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Tutorial Objectives

v

Contrast feature selection to , and introduce related nomenclature

v

Overview state—of—the—art and summarize research progress on this area

» Draw connections to recent trends in machine learning (e.g., model interpretability,
fairness)

v

Identify challenges and for future work
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Tutorial Outline

» Introduction » Instance—wise feature acquisition
» Typical machine learning problem » Problem definition
» Feature selection and variants » Static approaches
» Applications and main challenges » Dynamic methods
» Online/Streaming feature selection » Advanced Topics
» Problem definition » Model interpretability
» Main idea & methods » |ncorporating fairness constraints
» Variants (e.g., streaming data, fea- » Dealing with structure (e.g.,
ture interactions, group feature se- Bayesian network classification,
lection) hierarchical classification)
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Relevant Tutorials

» Explaining Machine Learning Predictions: State-of-the—art, Challenges, Opportuni-
ties [at NeurlPS 2020]
» Focused on post hoc explainability, and discusses among others how features
contribute towards a prediction
> https://explainml-tutorial.github.io/neurips20
» Subset Selection in Machine Learning: Theory, Applications, and Hands On [at
AAAI 2021]
» Focused on the theoretical underpinnings of subset selection and discussed
related applications, such as active and human assisted learning
> https://explainml-tutorial.github.io/aaai2l
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S
Typical Machine Learning Problem

» Training set D consisting of (x,y) pairs

» Features x are usually represented as fixed—
length numeric feature vectors
» Labels y are typically modeled as integers -

» Goal: Learn function f : * — y so the label(s) ﬁo |: Model Training

of unseen instances can be predicted N

» A loss function (e.g., zero—one) is selected Predicted Labels

» The empirical risk is then minimized
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N
Feature Selection

» There are many “characteristics’ that can help us recognize a from a , e.g.,

v

Overall size

» Existence of whiskers
» Shape of ears

> etc

» Feature selection: select subset of elements in & that can be used to derive a
good model

» Features must be “as good as possible” wrt some criterion C
» Sparse wrt to @
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Benefits of Feature Selection

» As the number of features becomes large:
» Learning models tend to overfit
» High storage requirements and computational costs

» Distances lose meaning

» This is where feature selection comes in
» Remove irrelevant and redundant features
» Enhance generalization performance
» Increase computational efficiency (i.e., speed up the learning process)
» Decrease memory storage
» Improve model interpretability
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Feature Selection Variants

» Dimensionality reduction (e.g.,
Principal Component Analysis)

/ Helght

Weight

Color

!&

PC,

» Standard (offline) supervised feature

selection

All Features

Feature Selection

B <P<IX]

Final Features
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Dimensionality Reduction

» Project original high dimensional features to with low dimension-
ality

» Newly constructed feature space is usually combination of original fea-
tures
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Standard (Offline) Supervised Feature Selection [GEO03]

» Feature subsets evaluated wrt information content, predictive accuracy of a given

classifier or both

» Filter methods: independent of learning algorithm
» Wrapper methods: iteratively assess quality of selected features based on clas-

sifier's learning performance
» Embedded methods: embed feature selection into learning algorithm

> feature subset satisfying constraint is maintained

Training: all candidate features are available upfront
Testing: same final selected features used for classification
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-
Applications

» Webspam page detection (16 million features)
[WCPO6]

» Educational data mining for predicting student
performance (> 29 million features) [SNMR*10]

» Hot topics detection in social media

» Bionformatics (full set of features is hard to ac-
quired due to high cost of wet lab experiments)

» Planetary imaging, online visual tracking, etc
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Main Challenges

» Exhaustive search over the entire feature space is computationally expensive in high—
dimensional settings
» Data instances and/or features may not be available in advance (e.g., online/streaming
setings) or may be missing
» In practise (e.g., medicine and criminal justice) features have an associated cost
» Acquisition (e.g., medical tests, evidence collection)
» Privacy (e.g., revealing personally identifiable information)
» Fairness (e.g., may amplify bias)
» Energy consumption (e.g., communication, storage, or computational cost)
» Concept/distribution drift
» Feature dependencies (e.g., multi—collinearity, group structure, multiview settings)
» Predictive power of different feature subsets may vary by subgroups of data instances

(e.g., prognosis for different subpopulations)
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Online/Streaming Feature Selection
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DS
Problem Definition [HZL*18]

» Also known as incremental feature selection

» Goal: choose subset of features from larger set of potentially redundant features
without access to full feature space in advance

Training: features arrive one at a time/batches
Testing: same final selected features used for classification

Final Features

Cl-CT -1 T 1 T T
Training Testing
» Representative methods can be categorized as or
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S
Threshold—based Streaming Feature Selection

» Newly arriving feature is selected if is

» Representative methods include:

Grafting [PLTO03]
Alpha—investing [ZFSUQ5]
OSFS / Fast-OSFS [WYD'12]
SAOLA [YWDP16]
OSSFS-DD [ZZYW?22]

v

vV vyVvyy
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DS
Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

» Features are categorized into four disjoint groups:

> cP(C=c¢|S=sF=fi))=PC=c¢|S=s)foral SCF\{F;}

> . if above condition not met

> : has Markov blanket M (i.e., P(F;|M,Y) = P(F;|M) for all Y €
F\ (M{UF;})) within F

> : P(C =q¢lS =s,F;, = fi) # P(C = ¢|S = s) for some
S F\{F}
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DS
Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

» Goal: At each step ¢;, maintain minimum size feature subset Sf. that maximizes
predictive classification performance
> Key steps:
» Determine relevance of feature F; to class label C
» If P(C|F;) = P(C), then discard F;
> Else, check if F; is redundant wrt already selected features
» If I} is relevant and not redundant, add it to the selected feature subset
» Pruning step: find the subset  that maximizes the probability P(C|()
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DS
Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

» Maintaining minimum size feature subset at each step requires examining

» Does not scale with number of features
» Therefore, problem is rewritten in terms of mutual information

» Mutual information between features is computed online using pairwise comparisons
based on heuristics

» Mutual information between features conditioned on all feature subsets need
not be computed

20/146



DS
Scalable and Accurate OnLine Approach (SAOLA) [YWDP16]

ALGORITHM 1: The SAOLA Algorithm.

1: Input: F;: predictive features, C: the class attribute;

é: a relevance threshold (0 < 6 < 1),

S7,_,: the selected feature set at time ¢;_1;
Output: S;;: the selected feature set at time ¢;;
repeat

get a new feature F; at time ¢;;

/*Solve Eq.(2)*/

if I(F;;C) < 6 then
Discard F;; D ; h f f F 1 label
Go to Step 21: etermine the of feature F; to class label C
end if
for each feature Y € S;, | do
/*Solve Eq.(3)*/ )
if I(YV;C) > I(F;;C) & I(F;;Y) > I(F;;C) then | Determine whether F; should
&szsrsthi;ﬁ\nd never consider it again! be retained given the current
ep 21; «
end if feature set S¢,_,
/*Solve Eq.(4)*/ . -
if I(F;;C) > I(Y;C) & I(F3;Y) > I(Y;C) then Check if some features within
v, =5, —Y; S¢,_, can be removed due to
end if the inclusion of new feature F;
end for
St =58 | UF;

: until no features are available
: Output S},;
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DS
Online Streaming Feature Selection (OSFS) [WYD*12]

» Goal: find optimal subset comprising non-redundant and strongly relevant features

» Features are categorized into four disjoint groups
» Unlike SAOLA, uses G? test to measure conditional independence

> Alternating two—step process

> . determine if streaming feature is relevant, and if so, add to
candidate feature set and Markov blanket of class label C
> . identify and remove redundant features in Markov blanket

of class label C

> Key insight: if a feature is marked redundant, it remains redundant even if some features
within its Markov blanket are removed later on

» Stopping criteria (prediction accuracy, maximum number of iterations, all fea-
tures examined)
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DS
Online Streaming Feature Selection (OSFS) [WYD*12]

» Redundancy analysis re—examines relevance of each feature in candidate set wrt class
label every time a new feature is added (time—consuming)

» Fast OSFS:
» If current streaming feature (as opposed to each and every feature) is relevant
but redundant, remove it from candidate feature set
» Else, add current feature in candidate feature set, and check redundancy of
each feature in candidate set wrt subsets that include newly added feature
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DS
Streaming Feature Selection via Dynamic Decision [ZZYW22]

» |n online streaming feature selection, discarded features are never considered again
» For weakly relevant features making a decision (selecting or discarding) imme-
diately is risky
» V new arriving feature f;
» If strongly relevant, add it into the candidate feature subset S¢

» If irrelevant, discard it immediately
» |f weakly relevant, add it into undetermined feature subset S;; and defer decision

Irrelevant Weakly Relevant Strongly Relevant

| 1 |
e Vo \/ A\

Feature Membership Degree

o A S Ve

I I I

Discarding Delaying Selecting
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DS
Streaming Feature Selection via Dynamic Decision [ZZYW22]

v

Compute membership score, v¢(d) € [0, 1], between feature f and the decision class
d using Normalized Mutual Information

» if 3 <vp(d) <1, fis strongly relevant to d

> if @ <v¢(d) < B, fis weakly relevant to d

» if 0 < vf(d) < a, then f is irrelevant to d

But how to choose proper thresholds of o and 87

v

» Assume normally distributed data, and features arriving at random

» Membership scores in the whole feature space are also normally distributed
with mean value p and standard deviation o

» Set a =p— o and 8

v

Without knowledge of the entire feature space the thresholds cannot be set a—priori

Thankfully, the mean and standard deviation can be dynamically updated V f;

v

e (t—2)x02 | +(ye—pe—1)(ye—pt)
’Nt:Nt—l‘F%andat:\/ Ea——
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DS
Streaming Feature Selection via Dynamic Decision [ZZYW22]

» Feature redundancy

» Two features fi and fo must contain some common information if
I(fu, fasd) < I(fi3d) + 1(f5 )

» If additionally I(f1, f2;d) < 23 remove the feature with the smaller value of
I(i3d) or I(f:d)

» Note: For each new feature, must check for redundancy between that feature
and every feature currently in S

» Feature uncertainty

» fiis added to Sy if a < I(f;;d) < B

» if 3f; € Sy s.t. I(fi, fj;d) > 2/, add both f; and f; into S¢

» Features that don't satisfy this are discarded when Sy reaches a threshold to
avoid Sy becoming too large
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S
Rough Set Theory—based Streaming Feature Selection

» Threshold—based streaming feature selection typically require

» Representative methods include:

» OFS—Density [ZHLW19a]
> OFS-A3M [ZHLW19b]
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DS
OFS—Density [ZHLW19a]

Upper
Approximation

» Two types of neighborhoods
» ¢ neighborhood (set {y|(x,y) < d}, where
A and § are a distance metric and
threshold respectively)
» k—nearest neighborhood (determined by a
fixed number of neighbors)

» Goal is to minimize the size of the boundary re-
gion when feature subset B is used
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DS
OFS—Density [ZHLW19a]

» New neighborhood relationship is defined
» All neighbors of x are sorted by distance (nearest to farthest) on feature
subset B
» Pairwise distance between consecutive points in this set is computed
» For some neighbor xj, (Inflection Point), pairwise distance decreases for the
first time
» The samples between = and xzj are used as the nearest neighbors of x
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DS
OFS—Density [ZHLW19a]

» At time t feature f; arrives, while S;_1 is the set of selected candidate features

» The goal is to select features from S;_1 U { f;} with
» High correlation

> Calculate dependency, vy, (D) of f; with target class label D
> Calculate the mean R(S;—1, D) of dependency values Vf; € S;_1
> Discard f: if the dependency of f; is less than R(S:—1, D)

» High dependency
> If 75t71U{ft}(D) > VS add ft to Si_1
» Low redundancy

» Discard all features f; in S; for which s, (D) — vs,—¢; (D) =0
> In practise, the equality constraint is relaxed to an interval restriction
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Sparse Online Learning

» Goal: learn sparse linear classifier from sequence of high—dimensional training in-

stances
» Number of features used by model must be given

Training: data instances arrive sequentially to iteratively update classifier function
Testing: same final selected features used for classification
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Online Feature Selection (OFS) [WZHJ13]

» Setting: Binary classification, where each data instance x; is to be classified by a
linear function sgn(w ' x;).
» Full vector is available for each data instance

» Goal: design effective strategy for OFS under constraint that classifier w; has at
most B nonzero elements, ||w;|| < B

» At most B features of x; are used for classification

» Simply truncating features with small weights can lead to many misclassifica-
tions
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DS
Online Feature Selection (OFS) [WZHJ13]

Algorithm 3 OFS via Sparse Projection. (OFS)
1: Input
« X: regularization parameter
o 7 step size » A linear classifier w; is trained online with

.B the. number of selected features at most B non—zero elements
2: Initialization

e w; =0 » When a training instance (x¢, y;) is misclas-

3 fort=12,....,T do sified, the classifier is first updated by online
. Receive x; . .
5 Make prediction sgn(wJ xt) gradient descent and then projected to a ;1
6:  Receive y; ball to ensure that the norm of the classifier
7 if yowix; <1 then is bounded
8 Wepr = (1— M))th-‘r NY+X¢ N
9 Wiepr = min{1, 520 e » If wy11 has more than B non—zero elements,
10: w1 = Truncate(W,11, B) only the B elements with the largest abso-
11: else | . .
ute weight are retained

12: Wit = (1 — An)wy g
13:  end if
14: end for
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Online Feature Selection (OFS) [WZHJ13]

3 fort=1,2,...,T do
4 Sample Z; from a Bernoulli distribution with prob-

ability e.
5. if Z; =1 then
6: Randomly choose B attributes C; from [d]
. 7. else
> Cha”enge: AIthOUgh on|y B welghts are 8 Choose the attributes that have non-zero values
non—zero, every attribute in x; must be o e etes Co={ix[wili #0}
3 end I
measured and com puted 10:  Receive X; by only requiring the attributes in C;
. . 11:  Make prediction sgn(w/ %;)
» Solution: B out of all d attributes are 122 Receive g
. 13 if yith X: < 1 then
randomly selected for a number of train- 14 Compute % as
ing data instances, while for the remain- - & o
. . . Xtli = =1,
ing data instances, the B attributes for T B I(lwei #0)(1—e)
which the classifier w; has non—zero 15 W= Wity
F W =W e

values are selected 16 Wi = min{l, i W

17: W1 = Truncate(Wit1, B)

18 else

19: Wip1 = Wy

20: end if

21: end for 34/146



DS
Second-order Online Feature Selection (SOFS) [WHMY17]

» Main drawback for OFS is its linear time complexity wrt feature dimensionality

» Goal: improve performance and time complexity using second—order online learning
techniques
» Main idea: use confidence-weighted (CW) method [DCPO08]
» Assume that weight vector of linear classifier follows
» Based on observed training example (x!,y'), CW updates mean vector and
covariance matrix of Gaussian distribution
» Ensure that probability of correct prediction on observed training example is
bigger than specified threshold 7 while staying close to previous distribution

(ﬂt+17 Et+1) = arg mlzn DKL(N(,U:, E),N(/Jzt, Et))

)

s.t. Priy‘sgn(w-x") > 0] > 7
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DS
Second-order Online Feature Selection (SOFS) [WHMY17]

» Kullback-Leibler (KL) divergence can be easily computed in terms of mean vectors
and covariance matrices

» Solve optimization problem with adaptive regularization of the prediction function
(AROW) for each new observed training example [CKD13]

» Update most confident B weight variables, whose covariance values ¥;; are among
the B smallest

> to store B smallest diagonal values of covariance
matrix 3¢

» SOFS has linear time complexity wrt
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DS
Group-SAOLA [YWDP16]

» Goal: select (in an online manner) feature groups which are sparse at the levels of
both features and groups simultaneously

» Extension of SAOLA for streaming features arriving in groups
» Feature groups appear in a sequential order, one at a time
» Must optimize selections within each group, as well as between groups
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DS
Group-SAOLA [YWDP16]

» Extends notion of relevance to groups:

> - I1(C;G;) =0
> simplified as I(C; F;) < 6,VF; € G;
>  I(C; GG\ G;) =0

> simplified as I(F};;C) > I(F;; C) and I(F}; F;) > I(F;;C) VF; € G, 3F; € G,
where G; € Wy, the set of groups selected at time ¢;_;

» Defines intra—group feature redundancy
> : I(C; F;|S) =0 for some S C G; \ {Fi}
> simplified as I(Y;C) > I(F;;C) and I(F;;Y) > I(F;;C) for some Y € G;
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DS
Group—SAOLA [YWDP16]

{ :l:];?luaé? 1;'(1';192’;;-123 ?1"; (;‘llps*/ r/*Evaluate group redundancy in {¥, , U G;}*/ §
' Dislcflrth» T ®| Determine the foFJZI to %1 co . .
Go to Step”39' of group G; to class label C if3F, € G, C ¥y ,, 3F € G;, I(F;C) > I(Fy; C)
end if ? R F, from G &I(E,Fk)ZI(Fk,C) then
emove F), from G,;
/*Evaluate feature redundancy in G;*/ end if !
(for j=1 to |G;| do ) /*Otherwise*/
if Y € (G — (F;}}, I(Y;C) > I(F};C) if I(F},; C) > I(F;C) & I(Fy; Fy) > I(F;; C) then
& I(Y; F;) > I(F;;C) then e iove i from Gy;
Remove F; from G;;

if G; is empty then

Continue; Identify du) v, =¥, -G
ﬁ:é)d ﬁf y features within group G; end if
therwise if G; is empty then :
if I(F;C) > I(Y;C) & I(F};Y) > I(Y;C) then Broak: Identify groups
Remove Y from Gi; end if ’ and features from the
_ end if ) end for currently selected groups |
end for
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Instance—wise Feature Selection
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e
Problem Definition

> features may vary by data instance (e.g., heart failure prognosis across
subpopulations [KLAT15])
» Ease of of popular but complex machine learning models

» Goal: identify small number of relevant features that explain machine learning model
output for each data instance individually during testing

Training: all candidate features are available upfront
Testing: different ( or ) number of features are selected for each data
instance and used for
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N
Instance—wise Feature Selection

» Representative methods include:
> SHAP [LL17]
L2X [CSWJ18]
INVASE [YJVdS18]
Mixture of Deep Neural Networks [XW19]
Instance-wise Feature Grouping [MWZ*20]
GroupFS [XLTW22]
DIWIFT [LCZ+23]

» Challenges:

vV VvV VvYyVvYVvYy

» Access to all features of test instance is needed before selecting relevant subset
» Scalability issues for large feature spaces
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A Unified Approach to Interpreting Model Predictions [LL17]

» Numerous model interpretability methods, but unclear how they are related or how

to choose one over another
Human makes decision

Model Data and Prediction

sneeze
headache

no fatigue

Explainer
(LIME)

sneeze
weight
headache

no fatigue
age

Explanation

» Goal: unified framework for interpreting predictions
» new class of additive feature importance measures unifying six existing methods
» theoretical results showing the existence of a unique solution for this class with

a set of desirable properties
Figure source: LIME [RSG16]
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A Unified Approach to Interpreting Model Predictions [LL17]

» Let f be the prediction model to be explained, and g the explanation model

» Explanation models use simplified vectors z’ that map to the original instances

through a mapping function = = h,(2')
» Local methods (e.g., LIME [RSG16]) explain f(z),V data instance =
> Try to ensure g(2') = f(h.(2")) whenever 2’ ~ 2’
» Additive feature attribution methods use a linear function of binary variables, i.e.,
g(Z') = ¢o + Zi‘il ¢iz,, where 2/ € {0,1}, M is the number of simplified input
features, and ¢ € R, as explanation model

» Each feature 7 is attributed effect ¢;
» The effects of all feature attributions are summed up to approximate f(x)
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DS
Example Additive feature attribution method: LIME [LL17]

» LIME samples instances, gets predictions using f, and weighs them by the proximity
to the instance being explained

» Interprets individual model predictions by locally approximating f

» Mapping h; depends on input type

[nstance beingy——pye cicion function £
gxplained 1o (0inown o LIME) » For bag of words, converts a vector of
. +,’. I 1's or 0's into word counts if ' =1, or
+-'I_ ® 0ifz’ =0

+ 0% . » For images, a set of super pixels is used;
| @ e® if 2/ = 1 the super pixel's original value
I«Learned X is used, and the average of neighboring

,’ explanation model pixels is used otherwise
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DS
Classic Shapley Value Estimation [LL17]

» Shapley regression
» Feature importance for linear models in the presence of multicollinearity
» Model is trained on all feature subsets S C F
» Importance value represents the effect on the model prediction of including that
feature
» Computationally expensive!
» Shapley sampling
» Sampling approximations
» Approximating the effect of removing a variable from the model by integrating
over samples from the training dataset
» Eliminates the need to retrain the model and allows fewer than 2/¥1 differences
to be computed

» Quantitative input influence

» Nearly identical to Shapley sampling values ro16



DS
SHAP (SHapley Additive exPlanation) Values [LL17]

» Shapley values of a conditional expectation function of model f
» Obtained by solving for the only one possible explanation model g
» Mapping, h;(z') = zg, where zg has missing values for features not in the set S
» Since most models cannot handle arbitrary patterns of missing input values,
f(zg) is approximated with E[f(z)|zs]

0 E[f(2)] E[f(2) | 21 = 1] f(x) E[f(2) | 212 =w12] B[f(2) | 2123 = 21,233
l 1 l l
—— o1 > (o8

o [ —

b4

» Sample explanation of how to get from the base value E[f(z)] (if we did not know
any features to the current output), using feature 1, features x; and z9 etc

» When the model is non-linear or features are not independent, the order in which
features are added to the expectation matters

> SHAP values arise from averaging the ¢ values across all possible orderings!



DS
SHAP (SHapley Additive exPlanation) Values [LL17]

» Why only one possible explanation model g7
» Two properties in addition to local accuracy

» Missingness: constrains features where x; = 0 to have no attributed impact

> Consistency: if a model changes so that some simplified input’s contribution increases
(or stays the same regardless of the other inputs), that input's attribution does not
decrease

"M —|2"|—1)! . . .
» Values ¢;(f,2) =D, icp %[h(z’) — fz(Z"\ 7)] derived using com-
bined cooperative game theory
> |2'| is the number of non-zero entries in 2/, and 2’ C x’ represents all 2’ vectors where

the non—zero entries are a subset of the non—zero entries in z’

» Exact computation of SHAP values is challenging
» Model-agnostic approximation methods (Shapley sampling and Kernel SHAP)
» Model-type—specific approximation methods (Max SHAP, Deep SHAP)
» Feature independence and model linearity to simplify the computation of ex-

pected values
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DS
Learning to Explain (L2X) [CSWJ18]

» Goal: maximize between response variable of model and selected
features, as function of choice of selection rule

mgxI(XS;Y) subject to S ~ £(X)

» Hyperparameter k : represents number of explaining features
» Applicable to classification/regression
» Solution: variational approximation

» Derive on mutual information
> by rich family of
functions
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Learning to Explain (L2X) [CSWJ18]

» Relaxed problem

r?z(l@xE [logQs(Y|Xs)] subjectto S~ E(X)

» Main idea:
> of feature subset sampling leads to
HHH(];X IEX,Y,( [IOg ga(v(97 C) © X7 Y)] ;
where g, is that approximates model conditional distribution

and 6 parameterizes explainer
» Learned explainer maps each data instance X to weight vector wy(X)
» Features X for specific data instance ranked based on wy(X)

» Keep k features with largest weights for explanation
50/146



DS
INstance-wise VAriable SElection (INVASE) [YJVdS18]

» Goal: minimize between conditional distributions Y'|X and Y| Xg
inducing using an £y penalty term

min By [KLOYIX = x| VXS0 =x509) 4 )|

» Solution: actor—critic architecture with three neural networks

» Use for variance reduction
» Use to provide reward to
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INstance-wise VAriable SElection (INVASE) [YJVdS18]

Back-propagation

Selected Label

Features Predictor estimation :

Network 1

Element-wise H
pmducl_ Predictor Loss
® (Cross Entropy)

Selection I
Features Probability Selection

Label
estimation

bel
o]
]
L]
]

Baseline Loss
(Cross Entropy)

» Different number of relevant variables are selected for each data instance

» Can be used also for feature selection and prediction tasks
52/146
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Mixture of Deep Neural Networks [XW19]

» L2X and INVASE do not constrain
search space for each data instance

Model Selection

» Mixture of Deep Neural Networks
[XW19] limits number of possible rel-
evant feature subsets to K

Sub Model

o

» Each data instance x has
relevant feature subset

» |dentify which model (model se-
lector neural network) out of K
(feature subset selector neural net- S——
works) data instance comes from g

» Select most relevant feature sub-
ject based on

Sub Model

HXH f(x:0)

O
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Group FS [XLTW22]

Each data instance may be associated with different set of relevant features
Hard to understand feature importance pattern for entire data distribution
INVASE + K-means:

» Train instance—wise feature selector for each data instance

» Apply K—means clustering to all feature selectors

» Assigned cluster center is group—wise feature selector

Mixture of Experts selector:

v

v

v

v

Bating]
. ? ’_Expert 1 Predictor
e »"’ I é 5“06
[x o} R
t w5
- o el L 100 O
“Expert 3 = O O
H 0
MOoE Selector Sampler Discriminator
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DIWIFT [LCZT23]

» Feature—level influence function: influence of perturbation (x;,v;) — (x; + 6, ¥;)

on loss

Pre-training Module

» Base o1 [@1a |-+ |21a {” —

@22 |+ |T2a i L0 Pre-trained Model
w/o feature selection z : @

Tl (Tnz |+ |Tnd

>
out p uts | nstan Ce_W| se ; Selection Probability Selected Features
. H P11 [Paz | |Pia H @1z |0t [X1d P
feature selection proba- i|om o lpn||paa] | |om| ||
bilities et I Sisie
. Pnlpn2|"'|Pnd|§ ‘ |zn2|‘ ‘
» Compute influence func- N FosursSeotonioats
] Back

tion
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