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Tutorial Objectives

• Overview	the	state	of	the	art
– Provide	audience	an	interesting	emerging	area	to	work	in	
– Discuss	how	advances	across	domains	can	be	useful	in	

advancing	the	field
• Describe	some	of	the	open	problems and	challenges

– Provide	audience	with	a	thought	provoking	description	of	
heterogeneous	factors that	may	drive	cyberbullying	behavior

– Recognize	the	broad	variety	of	challenges	and	pitfalls	that	
prevent	existing	approaches	from	being	deployed	in	the	real–
world

– Discuss	some	major	limitations	around	the	use	of	commonly	
used	evaluation criteria	and	some	of	their	consequences

• Give	us	
– Look	critically	at	our	work	as	a	community
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Tutorial Outline
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• Introduction	to	the	problem	of	
cyberbullying	characterization,	
detection,	and	mitigation
– Definition
– Challenges

• Publicaly	available	datasets
• Characterization

• Detection	(and	prediction)	methods
– Data	Mining	and	Machine	Learning	

approaches
• Mitigation	strategies
• Interactive	session

– Hands-on	with	a	real-world	dataset	
• Summary	&	concluding	remarks



Cyberbullying
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What does Bullying Refer to?

• Bullying was	originally	used	as	a	term	of	endearment	applied	
to	either	sex
– Mid	16th	century:	used	as	a	form	of	address	to	a	male	friend

• The	current	sense dates	from	the	late	17th	century
– “The	use	of	force,	threat or	coercion to	abuse,	intimidate,	or	

aggressively	dominate others”	[Wikipedia:	
https://en.wikipedia.org/wiki/Bullying]

– Aggression that	is	intentionally	carried	out	by	one	or	more	
individuals and	repeatedly targeted	toward	a	person	who	
cannot	easily	defend herself	[Olweus1978,	Olweus1994]

– Aggressive behavior (repeated or	with the potential	to be
repeated over	time)	involving real	or	perceived power	
imbalance [stopbullying.gov]
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An	inherently	social	phenomenon which	can	only	
be	understood	in	the	context	of	social	interactions



Types of Bullying

• Physical: hurting	a	person’s	body	or	possessions
– Pushing,	hitting/kicking,	spitting,	breaking	things,	

making	rude	hand	gestures,	…
• Verbal:	intimidating	a	victim	by	saying/writing	mean	

things
– Teasing,	name-calling,	inappropriate	sexual	

comments
• Indirect: hurting	someone’s	reputation	or	

relationships
– Backbiting	and	spreading	of	false	rumors

• Social	alienation: leaving	someone	out	on	purpose
– Not	letting	someone	hangout	with	a	group	or	be	part	

of	a	conversation
– Telling	others	not	to	be	friends	with	someone
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Bullying on the Web

• “Cyberbullying is bullying that	takes	place	using	electronic	technology	and	
communication	tools”
– Cell	phones,	computers,	…
– Social	media	sites,	websites,	…

• “Examples	of	cyberbullying	include	mean	text	messages	or	emails,	rumors	
sent	by	email	or	posted	on	social	networking	sites,	and	embarrassing	
pictures,	videos,	websites,	or	fake	profiles.”
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Bullying on (as opposed to off) the Web (2)

• Bullying was	once	limited	to	physical	spaces	(e.g.,	schools	or	sports	fields)	
and	particular	times	of	the	day	(e.g.,	school	hours)

• Cyberbullying (as	opposed	to	regular	bullying):
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Online:	
• Relies	on	digital	media	(e.g.,	hurtful	

comments,	videos	and	images)
• The	Web	offers	immediate	and	

continuous	communication

Frequency:
• Cyberbullying	can	occur	anytime,	

anywhere
• It	can	be	difficult	for	victims	to	

find	relief

Permanency:	
• Content	remains	(publically)	

accessible	online	unless	
reported	and	removed

Audience	&	Spread:
• Online	social	media	provide	a	

large	audience,	and	quick	
(potentially	wide)	spread



Bullying on the Web (3)
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“Cyberbullying is bullying that	takes	
place	using	electronic	technology	and	
communication	tools”	[Campbell2005,	
Slonje2008,	Vandebosch2008,	Dooley2009,	

Erdur-Baker2010,	Kowalski2012]

“Cyberharassment refers	to	repetitive,	
invasive	and	anxiety	provoking	online	

interpersonal	attacks” [Li2005]

“Cyberstalking is	the	use	of	
electronic	means	to	stalk	or	harass

an	individual,	group,	or	organization”	
[Bocij2004,	Pittaro2007,	Sheridan2007,	

Reyns2011]

Instilling	fear
Emptying	bank	accounts

“Cyber-aggression refers	to	one-off (or	
occasional)	occurrence	of	offensive,	
derogatory,	harmful,	or	unwanted	
behavior	using	electronic	means	to	
harm a	person	or	a	group	of	people	
[Grigg2010,	Smith2012,	Corcoran2015]



Fundamental Aspects of Cyberbullying 

• Repetition: often	used	in	the	definition	to	exclude	occasional	acts	
of	aggression	directed	at	different	people	at	different	times
– Ongoing	feelings	of	stress	about	an	incident	may	be	considered	

repetitive	even	though	the	act	occurred	only	once
– 50%	of	victims	do	not	consider	the	frequency	of	occurrence	to	be	

important
– Can	be	“easily”	quantified	by	measuring	the	number	of	text	

messages,		e-mails,	tweets,	Instagram	posts	…
– A	single	aggressive	act	(e.g.,	uploading	an	embarrassing	picture	on	

the	Web)	can	result	in	continued ridicule	and	humiliation	for	victims
– Not	all	actions	have	equal	effects in	inflicting	harm	

• e.g.,	threatening	comment	vs	an	embarrassing	picture
– Information	posted	online	can	be	widely	disseminated (repetition	

may	not	be	as	important)
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Fundamental Aspects of Cyberbullying (2)

• Power	Imbalance: Refers	to	observed	or	perceived	personal	
or	situational	characteristics	to	exert	control	over	a	victim	or	
to	limit	the	victim's	ability	to	respond	or	stop	the	aggressive	
behavior
– Can	be	social,	psychological,	or	physical
– One	of	the	distinguishing	features	of	cyberbullying is	the	

inability	of	victims	to	get	away	from	it
• May	result	in	feelings	of	powerlessness	for	the	victim
• Not	knowing	the	identity	of	the	bully	may	increase	feelings	of	

frustration	and	powerlessness
– Anonymity appears	to	be	an	important	feature	of	cyberbullying	

for	perpetrators	who	would	not	engage	in	offline	bullying
– Difficult	to	conceptualize	and	assess	in	online	interactions

• Only	few	have	explicitly	measured	it	[Dooley2009]
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Why Cyberbullying Matters

• Early detection	of	cyberbullying	content becomes	of	utmost	importance
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Growing	Number	of	Incidents
– The	time	users	spend	in	online	

social	media	is	growing	rapidly	
[Benevenuto2009,	Tokunaga2010]

– &	so	is	the	number	of	users	
abusing	the	Internet	to	harass,	
threat,	and	frighten	others	
[Tokunaga2010,	Jones2013,	Al-
garadi2016,	Anderson2017]

Potentially	Detrimental	Effects

– Learning	difficulties
– Psychological	suffering	and	isolation
– Escalated	physical	confrontations
– Suicide



Why Cyberbullying Matters
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• Over	½	of	adolescents	and	teens	have	been	bullied online
• About	the	same	number	have	engaged	in	cyber	bullying!

• >	1	in	3 young	people	have experienced	cyberthreats
• >25% of	adolescents	and	teens	have	been	cyberbullied	repeatedly
• Only	1	in	10 teens	tells	a	parent	that	they	have	been	a	victim!

Source:	https://www.ditchthelabel.org/research-papers/the-annual-bullying-survey-2017/



Broad Themes of Cyberbullying Research
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Cyberbullying Research Pipeline

• Problem	definition
– Is	the	goal	to	characterize,	detect,	predict	or	mitigate?

• Data	acquisition
– Are	there	existing	datasets? If	so,	what	is	the	data	source?
– How	is	the	data	collected	(e.g.,	using	streaming	1%	vs.	Twitter	firehose)
– Is	the	data	representative?
– Is	the	dataset	balanced	or	skewed?
– Are	labels	available	/	Do	we	need	to	annotate	the	data?

• How	are	these	produced	(manually	by	experts	vs.	automatically)

• Feature	selection
– Are	there	multiple	classes	of	(heterogeneous)	features?	If	so,	what	are	these?
– What	kind	of	information	do	features	capture?
– What	is	the	information	gain	from	each	feature?
– Would	dimensionality	reduction	be	preferable?
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Cyberbullying Research Pipeline (2)

• Method	selection:
– Is	the	data	used	for	exploratory	analysis/characterization?
– Is	a	specific	hypothesis	being	tested?
– What	are	the	main	metrics	to	be	improved	(e.g.,	Precision/Recall)?
– Which	metric	is	more	important	(e.g.,	is	recall	more	desirable)?
– Is	the	method	suitable	for	the	task?

• Validation	&	evaluation:
– Evaluation	on	training	set:	does	the	model	accurately	model	training	data?
– Evaluation	on	testing	set:	does	the	model	generalize	well	to	new	data?
– What	type	of	errors	does	the	model	make?
– Does	accuracy	hold	across	folds/datasets/platforms?

• Interpretation
– Which	features	best	explain	model	performance?
– What	are	the	data	&/or	model	limitations?
– Are	findings	consistent	with	the	literature?	If	not,	why?
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Ideal Cyberbullying Detection System

• High	detection	accuracy
– Precision	vs.	Recall	vs.	…

• Small	detection	latency
– Every	second	counts

• High	scalability
– Millions	of	users,	Billions	of	comments

• Adaptability
– Hate	speech/profane	keywords	may	change	as	language	evolves
– Technology	progresses	fast
– Notion	of	cyberbullying	may	change	over	time
– Bullying	follows	evolutionary	principles	[Rigby2004,	Espelage2012,	Volk2012]

• Early	prediction
– Detection	tries	to	determine	whether	cyberbullying	has	occurred	after	the	fact
– Prediction	tries	to	determine	if	an	event	is	likely	before	it	even	happens
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Challenges With Cyberbullying Research

• Data	collection	and	sampling	bias
– APIs	limitations

• e.g.	Twitter’s	streaming	API	limits	access	to	a	small	number	of	tweets	as	compared	to	
Twitter’s	Firehose	[Morstatter2013,	González-Bailón2014]

• Geo-code	filtering	returns	a	nearly	complete	set	of	geo-tagged	tweets
– Keyword– &	lexicon–based	sampling	[González-Bailón2014]

• The	choice	of	keywords/hashtags	specifies	the	boundaries	of	data	collection
• May	cause	relevant	data	to	be	missed
• May	lead	to	overrepresentation	of	one	class
• Use	machine	learning	approaches	such	as	[Raisi2017]	to	identify	new	lexical	

indicators
– Sampling	method [Granovetter1976,	Ahmed2012,	Morstatter2013,	Ahmed2014]

• Often	snowball	sampling	[Biernacki1981,	Atkinson2001]
– Over–emphasis	of	a	single	platform	(e.g.,	Twitter)	[Tufekci2014]

• Findings	may	be	biased	to	a	certain	population	using	the	platform
• User	demographics	may	differ	across	platforms
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Not	all	content	is	geo-tagged



Challenges With Cyberbullying Research (2)

• Data	cleansing	and	annotation
– Outliers	(e.g.,	non– or	highly–active	users)	may	hurt	the	ability	of	a	

classification	model	to	discriminate	between	bulling	vs.	normal
– Filtering	outliers	can	introduce	biases
– Label	errors	can	cripple	the	accuracy	of	machine	learning	models	

[Frénay2014]

• Data	(un)availability	with	time	[McCreadie2012,	Liu2014]
– Due	to	terms	of	use,	deleted	content	by	users,	suspended	accounts),	…

– More	data	don’t	necessarily	improve	performance	[Boivin2006,	
Dalessandro2014]

• If	data	is	biased	adding	more	of	it	won’t	likely	help
• In	general,	more	complex	models	are	likely	to	benefit	more	from	larger	

datasets
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Challenges With Cyberbullying Research (3)

• Feature	engineering
– Many	feature	selection	methods	rely	on	machine	learning	classifiers

• May	not	be	robust	across	datasets
– Bullying	is	well	studied;	good	indicators	of	bullying	can	be	reused	

• Identify	new	features	likely	to	be	indicative	of	cyberbullying
– Often	features	follow	a	power–law

• Severe	class	imbalance
– Cyberbullying	content	is	quite	rare
– Even	large–scale	datasets	might	contain	just	a	few	samples
– Use	crowdsourcing	towards	developing	labeled	datasets

• Often	difficult,	even	for	a	human,	to	consistently	distinguish	between	
different	types	of	abuse

• Optimizing	the	number	of	annotators	employed,	their	payment,	and	time	
for	the	annotation	process	to	complete	is	nontrivial

• Use	sampling	approaches	(e.g.,	[Chawla2002]	or	[Founta2018])
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Challenges With Cyberbullying Detection

• Objective
– Prioritization:	promote	certain	content	at	the	expense	of	others

• The	ranking	and	weighting	criteria	should	be	scrutinized
– Classification:	derive	the	class	of	content/user	based	on	attributes

• One-off	classification	vs.	tracking
– “Guilt	by	association”:	determine	which	user	is	similar	to	others	

based	on	content/activity/interactions
• Is	the	association	interpretable?

• Evaluation
– Which	metrics	are	appropriate?
– What	are	the	costs	of	different	errors	(e.g.,	false	positives	vs.	false	

negatives)?
• Mitigation	may	become	a	strong	form	of	social	influence

– Create	a	feedback	loop	to	adjust	models	based	on	mitigation	
strategies
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Challenges with Cyberbullying Mitigation

• Loss of privacy due to monitoring, forwarding to third parties (e.g.,
parents/admins), or removal of messages

• Conformance of bullies to education
• Willingness of victims to report cyberbullying incidents
• Willingness of bystanders to intervene
• False reporting of cyberbullying instances
• Accuracy of cyberbullying detection tools
• Timeliness of detection and reporting (mitigation will be obsolete)
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Datasets
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Datasets

• Publically	available	datasets	can:
– Significantly	accelerate	the	field
– Enable	direct	comparison	between	state-of-the-art	methods
– Ease	the	interpretation	of	results	as	their	properties	are	studied	more
– Be	scarce	(c.f.	data	unavailability	with	time	challenge)
– Result	in	a	hyper-focus	on	popular	datasets	(just	because	they	exist)
– Be	bad	proxies	of	society	(c.f.	Data	collection	&	sampling	challenges)

• Giving	back!
– We	are	developing	a	website	to	assemble	&	provide	a	comprehensive	

index	of:
• Annotated	real-world	cyberbullying	data	sets
• Lexicons	for	cyberbullying	research

– Share	the	word:	#CBDatasetsProject
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Datasets (2)

• Formspring
– Q&A	based	online	social	network
– The	ability	of	users	to	post	questions	anonymously	opened	the	

doors	for harassment/cyberbullying
– Populated	mostly	by	teens	and	college	students
– High	percentage	of	bullying	content

• Dataset
– 18,554	Formspring users	were	randomly	selected
– Profile	information	for	each	user	was	collected
– Questions	and	answers	from	users’	profiles	were	crawled	
– Annotations	were	acquired	from	Amazon’s	Mechanical	Turk
– Both	labeled	and	unlabelled datasets
– Available	at:	http://www.chatcoder.com/DataDownload
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Datasets (3)

• Myspace
– The	largest	online	social	networking	site	in	the	world,	from	

2004	to	2010
– Thread-style	forum	conversations

• Posts	can	be	lengthy	(unlike	other	online	social	networks)

• Dataset:
– Focuses	on	direct	bully–to–victim	cyberbullying	instances
– Unlabeled	dataset	of	~128K	users	and	associated	posts
– Smaller	labeled	dataset	also	available

• Ground	truth	provided	by	undergraduate	research	assistants
• Labeled	cyberbullying	if	at	least	two	humans	flagged	content	as	

such
• Labelers	also	identified	the	type	of	cyberbullying	&	the	exact	lines	

involved
– Available	at:	http://www.chatcoder.com/DataDownload
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Datasets (4)

• Ask.fm
– Based	on	Formspring’s interaction	model
– Quite	popular	among	young	users
– Allows	for	semi-anonymous	communication

• Users	can	anonymously	communicate	with	known	recipients
– Questions	are	directed	to	a	particular	individual

• Data	collection	method:
– Queried	ASKfm through	Google	for	variations	of	terms	“go	kill	

yourself”	and	“go	die”
– Performed	snowball	sampling:

• Crawled	users	who	interacted	with	the	original	Google	search	result	
users

• Unlabeled	dataset
– 261K	users	and	∼ 3M	question–answer	pairs

• Available	at:
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https://sites.google.com/site/cucybersafety/home/cyberbullying-detection-project/dataset



Datasets (5)

• Instagram
– Media-based	mobile	social	network	that	allows	users	to	post	

and	comment	on	images/videos
– Platform	with	the	highest	reported	cases	of	cyberbullying

• Dataset
– ~25K	public	user	profiles	crawled	using	snowball	sampling
– For	each	public	profile	the	following	data	was	collected

• Media	objects/images	that	the	user	has	posted
• Their	last	150	associated	comments
• Followers/followees
• User	id	of	each	user	who	commented	on	or	liked	the	media	objects	

shared	by	the	user.	
– Media	sessions	are	scored	for	cyberaggression/cyberbullying
– Labeled	and	unlabeled	dataset

• Available	at:
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https://sites.google.com/site/cucybersafety/home/cyberbullying-detection-project/dataset



Datasets (6)

• Vine
– Mobile	based	video–sharing	online	social	network
– Allows	users	to	record	and	edit	videos,	which	they	can	share	on	their	

profiles	for	others	to	see,	like	and	comment	upon
– Offers	the	opportunity	to	explore	cyberbullying	in	the	context	of	

video-based	communication
• Dataset

– Collected	profile	information	and	activity	data	for	60K	users	 using	
snowball	sampling

– ∼ 652K	media	sessions	with	≥ 15 comments
– CrowdFlower was	used	to	label	media	sessions	for	

cyberaggression/cyberbullying
• Available	at:	
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https://sites.google.com/site/cucybersafety/home/cyberbullying-detection-project/dataset



Datasets (7)

• Twitter
– Online news and social	networking service
– Users	post	and	interact	with	short	messages

• Dataset:
– 7,321	Bullying	Traces

• Tweets	collected	using	the	Twitter	streaming	API
• Each	tweet	contains	at	least	one	of	the	keywords:	“bully,	bullied,	bullying”

– Each	tweet	is	labeled,	participants’	bullying	roles	are	identified,	and	
emotion	labels	are	provided

• Open	source	code
– Code	to	classify	

• tweets	as	bullying	or	not
• Given	a	tweet,	the	author's	role
• The	type,	form	and	sentiment	of	the	tweet

• Available	at:	http://research.cs.wisc.edu/bullying/data.html
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Datasets (8)

• Twitter	[Rezvan2018]
• Lexicon	of	737	offensive	words
• Corpus	of	50K	tweets

– Collected	from	12/18/16	– 01/10/17
– 10K	tweets	for	each	type	with	at	least	one	lexicon	item
– ~25K	tweets	manually	annotated

• Five	types	of	harassment	content	captured:
– Sexual
– Racial
– Appearance–related
– Intellectual
– Political

• Dataset	(and	lexicon)	available	at:	https://github.com/Mrezvan94/Harassment-Corpus
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Datasets (9)

• Twitter	[Chatzakou2017]
• Collected	1M	random	tweets	and	a	set	of	650K	hate-related	tweets	

using	the	Twitter	Streaming	API
– Hate-related	tweets:	posts	mentioning	at	least	one	of	309	hashtags	

related	to	bullying	and	hateful	speech
– List	hashtags	was	created	by	obtaining	a	1%	sample	of	all	public	tweets	

in	a	given	time	window	and	selecting	all	tweets	containing	#GamerGate
• #GamerGate is	a	known	large-scale	instance	of	bullying/aggressive	behavior

• Tweets	from	the	same	user	were	grouped	based	on	time	into	
sessions

• Ground	truth	was	obtained	from	human	annotators	on	CrowdFlower
• Users	(not	single	tweets)	are	labeled

– Normal,	aggressive,	bullying,	or	spammer
• Available	upon	request
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Datasets (10)

• Annotated	Twitter	Dataset	[Founta2018]
– ~100k	tweets
– Each	tweet	is	labeled	as	

abusive/hateful/spam/normal	by	5	
CrowdFlower workers

• Majority	vote	used	for	final	annotation
– Format:	<tweetid,	label>

• e.g.,	

– To	get	the	tweet	text	using	the	Twitter	API
• e.g.,

• Available	at:
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https://github.com/ENCASEH2020/hatespeech-twitter

twitter.com/anyuser/status/850660404770590720
https://api.twitter.com/1/statuses/show/850660404770590720.json



Characterization of Cyberbullying Behavior
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The Structure of a Bullying Episode

• Participants	in	a	bullying	episode	take	
well–defined	roles	[Salmivalli1999,	
Xu2012]
– Bully (or	bullies)
– Victim (or	victims)
– Bystanders (who	saw	the	event	but	

did	not	intervene)
– Defenders of	the	victim
– Assistants to	the	bully	(who	did	not	

initiate	but	went	along	with	the	
bully)

– Reinforcers (who	did	not	directly	join	
in	with	the	bully	but	encouraged	the	
bully	by	e.g.,	laughing)

36

Note	1:	More	than	one	person	can	have	
the	same	role	in	a	bullying	episode

Note	2:	One	person	can	assume	multiple	
roles	in	different	bullying	episodes



Bullying Traces in Social Media

• Bulling traces:	content	(i.e.,	text,	images,	videos)	participants	of	a	bullying	
episode	post	in	online	social	media	about	the	experience	
– Either	in	physical	or	cyber	venues
– :	How	does	the	physical	world	(i.e.,	offline	interactions)	impact	

online	behavior?
– Note:	most	bullying	traces	are	responses	to	a	bullying	experience,	i.e.,	the	

actual	attack	is	hidden	from	view
• Forms	of	bullying	traces:

37

[Xu2012]

Reporting Accusing Revealing Attacking



Bullying Traces in Social Media
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[Xu2012]

“some	tweens	got	violent	on	the	n	train,	the	
one	boy	got	off	after	blows	2	the	chest...	Saw	
him	cryin as	he	walkd away	:(	bullying	not	cool”

“@USERNAME	i didnt jump	around	and	act	
like	a	monkey	T	T	which	of	your	eye	saw	

that	i acted	like	a	monkey	:(	you’re	a	bully”
Reporting

Accusing

Revealing

Attacking

“People	bullied	me	for	being	fat.	7	years	
later,	I	was	diagnosed	with	bulimia.	Are	

you	happy	now?”

“Lauren	is	a	fat	cow	MOO	BITCH”



Bullying Traces in Social Media

• Bullying	traces	are	abundant
– By	some	estimates	(circa	2011)	~50,000	

English	bullying	traces	per	day	are	to	be	
expected	in	Twitter

• Recall,	however,	the	class	imbalance	
problem
– Frequency	of	bullying	traces	is	tiny	in	

comparison	(~0.002)
• Figure	shows	daily	pattern	of	bulling	

traces	identified	by	classifier
• Note	the	weekly	pattern	in	late	August
• The	small	peak	was	caused	by	14-year-

old	bullying	victim	suicide	on	Sept.	18
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• The	large	peak	was	caused by	Lady	Gaga’s song	dedication	to	the	victim	on	Sept.	24.



Using Social Media for the Study of Bullying

• Major	NLP	Task	1:	Text	Categorization
– Need	to	distinguish	bullying	traces	from	other	“irrelevant”	social	media	posts
– Often	formulated	as	a	binary	text	classification	problem
– The	short	text	nature	of	social	media	posts	becomes	a	challenge
– Note:	multi-class	classification	for	fine–granularity	recognition	of	bullying	

traces	forms	is	still	open
• Major	NLP	Task	2:	Role	labeling

– A	prerequisite	of	studying	how	a	person’s	role	evolves	over	time
– Goal	is	to	classify	the	role	of	the	author and	any	person	mentioned in	post

• Labeling	author’s	role	can	be	formulated	as	a	multi-class	text	classification	task
• Labeling	mentioned	user(s)’	roles	can	be	formulated	as	a	sequential	tagging	task

40

[Xu2012]

Key											:	“In	general,	bullying	role	labeling	
may	be	improved	by	jointly	considering	
multiple	tweets	at	the	episode	level.”



The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When

• Goal: explore	the	utility	of	supervised	Machine	Learning	methods	
for	understanding	bullying
– Q1:	Who posts/participates	about/in	bullying	on	Twitter?
– Q2:	What form	of	bullying	is	mentioned/used	on	Twitter?
– Q3:	Why are	people	posting	about	bullying	on	Twitter?
– Q4:	Where are	people	posting	about	bullying	on	Twitter?
– Q5:	When are	people	posting	about	bullying	on	Twitter?

• Dataset:
– Tweets collected using the Tweeter Streaming API between September

1, 2011 - August 31, 2013
– Used a small keyword list (bullied, bully, bullyed, bullying, bullyer,

bulling, ignored, pushed, rumors, locker, spread, shoved, rumor,
teased, kicked, crying)

– Human coders labeled 7321 randomly selected tweets
• Definition of bullying: Any mention of bullying
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The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When
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• Bullying	tweets	identification:
– A	dictionary	including	all	words	(and	all	pairs	of	any	two	consecutive	words)	

in	the	corpus	was	constructed
– Each	tweet	was	represented	as	a	frequency	vector

• Number	of	times	each	word	and	word	pair	in	dictionary	occurred	in	the	tweet
– A	text	classifier	was	trained	based	on	7,321	human-coded	tweets

• Achieved	86%	accuracy	on	the	training	set
– Text	classifier	was	applied	on	the	remaining	32,477,558 tweets

• Classified	30.07%	(i.e.,	9,764,583)	as	bullying

• Analysis:
– The	role	of	the	author	of	every	tweet	classified	as	bullying	in	the	training	set	

was	manually	annotated	as	(bully,	victim,	bystander,	defender,	assistant,	
reinforcer,	reporter,	or	accuser)

– Each	tweet	classified	as	bullying	was	evaluated	according	to	the	five	
categories

[Bellmore2015]



The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When

43

• Who:
– Trained	an	author	role	support	vector	machine	(SVM)	classifier

• Classifier	achieved	70%	cross	validation	accuracy
– The	classifier	agreed	with	human	annotators	on	victims	(36.01%)	and	

reporters	(32.52%)
• What:

– Manually	annotated	the	training	set	into:
• General,	cyberbullying,	physical,	and	verbal

– Classifier	achieved	70%	cross	validation	accuracy
– Cyberbullying	tweets	are	frequent	(4.14%)
– General	tweets	are	the	most	common	(95.21%)

[Bellmore2015]



The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When

44

• Why:
– Trained	an	author	role	support	vector	machine	(SVM)	classifier

• Classifier	achieved	72%	cross	validation	accuracy
– Found	self-disclosure	posts	(54.34%)	to	be	the	most	common	followed	by	

reports	(28.57%),	accusations	(15.19%)	and	denials	(1.90%)	

[Bellmore2015]



The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When
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• Where:
[Bellmore2015]



The Five W’s of “Bullying” on Twitter: Who, 
What, Why, Where, and When
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• When:
– Studied	the	distribution	of	bullying	tweets	across	time
– Focused	on	New	York	and	California	as	the	states	with	the	largest	number	of	

geo-tagged	bullying	tweets

[Bellmore2015]



Analyzing Negative User Behavior in a Semi-
Anonymous Social Network

47

• Goal:	Analyze	negative	behavior	on	the	semi-anonymous	
question+answer (QA)	online	social	network	Ask.fm
– Challenge:	Constructing	a	social	graph based	on	friendships	is	impossible
– Focus on	the	interaction	graph extracted	from	the	“likes”	of	comments

• A	directed	edge	connects	user	𝑖 to	𝑗 if	𝑖 has	liked	a	QA	in	𝑗’s	profile
– Core	assumption:	repetitive	negative	words	represent	the	core	of	abusive	

text	posted	on	Ask.fm profiles
– Observation:	users	vulnerable	to	negative	questions	were	often	isolated,	

with	few	“likes”	and	also	rarely	liking	others’	comments
• Approach:

– Constructed	a	bipartite	network	such	that	if	user	𝑖 likes	a	QA	in	𝑗’s	profile
• Link	from	𝑖 to	words	on	that	question
• Link	from	words	to	node	𝑗

– Projected	the	bipartite	network	with	adjacency	matrix	𝐵,	to	the	network	
of	words	𝑊 = 𝐵𝐵) (similarly	for	the	network	of	users)

[Hosseinmardi2014corr]



Analyzing Negative User Behavior in a Semi-
Anonymous Social Network

• Findings:
– Interaction	network	exhibits	similar	

properties	to	other	online	social	
networks	and	the	Web

– Analyzed	150	profiles	expressing	
users’	experience	with	“cutting”	
(slicing	one’s	wrists)

– Among	the	words	connected	to	
“cutting”,	“depress”,	“stressful”,	
“sad”,	and	“suicide”	are	identified	
as	prominent
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Analyzing Labeled Cyberbullying Incidents on 
the Instagram Social Network

• Goal:	understand	how	cyberbullying	occurs	
on	Instagram
– Makes	distinction	between	cyberaggression

and	cyberbullying
• Findings:

– High	agreement	between	human	labelers	on	
which	behavior	constitutes	cyberaggression
vs	cyberbullying

– High	correlation	between	
cyberbullying/cyberaggression and	the	
percentage	of	negativity	in	the	comments
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aggressive	online	behavior

A	repetitive	act	of	aggression	online	with	an	
imbalance	of	power	between	the	individuals	involved



Analyzing Labeled Cyberbullying Incidents on 
the Instagram Social Network

• Findings:
– Applied	Linguistic	Inquiry	and	Word	Count	(LIWC)	to	find	which	categories	of	

words	have	been	used	for	cyberbullying/cyberaggression labeled	media	
sessions
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Analyzing Labeled Cyberbullying Incidents on 
the Instagram Social Network

• Findings:
– Certain	image	contents	(e.g.,	Drug)	are	strongly	related	with	cyberbulllying
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Prominent Indicators of Cyberbullying

• Four	broad	categories	of	features	have	been	used	in	the	literature	to	study	and	
detect	cyberbullying	[Al-garadi2016,	Salawu2017]

• Mainly	derived	from	user	profiles,	contents	and	activity
– User	profile

• Personality
– User	activity

• Measure	the	online	communication	activity	of	a	user	(e.g.,	number	of	tweets)
– Demographics	(i.e.,	gender,	age)	
– Content

• Based	on	profane	and	vulgar	words/expressions
– Network

• Measure	the	sociability	of	users	online	(e.g.,	number	of	followers)
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Prominent Indicators of Cyberbullying (2)

• Personality	[Biel2011,	Mishna2012,	Liu2016,	Edwards2016	,	
Gosling2017]
– Hostility	significantly	predicts	cyberbullying
– Both	bullying	and	cyberbullying	have	been	found	to	be	

strongly	related	to	neuroticism	(i.e.,	anxiety,	anger,	and	
moodiness)

• Demographics	[Edwards2016,	Al-garadi2016]
– Gender	and	age	have	been	shown	to	be	indicative	of	

cyberbulling in	some	cases	but	not	in	others
– Nevertheless,	most	users	don’t	disclose	their	age	and	

gender	in	their	profiles
• User	activity

– Considerably	active	users	are	likely	to	engage	in	
cyberbullying	behavior	[Balakrishnan2015]
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Prominent Indicators of Cyberbullying (3)

• Content
– Often	measured	as	the	number	of	offensive	terms	[Dinakar2012,	

Dadvar2013,	Kontostathis2013,	Al-garadi2016,	Teh2018]
• Effective	in	detecting	offensive	and	cursing	behavior

– Popular	dictionaries	include
• HateBase:	https://www.hatebase.org
• Noswearing:	https://www.noswearing.com/dictionary
• Offensive/profane	word	list	from	

https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
• Slang	list:	http://www.dailymail.co.uk/news/article-2673678/Why-guide-cyber-

bullying-slang-save-childs-life-From-IHML-I-hate-life-Mos-mum-shoulder.html
– Words	and	acronyms	used	in	cyberbullying	change	[Raisi2017,	Raisi2017b]
– First	and	second	person	pronouns

• A	text	containing	cyberbullying–related	features	and	a	second	person	pronoun	is	
most	likely	to	be	meant	for	harassing	others
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Prominent Indicators of Cyberbullying (4)

• Visual	cues	(i.e.,	features	extracted	from	images	and	videos)	[Zhong2016]
– Standard	image-specific	features	such	as	color	histogram
– Features	extracted	with	deep	learning

• Challenge:	Deep	neural	networks	require	a	large	number	of	images	for	training
• Used	a	pre-trained	neural	network	&	clustered	available	images

• Photo	captions
– Latent	Dirichlet Allocation	[Blei2013]	to	extract	latent	topics	from	captions
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Weakly Supervised Machine Learning

• Methods	to	characterize	(and	detect)	cyberbullying	require	labeled	data
– Rely	heavily	on	dictionaries	of	profane/vulgar	words	to	identify	offensive	

terms	in	bullying	traces
– Require	human	annotators	to	 annotators	to	provide	large	amounts	of	labeled	

examples	(tedious,	laborious,	and	often	costly,	process)
• Main	idea:
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Interaction Data Seed Bullying
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Machine Learning

Cyberbullying Model
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Participant Vocabulary Consistency

• Goal:	find	a	consistent	parameter	setting	for	all	users	and	key	phrases	in	
the	data	that:
– Characterizes	the	tendency	of	each	user	to	harass	or	to	be	harassed,	and
– Characterizes	the	tendency	of	a	key	phrase	to	be	indicative	of	harassment
– Parameters	are	optimized	to	minimize	disagreement	with	training	data

• After	convergence,	previously	unknown	terms used	by	bullies/victims	are	
“learned”
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Participant Vocabulary Consistency

• Each	user	is	attributed	a	bully	score	and	a	victim	score
– Bully	score	encodes	how	much	the	model	believes	a	user	has	a	tendency	to	

harass	others
– Likewise,	the	victim	score	encodes	how	much	the	model	believes	a	user	has	a	

tendency	to	be	harassed
• Each	n-gram	has	a	harassment–vocabulary	score

– Encodes	how	much	the	presence	of	the	feature	indicates	harassment
• Expert	provides	seed	set	of	n-grams	(i.e.,	harassment	score	set	to	1.0)
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Participant Vocabulary Consistency

• Once	the	model	is	trained,	the	harassment	score	of	each	message	
can	be	computed	by	combining	the	vocabulary	score	and	the	
participant	score

• The	more	the	model	believes	user	𝑏+ is	a	bully	and	𝑣- is	a	victim,	the	
more	it	should	believe	a	given	message	is	an	instance	of	harassment

• For	directed	pair	of	users,	bullying	score	sums
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bully	score	of	sender
victim	score	of	receiver

Average	word	score	of	n-grams	in	messages



Participant Vocabulary Consistency

• How	good	are	newly	discovered	
vocabulary	terms?

• Human	annotators	were	asked	to	rate	
1,000	highest	scoring	terms	identified	
by	the	method	(excluding	seed	words)

• Comparison	against
– Co-occurrence
– Dynamic	query	expansion

• Co-occurrence	variation
• Iteratively	grows	a	query	dictionary	by	

co-occurrence	and	frequency
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Key											:	previously	unknown	
indicators	of	harassment	can	be	
identified	in	a	cost–effective	way



Prominent Indicators of Cyberbullying (5)

• Social	network	features
– A	strong	correlation	between	cyberbullying	behavior	and	online	

sociability	has	been	established	[Navarro2012,	Hosseinmardi2015,	Al-
garadi2016,	Singh2016,	Squicciarini2016,	Chatzakou2017,	Chelmis2017]

– Node-level
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Prominent Indicators of Cyberbullying (6)

– Contextual	relationship	features	(i.e.,	from	the	combined	1.5	ego–
network	between	sender	and	receiver)
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Prominent Indicators of Cyberbullying (7)

– Activity	measures
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Prominent Indicators of Cyberbullying (8)
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Prominent Indicators of Cyberbullying (9)

• Feature	selection
– Often	used	to	determine	significant	features
– For	a	review,	please	refer	to	[Yang1997,	Guyon2003,	Peng2005,	Saeys2007]

• Top	ten	significant	features
– By	chi-square	test	[Greenwood1996],	information	gain,	and	Pearson	

correlation	[Yang1997]
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Temporal Dynamics of Cyberbullying

• Very	little	computational	work	has	focused	on	the	temporal	dynamics and	
the	repetition of	bullying	behavior	over	time

• Goals:
– Model	the	temporal	aspects	of	commenting	behavior	in	Instagram	media	

sessions	to	reveal	unique	characteristics	of	cyberbullying	(as	opposed	to	
regular	media	sessions)

– Study	the	benefit	(if	any)	of	augmenting	textual	features	with	temporal	
features	to	increase	cyberbullying	detection	performance

• Dataset:	1,734	Instagram	media	sessions	[Hosseinmardi2015]	with	
labeling	confidence	of	≥ 0.8
– 365	media	sessions	labeled	as	cyberbullying
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Temporal Dynamics of Cyberbullying

• Each	media	session	has	an	initial	(logical)	
submission	time	(i.e.,	𝑡2 = 0)

• Each	comment	𝑖 has	an	associated	posting	
time	𝑡3 ≥ 𝑡2modeled	as	a	Dirac	delta	function:
– Common	technique	used	to	model	times	of	

interest	(e.g.,	[Hołyst2000,	Harabagiu2011,	
Bourigault2014,	Tsytsarau2014,	
Farajtabar2015])

• Time	difference	between	each	chronological	
pair	of	comments	is	measured
– Comments	are	assumed	to	be	generated	by	a	

homogeneous	Poisson	point	process
• Each	comment	boosts	the	activity	level	of	a	

media	session	by	an	exponentially-decaying	
amount
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Temporal Dynamics of Cyberbullying

• Duration	of	a	media	session (i.e.,	time	difference	between	submission	
time	and	last	comment)

• Time	to	first	comment
• Inter-comment interval	mean,	variance,	and	coefficient	of	variation	(cv)

– CV	is	used	to	measure	how ”Poisson–like”	comments	are
• If	they	were	truly	generated	from	a	Poisson	process,	this	would	equal	1

• Number	of	bursts
– Bursts	of	comments	may	reflect	cyberbullying/abuse	in	which	several	people	

gang	up	on	a	victim
– Measured	as	the	Poisson	surprise

• Amount	of	total	activity	(measured	as	the	integral	of	𝐴(𝑡))
• Average	level	of	activity
• Number	of	mean	crosses
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Temporal Dynamics of Cyberbullying

• Several features	found	to	have	statistically	significant	differences	(𝑝	 <
	0.001 by	t-test)	between	bullying	and	non-bullying	media	sessions

• Notes:
– Cyberbullying	sessions	tend	to	receive	a	less	immediate	response
– Cyberbullying	sessions	receive	a	more	steady	stream	of	comments	that	are	

closer	together
– Cyberbullying	sessions	tend	to	exhibit	higher	level	of	activity	throughout
– Cyberbullying	sessions	are	more	likely	to	contain	bursts	in	comments
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Characterizing and Detecting Hateful Users on 
Twitter

• Methodology	to	collect	and	annotate	hateful	users	without	depending	
directly	on	lexicon

• Users	are	annotated	as	hateful	or	normal	based	on	their	entire	profile
• Data	collection

– A	sample	of	the	Twitter	retweet	graph	is	obtained
– A	belief	score	is	assigned	to	each	user	based	on	a	lexicon
– A	diffusion	process	is	used	to	sample	users	
– Users	are	divided	into	4	classes	according	to	their	associated	beliefs	after	

diffusion,	and	a	stratified	sampling	is	performed
• Some	findings:

– Hateful	users	differ	from	normal	in	terms	of	their	activity	patterns,	word	usage	
and	network	structure

– Hateful	users	are	densely	connected,	tweet	more,	in	shorter	intervals,	favorite	
more	tweets	by	other	people	and	follow	other	users	more
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Hate Speech in Social Media

• ElSherief,	Mai,	Shirin	Nilizadeh,	Dana	Nguyen,	Giovanni	Vigna,	and	
Elizabeth	Belding.	"Peer	to	Peer	Hate:	Hate	Speech	Instigators	and	Their	
Targets." ICWSM2018
– Comparative	study	that	reveals	key	differences	between	hate	instigators,	

targets	and	general	Twitter	users	in	terms	of	profile	self-presentation,	Twitter	
visibility,	and	personality	traits

– Twitter	hate	speech	dataset	available	at	
https://github.com/mayelsherif/hate_speech_icwsm18

• ElSherief,	Mai,	Vivek Kulkarni,	Dana	Nguyen,	William	Yang	Wang,	and	
Elizabeth	Belding.	"Hate	Lingo:	A	Target-based	Linguistic	Analysis	of	Hate	
Speech	in	Social	Media." ICWSM2018
– Studies	the	lexical,	semantics,	and	psycholinguistic	patterns	of	directed	and	

generalized	hate	and	reveal	key	differences	in	the	linguistic	styles	of	the	two	
types	of	hate
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Cyberbullying Detection (& Prediction)
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• Supervised	learning
– Typically	use	naïve	classifiers	such	as	SVM	and	Naïve	Bayes

• Weakly-supervised	learning
– Learn	previously	unknown	n-grams	from	a	small	seed-vocabulary

• Lexicon	based
– Rely	on	the	presence	of	words	from	predetermined	dictionaries

• Rule	based
– e.g.,	match	text/user’s	age/mobile	phone	usage	pattern to	

predefined	rules

• Mixed–initiative
– Combine	human–based	reasoning	with	one	or	more	of	the	

aforementioned	approaches
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Cyberbullying Detection Methods



• Detection	methods
– Offline [the	majority	of	methods	in	the	literature:	Al-garadi2016,	Salawu2017]

• Emphasis	on	improving	the	accuracy	of	cyberbullying	detection	classifiers
– Online [Rafiq2018,	Yao2018,	Zois2018]

• Examining	comments	as	they	become	available
• One	of	the	most	challenging	objectives
• Goal is	to	reduce	the	classification	time	and	time	to	raise	alert

• Apriori	predictionmethods	[Potha2014,	Hosseinmardi2016,	Zhong2016,	
Liu2018]
– Utilize	initial	content	(e.g.,	image),	metadata	(i.e.,	caption),	&	user	info	(i.e.,	

profile	and	past	activity)	to	predict	cyberbullying	before	it	happens
– One	of	the	most	challenging	objectives
– Goal:

• Identification	and	warning	of	vulnerable	users	
• Targeted	(and	thus	efficient	and	scalable)	detection	in	large	online	social	networks
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Cyberbullying Detection Methods (3)

• Content and	metadata	about	the	content	itself	(e.g.,	frequency	of	profanity)
– Profane	words	are	overwhelmingly	used	in	the	literature
– Not	all	cyber	aggression	constitutes	bullying
– Sentiment	&	emotion	analysis	are	rarely	sufficient	on	their	own	to	accurately	

identify	bullying
– The	use	of	content	features	alone	fails	to	consider	other	key	aspects	of	

cyberbullying	such	as	repetitiveness	and	power	differential
• Profile	(e.g.,	#	of	followers)	and	demographic	information	(e.g.,	age)

– e.g.,	age,	gender,	race,	and	culture
– Have	been	shown	to	improve	performance,	however,	such	user-provided	

information	can	be	easily	falsified
– A	forensic	linguistic	module	could	be	used	(e.g.,	to	assign	a	“truth	score”	to	age	

and	gender	information	supplied	by	a	user)
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Cyberbullying Detection Methods (4)

• Visual cues
– i.e.,	features	extracted	from	image	and	video	content

• Network	structure
– e.g.,	features	extracted	from	followership/communication	

networks
– Increasingly	being	used	for	detection

• Temporal	(i.e.,	changing	with	time)	vs.	static
– e.g.,	elapsed	time	between	comments	made	by	two	

different	users	to	measure	the	influence	of	cyberbullies	on	
their	peers	and	map	the	spread	of	bullying	across	a	social	
network

• Combination of	features	leading	to	multimodal	methods
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Performance Evaluation & Comparison
• Often	used	evaluation	metrics	[Davis2006,	Powers2011]

– Accuracy
• Inappropriate	when	dealing	with	high	class	imbalance	datasets
• The	accuracy	of	a	classifier	that	labels	everything	as	the	

“majority”	class	will	be	95%	in	a	dataset	with	95%	imbalance ratio
– Precision	/	Recall	/	F-score

• Sensitive	to	performance	for	only	one	class
• In	highly	skewed	datasets,	the	recall	of	the	minority	class	is	~0
• Better	to	use	average	F-score across	classes

– Confusion	matrix:
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Source:	
https://en.wikipedia.org/wik
i/Sensitivity_and_specificity



Performance Evaluation & Comparison (2)

– The	weighted	area	under	the	ROC	curve	(i.e.,	AUC)
• Created	by	plotting	sensitivity	against	the	probability	of	

false	alarm	at	various	threshold	settings
• More	robust	than	Accuracy,	Precision,	Recall,	and	F-

measure	in	datasets	with	high	class	imbalance	
[Fawcett2006]

• High	AUC	indicates	improved	classification	for	both	classes	
regardless	of	class	imbalance	[Fawcett2006]

– Matthews	Correlation	Coefficient	(MCC)
• Less	sensitive	to	data	skewness	as	it	considers	mutual	

accuracies	of	both	classes	and	all	four	values	of	the	
confusion	matrix

– G–means:	measures	the	avoidance	of	overfitting	the	
negative	class

– 𝛽 − varied	F–measure
• Better	captures	the	trade–off	between	Precision	and	Recall

78



Handling Imbalanced Datasets

• Many	ways	to	handle	class	imbalance
– Collect	more	data

• May	be	impossible	or	costly
– Try	anomaly	detection	techniques

• Assumes	“abnormal”	signal	in	the	data
– Use	over/under	sampling	techniques

• Undersampling can	lead	to	loss	of	
important	information

– …
• Oversampling	the	minority	class	may	help

– Synthetic	Minority	Over	sampling	
Technique	(SMOTE)	[Chawla2002]	creates	
synthetic	samples	of	the	minority	class	
around	K	neighbors	of	minority	samples		
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• When	duplicating	data	points	(e.g.	Random	over-sampling),	classifiers	
get	“convinced”	about	data	points	with	small	boundaries	around	it

• SMOTE	forces	the	decision	region	of	the	minority	class	to	become	more	
general,	partially	solving	the	generalization	problem

• Variations	of	SMOTE	(e.g.,	[Han2005,	Bunkhumpornpat2009])	and	
combinations	with	cleaning	methods	[Batista2004]

Oversampling the Minority Class
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Original	dataset

Random	oversampling

SMOTE
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Oversampling the Minority Class

• SMOTE	must	be	applied	with	care
• Information	may	leak	if	oversampling	is	performed	before	

splitting	a	dataset	into	training	and	testing	sets
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Information	leak	
from	the	training	
set	to	testing	set



Performance Evaluation & Comparison (3)

• Direct	comparison	of	state-of-the-art	methods	is	difficult
– For	fair	and	meaningful	comparison,	experiments	must	be	conducted	

on	the	same	exact	dataset	(c.f.	Data	Challenges)
– The	(hyper)parameters	(if	any)	of	each	method	must	be	replicable

• Need	to	open	source	code	for	reproducibility	(c.f.	Giving	Back)
– Objective	matters:	e.g.,	binary	classification	and	role	identification	can	

result	in	different	accuracy	even	if	performed	on	the	same	dataset
• Some	of	the	highest	scores	reported	are	on	blogs	and	forum	

datasets	[Salawu2017]
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• Goal:	develop	a	method	to	learn	robust	and	discriminative	numerical	
representations	of	text	for	cyberbullying	detection
– Postulates	that	textual	features	are	most	reliable
– Automatic	extraction	of	bullying	words	based	on	learned	word	embeddings

• Challenges:
– Messages	on	online	social	media	are	very	short
– Informal	language	use	&	misspellings	are	often
– Data	sparsity	(i.e.,	lack	of	sufficient	high-quality	training	data)
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Cyberbullying Detection Based on Semantic-
Enhanced Marginalized Denoising Auto-Encoder
[Zhao2017]



• Intuition:
– Bullying	messages	may	not	contain	“bullying”	words

• Key	idea:
– Learn	bullying	features	from	normal	words	by	

discovering	latent	structure
– Enable	detection	of	bullying	messages	without	

bullying	words
• Approach:

– Deep	learning	method
– Each	comment	is	represented	using	a	BoW vector	𝒙
– The	dataset	can	be	denoted	by	matrix	𝑿 = [𝒙?, … , 𝒙B]
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Cyberbullying Detection Based on Semantic-
Enhanced Marginalized Denoising Auto-Encoder
[Zhao2017]

Denoising	Auto-Encoder

Stacked	structure
The	output	of	the	(𝑘 − 1)th layer	
is	fed	as	input	into	the	𝑘th	layer



• Bullying	words	should	be	chosen	properly	for	the	first	layer
– A	list	of	“negative”	words	(e.g.,	profane	words)	must	be	provided
– Expand	the	list	of	pre-defined	words	based	on	word2vec	model

• Pre–trained	on	a	large–scale	twitter	corpus	of	400	million	tweets	(available	at:	
https://www.fredericgodin.com/software/)

• For	each	seed	word,	“similar”	words	were	extracted	using	cosine	similarity

• Feature	selection	is	performed	for	subsequent	layers
– Fisher	score	to	select	top	k	discriminative	features

• Learned	numerical	representations	are	fed	into	a	Support	Vector	Machine	
for	binary	classification
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Cyberbullying Detection Based on Semantic-
Enhanced Marginalized Denoising Auto-Encoder
[Zhao2017]



• Datasets used for evaluation
– 7,321	randomly sampled &	manually labeled

tweets [Xu2012]
– MySpace (c.f.	pointer	in	the Datasets section of	the

tutorial)
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Cyberbullying Detection Based on Semantic-
Enhanced Marginalized Denoising Auto-Encoder
[Zhao2017]

• Observations:
– Deep learning method

outperforms the baselines
– Correlations	between	seed	

words	and	“normal”	words	
seem	to	be	intuitive



Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

• Goal:	develop	a	system	for	scalable and	
timely cyberbullying	detection
– Scalable:	Accommodate	the	enormous	

amount	of	data	shared	daily	on	online	
social	media	platforms

– Responsive:	Be	able	to	monitor	a	large	
number	of	media	sessions	yet	quickly	
raise	an	alert	(i.e.,	online	approach)

• Approach:
– Multi-stage	detection	system
– Incremental	feature	extraction	and	

classification
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[Rafiq2018]

– Reuses	previous	classification	results	
to	reduce	overhead	with	minimal	
impact	on	accuracy
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Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

[Rafiq2018] System	Architecture
• Incremental	logistic	regression	

classifier
– Use	incrementally	linear	features
– Values	are	computed	for	first	𝑛

comments
– When	𝛿𝑛 new	comments	arrive,	

only	the	individual	feature	
vector	values	for	the	new	
comments	have	to	be	computed

– Reuse	the	values	for	the	first	𝑛
comments	to	compute	the	
overall	feature	vector	for	the	𝑛 +	
𝛿𝑛 comments

• Given	features	𝑎3, 𝑖 = 0,…𝑛,	LR	
assigns	them	weights	𝑤3 to	compute	
value	𝑐 = ∑ 𝑎3𝑤3B

2
• Value	𝑐 is	fed	into	a	sigmoid	function	

to	output	a	value	from	0	to	1



• Observations:
– Not	all	media	sessions	need	to	be	monitored	equally

• Can	prioritize among	media	sessions
– A	media	session	can	slowly	evolve	into	a	cyberbullying	instance	(even	if	it	

started	as	a	non-bullying	session)	with	the	arrival	of	comments	over	time
• Need	to	eventually	examine allmedia	sessions	(including	the	low	priority)

• Dynamic	priority	scheduler
– Two	priority	levels	(high	and	low)
– Newly	created	media	sessions	are	marked	high	priority
– Each	media	session’s	priority	dynamically	varies
– Set	priority	to	high	if	average	of	all past	confidence	values	(value	𝑐)	for	past	

classifications	is	≥ 0.2
• Average	is	used	to	account	for	“repeated	aggressive	behavior”
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Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

[Rafiq2018]



• Evaluation
– 10-fold	cross	validation	on	labeled	Vine	data
– Incremental	Classifier	vs	AdaBoost

• Adaboost achieves	slightly	higher	precision
• LR	achieves	higher	recall	and	F-1	score
• LR	is	5X	faster	than	Adaboost

– Dynamic	Priority	Scheduler	threshold	value	
and	batch	size
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Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

[Rafiq2018]



• Scalability	analysis

91

Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

[Rafiq2018]

Vine-scale	traffic

Number	of	Amazon	instances
CCDF	of	alert	time	for	5	million	media	

sessions	in	1GB	memory	amazon	instance



• Activity	analysis	observations
– Very	few	bullying	media	sessions	receive	their	first	comment after	500	hours
– Bullying	media	sessions	receive	all	their	comments	within	a	year	of	their	

creation

• to	improve	performance	and	use	of	resources
– Stop	monitoring	sessions	that	need	>500	hours	to	get	their	first	comment
– Purge	out	all	media	sessions	that	are	one	year	old
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Scalable and Timely Detection of Cyberbullying 
in Online Social Networks

[Rafiq2018]



Optimal Online Cyberbullying Detection

• Goal:	Accurately	detect	cyberbullying	messages	
using	text (&	some	network)	– based	features
– Solution	should	be	scalable to	the	large	number	

of	media	sessions
– Detection	should	be	timely (i.e.,	shortly	after	the	

event)
– Decision	without	sacrificing	classification	

performance
• Formulated	as	a	sequential	hypothesis	testing	

problem
– Use	additive	feature	score	to	encode	belief	that	

a	comment	is	an	instance	of	bullying	(or	not)
– Enables	efficient	implementation	&	meets	the	

goals
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[Yao2018,	Zois2018]
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Optimal Online Cyberbullying Detection

[Yao2018,	Zois2018]



• Posterior	probability	𝜋2 is	set	to	prior	
probability	of	bullying	message	𝜌

• Features	are	evaluated	one	at	a	time
• Update	posterior	probability	as:
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Optimal Online Cyberbullying Detection

[Yao2018,	Zois2018]

Promotes	low	cost	features	that	at	
the	same	time	result	in	few	errors ⇡n =

p(yn|HB)⇡n�1

⇡n�1p(yn|HB) + (1� ⇡n�1)p(yn|HN )

Approach

A	different	subset	of	features	may	
be	examined	for	each	comment
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Optimal Online Cyberbullying Detection

[Yao2018,	Zois2018]



• Evaluation	on	Twitter	dataset	
[Zois2018]:	10,600	tweets

• Evaluation	on	Instagram	dataset	
[Yao2018]:
– 2,218	media	sessions	in	total

• 19.74%	cyberbullying	sessions
– Set0+:	1,296	media	sessions	with	≥ 0

but	< 40% negativity
• Unbalanced	(15/85	

normal/cyberbullying)
– Set40+:	922	media	sessions	with	40%

of	comments	containing	≥ 1	profane	
word

• Balanced	(49/51	normal/cyberbullying)
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Optimal Online Cyberbullying Detection

[Yao2018,	Zois2018]

• 3	- 4	features	suffice	for	accurate	
classification	on	Twitter

• ~7	features	on	Instagram



• Approach	is	robust	to	class	imbalance
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Optimal Online Cyberbullying Detection

[Yao2018]

Imbalance	ratio	1.5% Imbalance	ratio	15.7%



Prediction of Cyberbullying Incidents in a Media-
Based Social Network

• Goal:	predict	the	occurrence	of	
cyberaggression /	cyberbullying before	it	
happens	by	utilizing	only	initial	user	data

• Dataset:
– Set0:	1,164	randomly	selected	media	sessions	

whose	comments	do	not	contain	any	profane	
words

– Set0+:	1,296	media	sessions	with	≥ 0 but	<
40% negativity

• Unbalanced	(15/85	%ratio	of	normal	to	
cyberbullying	sessions

– Set40+:	922	media	sessions	with	40% of	
comments	containing	≥ 1	profane	word

• Balanced	(49/51	%	ratio	of	normal	to	
cyberbullying	sessions)
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[Hosseinmardi2016]

Typical	Instagram	profile

• Ground	truth:
– Each	media	was	labelled	by	

five	CrowdFlower contributors



• Approach:	a	logistic	regression	classifier	with	
forward	feature	selection
– Find	the	feature	𝑓? that	achieves	best	

classification	performance
– Find	feature	𝑓Q s.t. (𝑓?, 𝑓Q) achieves	best	

performance
– Repeat	until	performance	cannot	be	improved

• Features	used
– Post-time
– Text	caption
– First	few	comments
– Profile	(#	of	shared	media)
– Network	features	(#	of	followers/followees)
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[Hosseinmardi2016]

Prediction of Cyberbullying Incidents in a Media-
Based Social Network

98% of cyberbullying incidents
were captured in Set0+ using
the image content feature alone

Adding	network	features	
boosts	performance	
significantly	for	Set0
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[Hosseinmardi2016]

Prediction of Cyberbullying Incidents in a Media-
Based Social Network



Forecasting Hostility on Instagram using 
Linguistic and Social Features 

• Goal:	predict	the	presence	and	intensity	of	hostile	comments
– Hostile	comment:	one	that	contains	harassing,	threatening,	or	offensive	

language	directed	toward	a	specific	individual	or	group

• Focus:	teenager	community
– This	determines	the	choice	of	social	media	platform

• Tasks:
– Hostility	presence	forecasting
– Hostility	intensity	forecasting

• Dataset:	~1K	Instagram	media	sessions
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[Liu2018]

Comment1,	Comment2,	Comment3,	Comment4,		stfu,		Comment5	
--------------------------------Time------------------------------>

hostile	commentForecast

Post-hostility	
detection



• Hostility	presence	forecasting
– Given the	initial	sequence of	non-hostile	comments in	a	media	session
– Predict whether	some	future	comment	will	be	hostile

• Hostility	intensity	forecasting
– Given the	first	hostile	comment in	a	media	session
– Predict whether	the	media	session	will	receive	more	than	𝑁 hostile	

comments	in	the	future

• Solutions	to	the	first	task	could	be	used	to	eliminate	all	hostile	
comments from	the	system

• Solutions	to	the	second	task	could	be	used	for	targeted	interventions	
on	the	most	extreme	cases
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[Liu2018]

Forecasting Hostility on Instagram using 
Linguistic and Social Features 



• Approach:
– Logistic	regression	trained	on	first	𝑁 comments	of	each	

media	session
• Features:

– Unigrams
– Word2vec	[Mikolov2013]

– N–gram	character	word2vec	[Bojanowski2017]
– Hatebase (www.hatebase.org)
– ProfaneLexicon (www.cs.cmu.edu/∼biglou/resources/)
– Comments	from	previous	media	sessions
– Comments	on	previous	media	sessions	by	the	author
– Trend:	conversation	trajectory
– User	activity:	participant	diversity
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[Liu2018]

Forecasting Hostility on Instagram using 
Linguistic and Social Features 



• Evaluation	Methodology
– 10-fold	cross-validation	experiments	to	

measure	the	forecasting	accuracy	for	
each	task

• Evaluation	Results
– Presence

• Can	predict	that	a	hostile	comment	will	
arrive	10	hours	in	the	future	with	~.82	
AUC

– Intensity
• Distinguishes	between	posts	that	will	

have	1	versus	10	or	more	hostile	
comments	with	~.90	AUC
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[Liu2018]

Forecasting Hostility on Instagram using 
Linguistic and Social Features 



• Prominent	predictors	of	future	hostility	on	Instagram	media	sessions
– Whether	the	author	of	the	media	session	has	received	hostile	comments	in	

the	past
– Use	of	user–directed	profanity
– Number	of	distinct	users	participating	in	a	media	session
– Trends	in	hostility	over	time

• Code	available	at:	https://github.com/tapilab/icwsm-2018-hostility
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[Liu2018]

Forecasting Hostility on Instagram using 
Linguistic and Social Features 



Mitigation Strategies

107

Section	



Taxonomy of Mitigation Strategies

53

[AlMazari2013]

• Prevention/mitigation strategies can be adopted at different levels



Broad Themes of Mitigation Research

53

• Psychology, public health, sociology, criminology, and other related
behavioral and social sciences (e.g., [Kraft2009], [Kazerooni2018])
– consider prevention/mitigation scenarios
– conduct surveys and focus groups
– analyze findings and report correlations between different variables

[Kraft2009] [Kazerooni2018]



Mitigation Themes

53

• Computer and information sciences, and engineering develop
technological solutions to prevent/mitigate cyberbullying
– Report/control/warn about message content (e.g., [Vishwamitra2017],

[Bowler2014], [Dinakar2012], [Ashktorab2016], [Cohen2014], [Mahar2018],
[Fan2016])

– Provide support for victims (e.g., [Vishwamitra2017], [Dinakar2012],
[Ashktorab2016], [Cohen2014], [vanderZwaan2013], [Fan2016])

– Educate both victims and bullies (e.g., [Vala2012], [Dinakar2012],
[Ashktorab2016], [Bowler2014])



Mitigation Themes

53

• Joint effort between computer and social scientists to understand
behavior of users in realistic environments (e.g., [Ashktorab2017],
[DiFranzo2018])
– Design/Develop social media site for experimentation
– Perform controlled study
– Post-study survey
– Analyze findings and report correlations between different variables (e.g.,

bystander engagement and number of views of a post) to prove/disprove
hypotheses

EatSnap.Love	social	networking	site

Conceptual	Model	of	Bystander	Intervention	in	Cyberbullying
[DiFranzo2018]



Existing Mitigation Technology

• Apps to promote well-being of social media users
– “You’re Valued” searches Twitter for tweets that say “nobody likes me”

and then sends a response tweet with messages like “I like you”,
“You’re valued”, or “You matter” [White2014]

– “Honestly” asks friends of a particular user question like “Can I sing
well?” and shares positive responses with a user [Shaul2015]

– “No More Bullying Me!” provides online meditation techniques to
support victims [NoMoreBullyingMeApp]

• Apps to inform user of harmfulness of a message before sending
– “ReThink” shows pop-up warning message when user tries to send

harmful message [ReThinkApp]
– “Cyberbullying Blocker” warns user of harmful message while

indicating harmful words [Lempa2015]
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Existing Mitigation Technology
• Report/monitoring of cyberbullying messages, e.g.,

– Apps such as “PocketGuardian” [PocketGuardianApp] and “Bark–
Monitor.Detect.Alert” [BarkApp] report inappropriate material to
parents

– Twitter allows users to report harassment tweets and blocks
accounts of bullies until they erase these tweets

– App “Anonymous Alerts” helps students anonymously submit
bullying incidents to school officials [AnonymousAlertsApp]

– Facebook allows reporting, unfriending and blocking individuals
[FBStopBullying]

– Instagram allows reporting and blocking individuals
• Improve awareness about cyberbullying, e.g.,

– App “Cyberbully Zombies Attack” helps individuals learn how to
handle cyberbullying [CyberbullyZombiesAttackApp]

– App “Cyber-Bullying First-Aid App” provides resources to combat
cyberbullying [CBFirstAidApp]
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Existing Mitigation Technology (2)
• Review/take actions on content and inform administrators

– Instagram automatically hides toxic comments and alerts
administrators [InstagramHideComments]

– Ask.fm reviews images for harmful content before upload
[Askfmhelp]

– Twitter suspends accounts that violate Twitter rules
[TwitterRules]

– …
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Using Computer Technology to Address the 
Problem of Cyberbullying

• Goal: provide assistance for victims and bullies
– Detect cyberbullying incidents
– Report of cyberbullying incidents
– Integrate third-party assistance when cyberbullying is detected
– Facilitate authorities to take actions against detected bullies
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[Cohen2014]

Instances	of	cyberbullying

Mitigation



Using Computer Technology to Address the 
Problem of Cyberbullying

• Cyberbullying detection:
– Label malicious messages: model reputation of each message using users’

feedback and assign warning label to potential instance of bullying
• Score ri of message i:

• User u’s reputation score:

– Proposed approach combines:
• Positive and negative reviews of messages by user’s social network audience, and
• Standard machine learning methods based on textual feature

– Assertion: Reputation scores can potentially help identify bullies and victims
(e.g., user with many friends that have negative score can be a victim)
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[Cohen2014]

ri =
#positive votes + 1

#negative votes + 1

reputation(u) =
1

n

nX

i=1

ri

< 1 User	u is	not	malicious

User	u is	malicious> 1



Using Computer Technology to Address the 
Problem of Cyberbullying

– Filter suspected messages: classify messages as
abusive or non-abusive using bag-of-word,
sentiment and sender information features
incorporating trusted third party

• Divert possibly abusive messages to a trusted
third party (e.g., parent, friend)

• Third party can
– delete or report abusive message
– inform filter of non-abusive message

• Users may create whitelists (always deliver) and
blacklists (always divert)
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[Cohen2014]

Message	thread	with	flagged	
malicious	messages	and	

reputation	scores

Filtering	system



Using Computer Technology to Address the 
Problem of Cyberbullying

• Mitigation:
– Reporting system with third party assistance: victims or their friends

can report bullies and their messages (user reports)
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[Cohen2014]

Reporting	system:	help	
process	diagram

• Reporting phase: provide source of improper
post and define user role (victim or friend)

• Victim confirmation phase: affirm reported post
as improper

• Victim helping phase (protection):
– Identify type of harassment (e.g., bullying,

stalking, privacy leaking)
– Select solution (e.g., access legal aid, disable

sharing of post, blacklist message)
• Improper online behavior phase (monitoring):

– Notify bullies of improper behavior
– Constrain/ban account or notify law enforcement



Using Computer Technology to Address the 
Problem of Cyberbullying

– Centralized reporting platform: web portal managed by authorities
where victims and witnesses can report incidents
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[Cohen2014]

Acknowledge	and	
provide	encouragement



Using Computer Technology to Address the 
Problem of Cyberbullying

– Education: provide educational resources to both victims and bullies, e.g.,
• Be mindful and thoughtful of message contents
• Phone number of support centers
• Educational tests for bullies
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[Cohen2014]



Designing Cyberbullying Mitigation and
Prevention Solutions Through Participatory 

Design with Teenagers
• Goal: design cyberbullying mitigation solutions

– Participatory design with two high school
student groups (9th and 12th grade) in spring
2015 (five design sessions per group)

• Participants shared their experiences, iteratively
designed potential solutions and identified
challenges

– Discussion of findings and presentation of
potential cyberbullying mitigation solutions
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[Ashktorab2016]

Focus	group



• Hypothesis: children who are experiencing and engaging in
cyberbullying can be viewed as domain experts of cyberbullying

• Design activities:
– Focus groups: how participants interact with online social media

platforms and how these platforms are used for cyberbullying
– Scenario centers: think technological and non-technological solutions to

mitigate negative behaviors in online social media platforms based on
scenarios

– Bags of staff: participants were asked to design solution for specific
cyberbullying event

– Mixing ideas: encourage participants to think about common themes
between their solutions to create better solutions and prototypes

– Evaluating prototypes: discuss feasibility and limitations of each solution
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[Ashktorab2016]

Designing Cyberbullying Mitigation and
Prevention Solutions Through Participatory 

Design with Teenagers



• Findings:
– Cyberbullying victims either do nothing or turn to a friend for support
– Focus on social media platforms that teenagers are mostly using (i.e.,

Instagram, Snapchat)
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[Ashktorab2016]

Designing Cyberbullying Mitigation and
Prevention Solutions Through Participatory 

Design with Teenagers



– Nine (9) design applications
• Control posted content (“SMILE”, “Watch Yo Profanity”, “Reporting Bullies with

Feedback”, “Hate Page Prevention”)
• Emotional support and respond back strategies for victims (“Happy App”, “Fight

Back”, “Positivity Generator”, “The Broiler”)
• Education of bullies (“Exclusion Prevention”)

– Timely support after cyberbullying occurs is vital part of mitigation
– Limitations

• Trust in accuracy of filtering algorithms
• “Bullying the bullies” is not ethically sound solution
• Evaluation of effectiveness of cyberbullying prevention mechanisms in practice
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[Ashktorab2016]

Designing Cyberbullying Mitigation and
Prevention Solutions Through Participatory 

Design with Teenagers



Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

• Goals:
– Design techniques for effective cyberbullying detection
– Develop reflective user interfaces that encourage users to reflect upon their

behavior and their choices
• Cyberbullying detection: combine state-of-the-art natural language

processing with common sense reasoning (AnalogySpace) based on
common sense knowledge base (BullySpace)
– Evaluation on and datasets

• “Air traffic control”-like dashboard: alert moderators to large-scale
cyberbullying outbreaks and facilitate prioritization

• Educational materials for victims: how to cope with situation and connect
with emotional support
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[Dinakar2012]



Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

• Cyberbullying detection:
– Focus on textual cyberbullying
– How to find insulting language when there

is no explicit profane or negative language?
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Cyberbullying	topics	
sensitive	to	victim

– Datasets: manually labeling process (3 annotators)
• YouTube: comments of controversial and non-

controversial topics
• FormSpring: actual user- or moderator-flagged

cyberbullying instances
– Methods:

• Naïve Bayes
• JRip (incrementally learn rules and optimize them)
• J48 (tree-based classifier)
• SVM



Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

– Features common among sexuality, race and
culture, and intelligence, as well as specific features
for each of them separately

– BullySpace: (based on Formspring dataset)
• Knowledge base about commonly used stereotypes

employed to bully individuals based on their sexuality
– AnalogySpace:

• Each question about a concept can be thought of as a
“dimension” of a concept space

• Answering a question can be thought of as projecting the
concept onto a specific dimension

• Singular Value Decomposition (SVD) is used for
dimensionality reduction

• Resulting space helps determine which concepts are similar
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Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

– Common sense reasoning example:
• “Hey Brandon, you look gorgeous today. What beauty salon did you visit?”
• If this comment is aimed at a boy, it might be an implicit way of accusing the boy

of being effeminate (cyberbullying instance candidate)
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Analysis	of	sentence	relationship	with	certain	concepts



Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

• Intervention strategies:
– Reflective user interfaces: encourage positive digital behavioral norms

• Notifications (i.e., reflect on consequences)
• Interactive tailored education

• Action delays

• Displaying of hidden consequences
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Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

• Interactive educational support

• System-suggested flagging

• Visualization
– Assist authorities to monitor
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Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

– Evaluation of suggesting educational materials:
• Small study with five participants on fully functional hypothetical social network

(Fakebook)
• Test differences between 3 scenarios
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Dynamic	in-context	targeted	advice

Targeted	static	advice

Typical	“help”	link	user	interaction



Common Sense Reasoning for Detection, 
Prevention, and Mitigation of Cyberbullying

– Each participant took a survey after reading fictional cyberbullying incident,
imagining themselves as one of the characters and clicking on the links for help

– Participants preferred the interface with targeted in-context advice
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FearNot! Demo - A Virtual Environment with 
Synthetic Characters to help Bullying

• Goal: teach 8–12 years old children coping strategies in bullying situations
based on synthetic characters on virtual learning environments

• Interactive storytelling with animated on-screen characters
– User gets to play one of the participants in the bullying scenario
– User may select any one of a number of response strategies to a bullying

challenge (e.g., fight back, run away, tell a teacher)
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Bullying	situation	in	FearNot!



Upstanding by Design: Bystander Intervention 
in Cyberbullying

• Goal: explore effects of interface design on bystander intervention
through simulated custom-made social media platform
– Understand bystander behavior in cyberbullying
– Design and implement interfaces aimed at encouraging bystander

intervention based on bystander intervention model [Darley1968]
• If bystanders feel personally responsible, they tend to intervene

– Interface designs that heighten self-awareness via public surveillance should
indirectly increase cyberbystander intervention

• Two design interventions:
– “You have already viewed this message” notification
– Information about audience size (“this many people have seen this message”)
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Conceptual	Model	of	Bystander	Intervention



Upstanding by Design: Bystander Intervention 
in Cyberbullying

• Approach:
– Developed EatSnap.Love social networking site (share, like, react to

food pictures)
– Created platform to control social interactions

between users
• Each participant was exposed to same social

interactions, users, posts, and responses
within controlled environment

• Participants did not interact with each other,
but with bots

– 400 participants from Amazon Mechanical Turk (attrition rate: 41%)
• Participants were exposed to several cyberbullying incidents during 3 days
• Participants received different information about audience size and viewing

notifications
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EatSnap.Love	social	networking	site



Upstanding by Design: Bystander Intervention 
in Cyberbullying

– Participants were provided
• Community guidelines governing the site
• What to do if they witnessed someone breaking those rules
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Design	intervention	scenarios



Upstanding by Design: Bystander Intervention 
in Cyberbullying

– Pre-study survey:
• Demographics, personality measures, and filler questions
• General food consumption patterns

– During study:
• Post a photo and message at least once per day during 3-day period
• Read posts
• Interact with posts

– Post-study survey:
• Reflect on experience using the site
• Whether cyberbullying incidents were observed
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Upstanding by Design: Bystander Intervention 
in Cyberbullying

– Each participant was exposed to 4 cyberbullying instances
– Measures:

• Bystander intervention (direct or indirect)
• Public Surveillance (7-point agree/disagree scale)

– “Users of EatSnap.Love are aware that I viewed their
posts”

– "The other people using EatSnap.Love know when I see
their posts and replies”

• Accountability (7-point agree/disagree scale)
– "I was held accountable for my behavior on

EatSnap.Love”
– "I would have to answer to others if I acted

inappropriately on EatSnap.Love”
• Personal Responsibility (7-point agree/disagree scale)

– "Helping other users of EatSnap.Love who are teased or left out was my responsibility”
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Cyberbullying	instance	example



Upstanding by Design: Bystander Intervention 
in Cyberbullying

– Observations:
• 74.5% of the cyberbullying bystanders did not intervene in any form
• Indirect interventions were more common than direct ones
• 96% of interventions involved flagging the cyberbullying post
• < 3% blocked or notified administrator
• Participants who felt greater accountability also tended to report more personal

responsibility for cyberbullying behaviors and ended up flagging the content
• Small audience increases likelihood of bystander intervention
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Analysis:	most	probable	paths	to	intervention



Evaluation of Mitigation Tools

• No evaluation in most cases
– e.g., [Vala2012], [Cohen2014], [Ashktorab2016],

[Vishwamitra2017], [Fan2016]
• Indirect evaluation (e.g., [Dinakar2012])

– Hypothesis that strategy will work based on insights
drawn from the literature such as psychology
[Walther2005], criminology [Madlock2011]

• Qualitative evaluation
– Pre/post surveys (e.g., [Dinakar2012], [Ashktorab2017],

[DiFranzo2018, [Kazerooni2018])
– Focus groups (e.g., [Bowler2014], [vanderZwaan2013])

on artificially constructed scenarios
• Quantitative/Direct evaluation is hard!
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Interactive Session
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Divide into Groups of 3-5 people

• Imagine	you	are	a	research	group	that	wants	to	study	bullying	on	two	
online	social	media

• You	have	access	to:
– Twitter	Dataset:	a	sample	of	20	tweets

• Your	task	is	to	label	each	tweet as	normal,	spam,	hateful,	or	abusive
– Instagram	Dataset:	You	are	provided	4	sample	Instagram	media	sessions

• Your	task	is	to	label	each	session as	normal,	abusive or	bullying

• Attempt	the	tasks	individually first
• Once	each	member	of	your	group	is	done,	aggregate your	annotations

– Try	to	reach	consensus	on	as	many	items	(i.e.,	tweets	and	sessions)	as	possible
• Chose	a	representative	to	briefly	explain	contention	points	(if	any)

• Let	me	know	if	you	have	any	questions/issues/concerns!
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Twitter Dataset (~5 mins)

• Mark	a	tweet (i.e.,	single	post)	as	follows:
– Abusive:	Strongly	impolite,	rude	or	hurtful	

language	using	profanity
– Hateful:	Hatred,	or	derogatory,	insulting,	

humiliating	statements	towards	an	individual	
or	members	of	the	group,	on	the	basis	of	
attributes	such	as	race,	disability,	or	gender

– Spam:	Advertising/marketing,	linking	to	
malicious	websites,	unwanted	information

– Normal:	None	of	the	above

• Definitions	are	from	[Founta2018]
• A	dictionary	of	profane	words	is	not	given
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Instagram Dataset (~10 mins)

• Mark	a	session (i.e.,	collection	of	comments)	
as	an	instance	of:
– Cyberaggression if	there	is	at	least	one	

negative	word/comment	and	or	content	with	
intent	to	harm	someone

– Cyberbullying if	two	(2)	or	more	comments	
include	negative	words/content	with	intent	to	
harm	someone

– Normal:	None	of	the	above

• Definitions	are	from	[Hosseinmardi2015]
• Images	and	user	profiles	are	not	provided

– Labeling	associated	comments	may	be	harder
• A	dictionary	of	profane	words	is	not	given
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Discussion (~5mins)

Labels	are	from	[Founta2018]
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Tweet	Id Normal Abusive Hateful Spam
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

True	Label
A

A

A

A

A

N

N

N

N

N

H

H

H

H

H



Discussion (~5mins)
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Session	Id Normal Aggressive Bullying
1

2

3

4

5

• Use	workbook_group_agreement.xlx to	measure	consensus	
between	your	group	members
– Use	0	for	Normal,	1	for	Bullying	and	2	for	Aggressive

• In	practice	interrater	agreement	is	measured	using	statistical	
measures	such	as	Cohen's	kappa	[James1984,	McHugh2012]

• Labels	are	from	[Hosseinmardi2015]

True	Label
N

B

B

A

A



Discussion (~10mins)

• What	was	the	main	difficulty	when	going	through	the	tasks?
• How	easy	was	it	to	distinguish	between	different	categories?

– e.g.,	hate	speech	vs.	abusive	language
• What	would	be	the	implications	of	possible	annotation	mistakes?

– What	metrics/inferences	are	they	likely	to	impact	the	most?
• Can	you	imagine	scaling	the	multi-labeled	annotation	process	to	thousand	

comments	(tweets,	posts,	…)?
– What	would	be	the	issues?	

• Think	about	the	implications	of	trying	to	sample/analyze	data	from	certain	
online	social	networking	platforms
– Bias?

• Keyword-based	sampling?
• Occurrence	rates	for	different	categories	introduced	by	the	sample

– Anonymity?
– User	population	demographics	?
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Do	these	influence	
discovered	patterns?



Issues with Annotation

Source:	Zeerak Waseem’s	2018	Turing	Institute	presentation
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Summary and Concluding Remarks
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Summary and Conclusions

• Characterizing,	detecting	(or	predicting)	and	mitigating	
cyberbullying	instances	is	a	hard	problem!
– Very	active	research	area

• Still	in	an	incipient	phase	of	the	hype	cycle!
– We	have	identified	more	than	a	dozen	challenges

• Fascinating	field	at	the	intersection of	many	disciplines
– Psychology	and	Sociology
– (Computational)	Social	Science
– Computer	Science
– Electrical	Engineering
– …

• Overall,	cyberbullying	is	a	function	of	a	complex	social	system
– Notions	of	bullying	behavior	and	the	use	of	technology	

coevolve
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Tutorial Slides

• We	recognize	that	our	coverage	of	the	state-of-the-art	and	the	challenges	
we	identify	are	not	exhaustive
– Some	important	topics	we	did	not	cover	include	(but	are	not	limited	to)

• Expanding	cyberbullying	detection	beyond	bullies	and	victims
• Determining	victim’s	emotional	state	after	cyberbullying

– References	are	provided	for	additional	reading

• The	slides	can	be	found	at:	
http://www.cs.albany.edu/~cchelmis/icwsm2018tutorial/

• Suggested	citation:
Charalampos	Chelmis,	Daphney–Stavroula Zois,	Characterization,	Detection,	and	
Mitigation	of	Cyberbullying,	Tutorial	at	the	12th International	Conference	on	Web	
and	Social	Media,	Stanford,	CA,	June	2018.
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