
1/146

From Feature Selection to Instance-wise Feature Acquisition1

Tutorial @ SDM 2024

Daphney-Stavroula Zois1 Charalampos Chelmis2

1Electrical and Computer Engineering Department

2Computer Science Department

Saturday, April 20th, 2024

1This research is based upon work supported by the National Science Foundation grants
ECCS-1737443 & CNS-1942330 and a Google AI for Social Good award.



2/146

Organizers

Daphney–Stavroula Zois
Associate Professor in ECE

University at Albany
I Machine Learning
I Statistical Signal Processing
https://www.albany.edu/~dz973423/

Charalampos Chelmis
Associate Professor in CS

University at Albany
I Socially Important Data Science
I Big Data Analytics

http://www.cs.albany.edu/~cchelmis/

https://www.albany.edu/~dz973423/
http://www.cs.albany.edu/~cchelmis/


3/146

Tutorial Objectives

I Contrast feature selection to feature acquisition, and introduce related nomenclature
I Overview state–of–the–art and summarize research progress on this area
I Draw connections to recent trends in machine learning (e.g., model interpretability,

fairness)
I Identify challenges and opportunities for future work
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Tutorial Outline

I Introduction
I Typical machine learning problem
I Feature selection and variants
I Applications and main challenges

I Online/Streaming feature selection
I Problem definition
I Main idea & methods
I Variants (e.g., streaming data, fea-

ture interactions, group feature se-
lection)

I Instance–wise feature acquisition
I Problem definition
I Static approaches
I Dynamic methods

I Advanced Topics
I Model interpretability
I Incorporating fairness constraints
I Dealing with structure (e.g.,

Bayesian network classification,
hierarchical classification)
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Relevant Tutorials

I Explaining Machine Learning Predictions: State–of–the–art, Challenges, Opportuni-
ties [at NeurIPS 2020]

I Focused on post hoc explainability, and discusses among others how features
contribute towards a prediction

I https://explainml-tutorial.github.io/neurips20
I Subset Selection in Machine Learning: Theory, Applications, and Hands On [at

AAAI 2021]
I Focused on the theoretical underpinnings of subset selection and discussed

related applications, such as active and human assisted learning
I https://explainml-tutorial.github.io/aaai21

https://explainml-tutorial.github.io/neurips20
https://explainml-tutorial.github.io/aaai21


6/146

Introduction
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Typical Machine Learning Problem

I Training set D consisting of (x, y) pairs
I Features x are usually represented as fixed–

length numeric feature vectors
I Labels y are typically modeled as integers

I Goal: Learn function f : x ! y so the label(s)
of unseen instances can be predicted

I A loss function (e.g., zero–one) is selected
I The empirical risk is then minimized
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Feature Selection

I There are many “characteristics” that can help us recognize a cat from a dog, e.g.,
I Overall size
I Existence of whiskers
I Shape of ears
I etc

I Feature selection: select small subset of elements in x that can be used to derive a
good model

I Features must be “as good as possible” wrt some criterion C

I Sparse wrt to x
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Benefits of Feature Selection

I As the number of features becomes large:
I Learning models tend to overfit
I High storage requirements and computational costs
I Distances lose meaning

I This is where feature selection comes in
I Remove irrelevant and redundant features
I Enhance generalization performance
I Increase computational efficiency (i.e., speed up the learning process)
I Decrease memory storage
I Improve model interpretability



10/146

Feature Selection Variants

I Dimensionality reduction (e.g.,
Principal Component Analysis)

I Standard (offline) supervised feature
selection
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Dimensionality Reduction

I Project original high dimensional features to new feature space with low dimension-
ality

I Newly constructed feature space is usually (non)linear combination of original fea-
tures
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Standard (Offline) Supervised Feature Selection [GE03]

I Feature subsets evaluated wrt information content, predictive accuracy of a given
classifier or both

I Filter methods: independent of learning algorithm
I Wrapper methods: iteratively assess quality of selected features based on clas-

sifier’s learning performance
I Embedded methods: embed feature selection into learning algorithm

I Smallest feature subset satisfying constraint is maintained

Training: all candidate features are available upfront
Testing: same final selected features used for classification
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Applications

I Webspam page detection (16 million features)
[WCP06]

I Educational data mining for predicting student
performance (> 29 million features) [SNMR+10]

I Hot topics detection in social media
I Bionformatics (full set of features is hard to ac-

quired due to high cost of wet lab experiments)
I Planetary imaging, online visual tracking, etc
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Main Challenges

I Exhaustive search over the entire feature space is computationally expensive in high–
dimensional settings

I Data instances and/or features may not be available in advance (e.g., online/streaming
setings) or may be missing

I In practise (e.g., medicine and criminal justice) features have an associated cost
I Acquisition (e.g., medical tests, evidence collection)
I Privacy (e.g., revealing personally identifiable information)
I Fairness (e.g., may amplify bias)
I Energy consumption (e.g., communication, storage, or computational cost)

I Concept/distribution drift
I Feature dependencies (e.g., multi–collinearity, group structure, multiview settings)
I Predictive power of different feature subsets may vary by subgroups of data instances

(e.g., prognosis for different subpopulations)
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Online/Streaming Feature Selection
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Problem Definition [HZL+18]

I Also known as incremental feature selection
I Goal: choose subset of features from larger set of potentially redundant features

without access to full feature space in advance

Training: features arrive one at a time/batches
Testing: same final selected features used for classification

I Representative methods can be categorized as threshold–based or rough set theory–
based
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Threshold–based Streaming Feature Selection

I Newly arriving feature is selected if specific constraint is satisfied
I Representative methods include:

I Grafting [PLT03]
I Alpha–investing [ZFSU05]
I OSFS / Fast–OSFS [WYD+12]
I SAOLA [YWDP16]
I OSSFS–DD [ZZYW22]
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Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

I Features are categorized into four disjoint groups:
I irrelevant: P (C = ci|S = s, Fi = fi) = P (C = ci|S = s) for all S ✓ F \ {Fi}
I strongly relevant: if above condition not met
I redundant: has Markov blanket M (i.e., P (Fi|M,Y ) = P (Fi|M) for all Y 2

F \ (M{[Fi})) within F

I non–redundant: P (C = ci|S = s, Fi = fi) 6= P (C = ci|S = s) for some
S ⇢ F \ {Fi}



19/146

Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

I Goal: At each step ti, maintain minimum size feature subset S
⇤
ti that maximizes

predictive classification performance
I Key steps:

I Determine relevance of feature Fi to class label C
I If P (C|Fi) = P (C), then discard Fi

I Else, check if Fi is redundant wrt already selected features
I If Fi is relevant and not redundant, add it to the selected feature subset
I Pruning step: find the subset ⇣ that maximizes the probability P (C|⇣)
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Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

I Maintaining minimum size feature subset at each step requires examining all possible
feature subsets

I Does not scale with number of features
I Therefore, problem is rewritten in terms of mutual information

I Mutual information between features is computed online using pairwise comparisons
based on heuristics

I Mutual information between features conditioned on all feature subsets need
not be computed
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Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]



22/146

Online Streaming Feature Selection (OSFS) [WYD+12]

I Goal: find optimal subset comprising non–redundant and strongly relevant features
I Features are categorized into four disjoint groups
I Unlike SAOLA, uses G

2 test to measure conditional independence
I Alternating two–step process

I Relevance analysis: determine if streaming feature is relevant, and if so, add to
candidate feature set and Markov blanket of class label C

I Redundancy analysis: identify and remove redundant features in Markov blanket
of class label C

I Key insight: if a feature is marked redundant, it remains redundant even if some features
within its Markov blanket are removed later on

I Stopping criteria (prediction accuracy, maximum number of iterations, all fea-
tures examined)
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Online Streaming Feature Selection (OSFS) [WYD+12]

I Redundancy analysis re–examines relevance of each feature in candidate set wrt class
label every time a new feature is added (time–consuming)

I Fast OSFS:
I If current streaming feature (as opposed to each and every feature) is relevant

but redundant, remove it from candidate feature set
I Else, add current feature in candidate feature set, and check redundancy of

each feature in candidate set wrt subsets that include newly added feature
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Streaming Feature Selection via Dynamic Decision [ZZYW22]

I In online streaming feature selection, discarded features are never considered again
I For weakly relevant features making a decision (selecting or discarding) imme-

diately is risky
I 8 new arriving feature ft

I If strongly relevant, add it into the candidate feature subset SC

I If irrelevant, discard it immediately
I If weakly relevant, add it into undetermined feature subset SU and defer decision
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Streaming Feature Selection via Dynamic Decision [ZZYW22]

I Compute membership score, �f (d) 2 [0, 1], between feature f and the decision class
d using Normalized Mutual Information

I if �  �f (d)  1, f is strongly relevant to d

I if ↵ < �f (d) < �, f is weakly relevant to d

I if 0  �f (d)  ↵, then f is irrelevant to d

I But how to choose proper thresholds of ↵ and �?
I Assume normally distributed data, and features arriving at random
I Membership scores in the whole feature space are also normally distributed

with mean value µ and standard deviation �

I Set ↵ = µ� � and �

I Without knowledge of the entire feature space the thresholds cannot be set a–priori
I Thankfully, the mean and standard deviation can be dynamically updated 8ft

I µt = µt�1 +
�t�µt�1

t and �t =
q

(t�2)⇤�2
t�1+(�t�µt�1)(�t�µt)

t�1



26/146

Streaming Feature Selection via Dynamic Decision [ZZYW22]

I Feature redundancy
I Two features f1 and f2 must contain some common information if

I(f1, f2; d) < I(f1; d) + I(f2; d)
I If additionally I(f1, f2; d) < 2� remove the feature with the smaller value of

I(f1; d) or I(f2; d)
I Note: For each new feature, must check for redundancy between that feature

and every feature currently in SC

I Feature uncertainty
I fi is added to SU if ↵ < I(fi; d) < �

I if 9fj 2 SU s.t. I(fi, fj ; d) � 2�, add both fi and fj into SC

I Features that don’t satisfy this are discarded when SU reaches a threshold to
avoid SU becoming too large
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Rough Set Theory–based Streaming Feature Selection

I Threshold–based streaming feature selection typically require prior information about
feature space

I Representative methods include:
I OFS–Density [ZHLW19a]
I OFS–A3M [ZHLW19b]
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OFS–Density [ZHLW19a]

I Two types of neighborhoods
I � neighborhood (set {y|(x, y)  �}, where

� and � are a distance metric and
threshold respectively)

I k–nearest neighborhood (determined by a
fixed number of neighbors)

I Goal is to minimize the size of the boundary re-
gion when feature subset B is used
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OFS–Density [ZHLW19a]

I New neighborhood relationship is defined
I All neighbors of x are sorted by distance (nearest to farthest) on feature

subset B
I Pairwise distance between consecutive points in this set is computed
I For some neighbor xk (Inflection Point), pairwise distance decreases for the

first time
I The samples between x and xk are used as the nearest neighbors of x
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OFS–Density [ZHLW19a]

I At time t feature ft arrives, while St�1 is the set of selected candidate features
I The goal is to select features from St�1 [ {ft} with

I High correlation
I Calculate dependency, �ft(D) of ft with target class label D
I Calculate the mean R(St�1, D) of dependency values 8fj 2 St�1

I Discard ft if the dependency of ft is less than R(St�1, D)
I High dependency

I If �St�1[{ft}(D) � �St add ft to St�1

I Low redundancy
I Discard all features fj in St for which �St(D)� �St�fj (D) = 0
I In practise, the equality constraint is relaxed to an interval restriction
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Sparse Online Learning

I Goal: learn sparse linear classifier from sequence of high–dimensional training in-
stances

I Number of features used by model must be given

Training: data instances arrive sequentially to iteratively update classifier function
Testing: same final selected features used for classification
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Online Feature Selection (OFS) [WZHJ13]

I Setting: Binary classification, where each data instance xt is to be classified by a
linear function sgn(w>xt).

I Full vector is available for each data instance
I Goal: design effective strategy for OFS under constraint that classifier wt has at

most B nonzero elements, ||wt|| 6 B

I At most B features of xt are used for classification
I Simply truncating features with small weights can lead to many misclassifica-

tions
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Online Feature Selection (OFS) [WZHJ13]

I A linear classifier wt is trained online with
at most B non–zero elements

I When a training instance (xt, yt) is misclas-
sified, the classifier is first updated by online
gradient descent and then projected to a L1
ball to ensure that the norm of the classifier
is bounded

I If bwt+1 has more than B non–zero elements,
only the B elements with the largest abso-
lute weight are retained
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Online Feature Selection (OFS) [WZHJ13]

I Challenge: Although only B weights are
non–zero, every attribute in xt must be
measured and computed

I Solution: B out of all d attributes are
randomly selected for a number of train-
ing data instances, while for the remain-
ing data instances, the B attributes for
which the classifier wt has non–zero
values are selected
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Second–order Online Feature Selection (SOFS) [WHMY17]

I Main drawback for OFS is its linear time complexity wrt feature dimensionality
I Goal: improve performance and time complexity using second–order online learning

techniques
I Main idea: use confidence–weighted (CW) method [DCP08]

I Assume that weight vector of linear classifier follows Gaussian distribution
I Based on observed training example (xt

, y
t), CW updates mean vector and

covariance matrix of Gaussian distribution
I Ensure that probability of correct prediction on observed training example is

bigger than specified threshold ⌧ while staying close to previous distribution

(µ̂µµt+1
,⌃t+1) = argmin

µµµ,⌃
DKL(N (µµµ,⌃),N (µµµt

,⌃t))

s.t. Pr[ytsgn(w · xt) > 0] > ⌧
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Second–order Online Feature Selection (SOFS) [WHMY17]

I Kullback–Leibler (KL) divergence can be easily computed in terms of mean vectors
and covariance matrices

I Solve optimization problem with adaptive regularization of the prediction function
(AROW) for each new observed training example [CKD13]

I Update most confident B weight variables, whose covariance values ⌃jj are among
the B smallest

I MeanHeap–based implementation to store B smallest diagonal values of covariance
matrix ⌃t

I SOFS has linear time complexity wrt average number of nonzero features per in-
stance
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Group–SAOLA [YWDP16]

I Goal: select (in an online manner) feature groups which are sparse at the levels of
both features and groups simultaneously

I Extension of SAOLA for streaming features arriving in groups
I Feature groups appear in a sequential order, one at a time

I Must optimize selections within each group, as well as between groups
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Group–SAOLA [YWDP16]

I Extends notion of relevance to groups:
I irrelevant: I(C;Gi) = 0

I simplified as I(C;Fi)  �, 8Fi 2 Gi

I redundant: I(C;Gi|G \Gi) = 0
I simplified as I(Fj ;C) > I(Fi;C) and I(Fj ;Fi) � I(Fi;C) 8Fi 2 Gi, 9Fj 2 Gj ,

where Gj 2  ti , the set of groups selected at time ti�1

I Defines intra–group feature redundancy
I redundant: I(C;Fi|S) = 0 for some S ⇢ Gi \ {Fi}

I simplified as I(Y ;C) > I(Fi;C) and I(Fi;Y ) � I(Fi;C) for some Y 2 Gi
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Group–SAOLA [YWDP16]
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Instance–wise Feature Selection
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Problem Definition

I Informative features may vary by data instance (e.g., heart failure prognosis across
subpopulations [KLA+15])

I Ease of interpretation of popular but complex machine learning models
I Goal: identify small number of relevant features that explain machine learning model

output for each data instance individually during testing

Training: all candidate features are available upfront
Testing: different (fixed or varying) number of features are selected for each data
instance and used for model interpretation
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Instance–wise Feature Selection

I Representative methods include:
I SHAP [LL17]
I L2X [CSWJ18]
I INVASE [YJVdS18]
I Mixture of Deep Neural Networks [XW19]
I Instance–wise Feature Grouping [MWZ+20]
I GroupFS [XLTW22]
I DIWIFT [LCZ+23]

I Challenges:
I Access to all features of test instance is needed before selecting relevant subset
I Scalability issues for large feature spaces
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A Unified Approach to Interpreting Model Predictions [LL17]

I Numerous model interpretability methods, but unclear how they are related or how
to choose one over another

I Goal: unified framework for interpreting predictions
I new class of additive feature importance measures unifying six existing methods
I theoretical results showing the existence of a unique solution for this class with

a set of desirable properties
Figure source: LIME [RSG16]



44/146

A Unified Approach to Interpreting Model Predictions [LL17]

I Let f be the prediction model to be explained, and g the explanation model
I Explanation models use simplified vectors x

0 that map to the original instances
through a mapping function x = hx(x0)

I Local methods (e.g., LIME [RSG16]) explain f(x), 8 data instance x

I Try to ensure g(z0) ⇡ f(hx(z
0)) whenever z0 ⇡ x0

I Additive feature attribution methods use a linear function of binary variables, i.e.,
g(z0) = �0 +

PM
i=1 �iz

0
i, where z

0 2 {0, 1}, M is the number of simplified input
features, and � 2 R, as explanation model

I Each feature i is attributed effect �i

I The effects of all feature attributions are summed up to approximate f(x)
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Example Additive feature attribution method: LIME [LL17]

I LIME samples instances, gets predictions using f , and weighs them by the proximity
to the instance being explained

I Interprets individual model predictions by locally approximating f

I Mapping hx depends on input type
I For bag of words, converts a vector of

1’s or 0’s into word counts if x0 = 1, or
0 if x0 = 0

I For images, a set of super pixels is used;
if x0 = 1 the super pixel’s original value
is used, and the average of neighboring
pixels is used otherwise
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Classic Shapley Value Estimation [LL17]

I Shapley regression
I Feature importance for linear models in the presence of multicollinearity
I Model is trained on all feature subsets S ✓ F

I Importance value represents the effect on the model prediction of including that
feature

I Computationally expensive!
I Shapley sampling

I Sampling approximations
I Approximating the effect of removing a variable from the model by integrating

over samples from the training dataset
I Eliminates the need to retrain the model and allows fewer than 2|F | differences

to be computed
I Quantitative input influence

I Nearly identical to Shapley sampling values
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SHAP (SHapley Additive exPlanation) Values [LL17]

I Shapley values of a conditional expectation function of model f
I Obtained by solving for the only one possible explanation model g

I Mapping, hx(z0) = zS , where zS has missing values for features not in the set S
I Since most models cannot handle arbitrary patterns of missing input values,

f(zS) is approximated with E[f(z)|zS ]

I Sample explanation of how to get from the base value E[f(z)] (if we did not know
any features to the current output), using feature x1, features x1 and x2 etc

I When the model is non–linear or features are not independent, the order in which
features are added to the expectation matters

I SHAP values arise from averaging the � values across all possible orderings!
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SHAP (SHapley Additive exPlanation) Values [LL17]

I Why only one possible explanation model g?
I Two properties in addition to local accuracy

I Missingness: constrains features where x0
i = 0 to have no attributed impact

I Consistency: if a model changes so that some simplified input’s contribution increases
(or stays the same regardless of the other inputs), that input’s attribution does not
decrease

I Values �i(f, x) =
P

z0✓x0
|z0|!(M�|z0|�1)!

M ! [fx(z0)� fx(z0 \ i)] derived using com-
bined cooperative game theory

I |z0| is the number of non–zero entries in z0, and z0 ✓ x0 represents all z0 vectors where
the non–zero entries are a subset of the non–zero entries in x0

I Exact computation of SHAP values is challenging
I Model–agnostic approximation methods (Shapley sampling and Kernel SHAP)
I Model–type–specific approximation methods (Max SHAP, Deep SHAP)
I Feature independence and model linearity to simplify the computation of ex-

pected values
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Learning to Explain (L2X) [CSWJ18]

I Goal: maximize mutual information between response variable of model and selected
features, as function of choice of selection rule

max
E

I(XS ;Y ) subject to S ⇠ E(X)

I Hyperparameter k : represents number of explaining features
I Applicable to classification/regression

I Solution: variational approximation
I Derive lower bound on mutual information
I Approximate model distribution conditioned on feature subset by rich family of

functions
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Learning to Explain (L2X) [CSWJ18]

I Relaxed problem

max
E,Q

E [logQS(Y |XS)] subject to S ⇠ E(X)

I Main idea:
I Continuous approximation of feature subset sampling leads to

max
✓,↵

EX,Y,⇣ [log g↵(V (✓, ⇣)�X,Y )] ,

where g↵ is neural network that approximates model conditional distribution
and ✓ parameterizes explainer

I Learned explainer maps each data instance X to weight vector w✓(X)
I Features X for specific data instance ranked based on w✓(X)
I Keep k features with largest weights for explanation
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INstance-wise VAriable SElection (INVASE) [YJVdS18]

I Goal: minimize KL divergence between conditional distributions Y |X and Y |XS

inducing sparsity using an `0 penalty term

min
S(·)

Ex⇠pX

h
KL(Y |X = x || Y |XS(x) = xS(x)) + �||S(x)||

i

I Solution: actor–critic architecture with three neural networks
I Use baseline network for variance reduction
I Use predictor network to provide reward to selector network
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INstance-wise VAriable SElection (INVASE) [YJVdS18]

I Different number of relevant variables are selected for each data instance
I Can be used also for feature selection and prediction tasks
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Mixture of Deep Neural Networks [XW19]

I L2X and INVASE do not constrain
search space for each data instance

I Mixture of Deep Neural Networks
[XW19] limits number of possible rel-
evant feature subsets to K

I Each data instance x has unique
relevant feature subset

I Identify which model (model se-
lector neural network) out of K

(feature subset selector neural net-
works) data instance comes from

I Select most relevant feature sub-
ject based on model sensitivity’s
magnitude
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Group FS [XLTW22]

I Each data instance may be associated with different set of relevant features
I Hard to understand feature importance pattern for entire data distribution
I INVASE + K–means:

I Train instance–wise feature selector for each data instance
I Apply K–means clustering to all feature selectors
I Assigned cluster center is group–wise feature selector

I Mixture of Experts selector:
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DIWIFT [LCZ+23]

I Feature–level influence function: influence of perturbation (xi, yi) ! (xi + ���i, yi)
on loss

I Base pre–trained model
w/o feature selection

I Self–attention network
outputs instance–wise
feature selection proba-
bilities

I Compute influence func-
tion


