
user. Another obvious contrast is consideration network con-
nections in our approach.

Re-identification attacks on social network datasets and ano-
nymization techniques to prevent them have been a hot
research topic recently. Backstrom et al. present a fam-
ily of active/passive attacks that work based on unique-
ness of some small random subgraphs embedded in a net-
work [1]. Hay et al. show significantly low k-anonymity
in real, naively anonymized social networks when consid-
ering structural queries such as degree of a target node as
adversarial background knowledge [7, 6]. The proposed so-
cial network anonymization approaches in the literature can
be categorized into two groups: graph generalization and
graph perturbation. In generalization techniques [6, 16, 3],
the network is first partitioned into subgraphs. Then each
subgraph is replaced by a supernode, and only some struc-
tural properties of the subgraph alongside linkage between
clusters are reported. In perturbation techniques , the net-
work is modified to meet desired privacy requirements. This
is usually carried out by adding and/or removing graph
edges. The perturbation methods include randomly adding/
removing edges [7, 14], and providing k-anonymity in terms
of node degrees [8, 13] and node neighborhood [17]. Natu-
rally, the focus of social network anonymization approaches
is on anonymizing structural patterns such as node degree
and neighborhood, and not on information associated with
the nodes. However, some approaches such as [17] also con-
sider anonymizing node labels based on generalization trees.
Nevertheless, none of these methods deal with location data
associated with nodes as needed for anonymization of GSN
datasets.

7. CONCLUSIONS AND FUTURE WORK

Geo-social networks are growing fast and becoming popular
social networking tools, which naturally brings up the pri-
vacy issues with regards to the huge amount of the location-
rich data collected by these systems. Proper anonymization
mechanisms are necessary to be developed specifically for
GSN datasets since the location information is more com-
plex and harder to anonymize and preserve at the same time,
compared to other simpler data attributes.

In this work, we formalized and proposed two notions of
anonymity with regards to location information in GSN data-
sets, namely, Li-anonymity and Li-anonymity. Also, we
proposed algorithms for anonymizing a GSN dataset based
on these notions, and reported some experimental results on
their performance.

In our approach to £2-anonymization, we chose to rely on
our Li-anonymization algorithm for clustering purpose, and
perform edge perturbation to satisfy the required location
equivalence condition for users’ neighbors. An alternative
approach may be to perform both tasks at the same time,
i.e., looking for clusters that minimize both the cloaking area
and distortion to the network structure to satisfy the anony-
mity property. In particular, approaches to preserve network
structure in anonymization [9] can be useful in this regard.
We leave this approach for future work. We performed our
experiments on a synthetic GSN dataset, due to the limita-
tions to obtain a real dataset. Although in our data genera-
tion method we tried to replicate anonymity characteristics
of a real dataset, it cannot fully represent the properties of a
real GSN dataset due to the unknown parameters and ran-
domness assumed. As a future work, we plan to collect a real
dataset from Foursquare system to further evaluate the fea-
sibility and performance of our anonymization approaches.
Moreover, we will consider probably more generic location
models suitable for anonymization of GSN datasets.

Acknowledgment
This research has been supported by the US National Sci-
ence Foundation award I1S-0545912.

8. REFERENCES

[1] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
art thou r3579x7: anonymized social networks, hidden
patterns, and structural steganography. In Proceedings
of the 16th international conference on World Wide
Web, WWW ’07, pages 181-190, New York, NY, USA,
2007. ACM.

[2] B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting
anonymous location queries in mobile environments
with PrivacyGrid. In Proc. 17th Int’l Conference on
World Wide Web, pages 237-246. ACM, 2008.

[3] A. Campan and T. M. Truta. A clustering approach
for data and structural anonymity in social networks.
In Proceedings of the 2nd ACM SIGKDD International
Workshop on Privacy, Security, and Trust in KDD
(PinKDD’08), in Conjunction with KDD’08, 2008.

[4] B. Gedik and L. Liu. Protecting Location Privacy
with Personalized k-Anonymity: Architecture and
Algorithms. IEEE Transactions on Mobile Computing,
7(1):1-18, 2008.

[5] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE:
anonymous location-based queries in distributed
mobile systems. In Proc. 16th Int’l Conference on
World Wide Web, pages 371-380, New York, NY,
USA, 2007. ACM.

[6] M. Hay, G. Miklau, D. Jensen, D. Towsley, and
P. Weis. Resisting structural re-identification in
anonymized social networks. Proc. VLDB Endow.,
1(1):102-114, Aug. 2008.

[7] M. Hay, G. Miklau, D. Jensen, P. Weis, and
S. Srivastava. Anonymizing Social Networks. Technical
Report 07-19, University of Massachusetts Amherst,
2007.

[8] K. Liu and E. Terzi. Towards identity anonymization
on graphs. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 93-106, New York, NY,



[10]

[11]

[12]

[14]

USA, 2008. ACM.

A. Masoumzadeh and J. Joshi. Preserving Structural
Properties in Anonymization of Social Networks. In
Proc. 6th International Conference on Collaborative
Computing: Networking, Applications and
Worksharing (CollaborateCom 2010), Oct. 2010.

M. F. Mokbel, C. Y. Chow, and W. G. Aref. The new
Casper: Query processing for location services without
compromising privacy. In Proc. 32nd Int’l Conference
on Very Large Data Bases, pages 763-774. ACM,
Sept. 2006.

A. Narayanan and V. Shmatikov. De-anonymizing
Social Networks. Security and Privacy, IEEE
Symposium on, 0:173-187, Aug. 2009.

A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An
empirical study of geographic user activity patterns in
foursquare. In Proc. of the 5th Int’l AAAI Conference
on Weblogs and Social Media, pages 570-573, 2011.
B. Thompson and D. Yao. The union-split algorithm
and cluster-based anonymization of social networks. In
ASTIACCS ’09: Proceedings of the 4th International
Symposium on Information, Computer, and
Communications Security, pages 218-227, New York,
NY, USA, 2009. ACM.

X. Ying, K. Pan, X. Wu, and L. Guo. Comparisons of
randomization and K-degree anonymization schemes
for privacy preserving social network publishing. In
SNA-KDD °09: Proceedings of the 8rd Workshop on
Social Network Mining and Analysis, pages 1-10, New
York, NY, USA, 2009. ACM.

H. Zang and J. C. Bolot. Anonymization of Location
Data Does Not Work: A Large-Scale Measurement
Study. In Proc. of ACM Mobicom, Sept. 2011.

E. Zheleva and L. Getoor. Preserving the Privacy of
Sensitive Relationships in Graph Data. In F. Bonchi,
E. Ferrari, B. Malin, and Y. Saygin, editors, Privacy,
Security, and Trust in KDD, volume 4890 of Lecture
Notes in Computer Science, chapter 9, pages 153—171.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
B. Zhou and J. Pei. Preserving Privacy in Social
Networks Against Neighborhood Attacks. In 2008
IEEFE 24th International Conference on Data
Engineering, pages 506-515. IEEE, Apr. 2008.



