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Instance–wise Feature Acquisition
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Problem Definition

I Features may not be readily available (either during training or testing) because of
acquisition costs (e.g., medical tests, energy constraints)

I Goal: balance tradeoff between accrued acquisition cost and accuracy
I Two major classes of methods:

I Active feature acquisition [MSTPM05, AMPST11, GTN+19]
I Classification with costly features (also known as dynamic instance–wise feature

selection or instance–wise feature acquisition) [DADPG12, JPL20, LZC21b,
CQL+23]
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Active Feature Acquisition

I Goal: acquire missing feature values at training time to improve classification model
accuracy

I Learner may acquire value of jth feature Fi,j of ith data instance at cost Ci,j

Training: subset of features are available upfront for some instances
and all features are available upfront for others
Testing: all features are available and used for classification
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Active Feature Acquisition [MSTPM05]

I Goal: select instance–feature queries that will result in building most accurate model
at lowest cost
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Active Feature Acquisition [MSTPM05]

I Iterative procedure until stopping criterion is met, e.g., desirable accuracy has been
obtained

I Expected utility of query: improvement in model accuracy per unit cost

E(qi,j) =
KX

k=1

P (Fi,j = Vk)U(Fi,j = Vk)

U(Fi,j = Vk) =
A(F, Fi,j = Vk)�A(F )

Ci,j

I P (Fi,j = Vk) and A are unknown and estimated from training data
I Computing scores for all queries and identifying subset with highest score can be

computationally expensive ! randomly subsample queries to compute expected
utility
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Selective Data Acquisition for ML [AMPST11]

I Other measures may be more effective, e.g., Log Gain
promotes acquisitions which increase likelihood of correct
class prediction

LG(xi) = �
KX

k=1

I(ck, xk) log P̂ (ck|xi)

I Variations:
I Instance completion: same subset of feature values

are known for all instances, and subset of all remain-
ing feature values can be acquired at fixed cost

I Active information acquisition: both features and la-
bels are missing at training

I Active learning: all features are available, but labels
are missing at training
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Instance–wise Feature Acquisition

I Goal: sequentially gather subset of features (unique for each data instance) during
testing, before classifying it

Training: all candidate features are typically available upfront
Testing: features are acquired typically one at a time by expending cost
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Instance–wise Feature Acquisition Formulations

I Sequential decision–making mathematical frameworks (Markov Decision Process
(MDP), Partially Observable MDP (POMDP)) [AZ04, BZD05, JC07, DADPG12,
HDIE12, TS13, WTS14, SHY18, JPL20, CHAN21, LO21, LZC21b, GL23]

I Bayesian decision theoretical frameworks [CDYL04, CGD07]
I Algorithmic approaches (e.g., decision trees) [SL06, XKW+14]
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Instance–wise Feature Acquisition

Based on above approaches, policies/decision mechanisms (i.e., which feature value to
acquire next) have been derived

I AO⇤ algorithm [AZ04, BZD05]
I Imitation learning [HDIE12]
I Empirical risk minimization [TS13] & linear programming [WTS14, WBTS14]
I Neural networks [CDA16]
I Greedy methods [JC07, MTP+19, CQL+23, GCL23]
I Reinforcement learning (RL)

[DADPG12, SHY18, MOK+19, ZHLZP19, JPL20, CHAN21, GL23]
I Bridging gap between greedy and RL [LO21]
I Probabilistic Circuits [KN23]
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Learning Datum–wise Sparse Representations [DADPG11, DADPG12]

I Goal: limit number of features per data instance to improve classification speed and
prevent overfitting

I Easy–to–classify data instances can be classified with looking at few features
I More difficult data instances can be classified using more features

I In the context of supervised multi–class classification, learn datum–wise classification
function f✓(x) = (y, z) of parameters ✓

I y: predicted output
I z = (z1, . . . , zn): z

i = 1 implies that feature i has been taken into considera-
tion for computing label y on datum x

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi) + �
1

N

NX

i=1

||z✓(xi)||0

! combinatorial problem!
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Datum–wise Sparse Sequential Classification

Figure 2: Sequential process for problem with 4 features (f1, f2, f3, f4) and 3 possible labels

(y1, y2, y3)



67/146

Markov Decision Process (MDP) formulation

I Markov decision process (MDP): mathematical framework (S,A, Pa, Ra) for mod-
eling decision making when outcomes are partly random and partly under control of
decision maker

I Goal: MDP to classify data instance x
I Initially, we have no information about x (i.e., no features)
I At each step, we can choose to acquire particular feature of x or to classify x

I State (S): features already selected
Action (A): feature selection or assign label
Transition function (Pa): only defined for feature selection actions
Reward (Ra): negative of 0 � 1 loss for assigning label, and negative of feature
selection fixed cost



68/146

Markov Decision Process (MDP) formulation

I Find good policy for decision maker
I Determine function ⇡✓ that decision maker will choose when in state s to

maximize overall reward
I Optimal classifier ✓⇤ corresponds to the optimal MDP policy

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi) + �
1

N

NX

i=1

||z✓(xi)||0

= argmax
✓

1

N

NX

i=1

T✓(xi)+1X

t=1

r(xi, z
(t)
✓ (x)i,⇡✓(xi, z

(t)
✓ ))

I Use of classical MDP solution algorithms to find best classifier ✓⇤
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Proposed Solution

I Two main challenges:
I Number of states is infinite
I Reward function is only known for values of x in training set
! impossible to compute score function for all state–action pairs in tabular manner

I Outline:
I Linear approximation of value function of MDP
I Monte–Carlo approach to sample example states from learning space during

training
I Variant that considers feature selection in same order
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Some Results

Figure 3: Multi–class classification accuracy on three levels of sparsity for segment (19 features;

7 classes), vehicle (18 features; 4 classes), vowel (19 features; 11 classes), and wine (13 features;

3 classes) datasets.

I Experiments on datasets with maximum number of 60 features since learning is
quadratic wrt to number of features
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Extensions [DADPG12]

I Hard budget feature selection: fixed per–datum hard budget during inference

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi)+�
1

N

NX

i=1

||z✓(xi)||0 subject to ||z✓(xi)||0 6 M

I Cost–sensitive feature acquisition and classification: fixed cost to each feature and
misclassification cost depends on error made

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi) + �
1

N

NX

i=1

h⇠, z✓(xi)i
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Extensions [DADPG12]

I Group feature selection: choose certain number of groups of features, but not indi-
vidual features

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi) + �
1

N

NX

i=1

gX

t=1

(Ft ⇢ Z✓(xi))

! minimize number Ft groups present in actual set of selected features
I Relational feature selection: features organized in complex structures, e.g., subset of

features to be selected depend on previously acquired features (conditional features)
or cost of acquiring of subset of features depends on previously acquired features
(constrained features)

✓
⇤ = argmin

✓

1

N

NX

i=1

�(y✓(xi), yi) +
1

N

NX

i=1

X

f,f 02Z✓(xi)

Related(f, f 0)(�� �) + �
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Dropping Linear Approximation [JPL19, JPL20]

I Main idea: replace linear approximation of MDP value function with neural networks

Q
⇤(s, a) = Es0⇠t(s,a)


r(s, a, s0) + �max

a0
Q

⇤(s0, a0)

�

! neural network estimates Q
✓(s, a) jointly for all actions by minimizing MSE

`✓(B) =
1

|B|
X

(st,at,rt,st+1)2B

(qt �Q
✓(st, at))

2

I Deep reinforcement learning techniques to stabilize and speed–up learning
I Deep Q–learning: separate target network with parameters � and follows pa-

rameters ✓ with delay [LHP+15]

� = (1� ⇢)�+ ⇢✓

qt = rt +max
a

�Q
�(st+1, a)
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Dropping Linear Approximation [JPL19, JPL20]

I Double Q–learning: combine estimates Q
✓ and Q

� to reduce bias due to max
operator [VHGS16]

qt = rt +max
a

�Q
�(st+1, argmax

a
Q

✓(st+1, a))

I Dueling architecture: decompose Q–function into value and advantage func-
tions to accelerate and stabilize training [WSH+16]

Q
✓(s, a) = V

✓(s) +A
✓(s, a)� 1

|A|
X

a0

A
✓(s, a0)
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Dropping Linear Approximation [JPL19, JPL20]

I Retrace: efficiently utilize long traces of experience with truncated importance sam-
pling [MSHB16]

qt = rt + �E↵⇠⇡✓(st)

h
Q

�(st+1
, a)

i
+ �⇢̄t+1

h
qt+1 �Q

�(st+1, at+1)
i

⇢̄t+1 = min

✓
⇡(at+1|st+1)

µ(at+1|st+1)
, 1

◆
,

where ⇢̄t+1 is truncated importance sampling between exploration policy µ used
when trajectory was sampled and current policy ⇡
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Some Results

Figure 4: Performance of different versions of proposed algorithm for miniboone (50 features, 2
classes) and forest (54 features, 7 classes) datasets.

I Pretraining Q–values of classification actions and forwarding data instance to high–
performance classifier that uses all features improves performance

I Experiments on datasets with maximum number of 784 features



77/146

Extensions [JPL20]

I Average budget with specific target b:

min
✓

E [`(y✓, y)] s.t. E [z✓(x)]  b!

max
��0

min
✓

E [`(y✓, y) + �(z✓(x)� b)]

Main idea: ! iteratively perform gradient ascent in � and descend in ✓

1. For fixed ✓, optimize � using gradient E [z✓(x)� b]
2. For fixed �, apply reinforcement learning as before

I Missing features in training set: feature–selecting action is available only if corre-
sponding feature is present and updates are made only with estimates of available
actions
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Active Feature Acquisition w/ Generative Surrogate Models [LO21]

I Main idea: reformulate MDP as generative modeling task and optimize policy via
model–based approach

I Outline:
I Learn generative surrogate model (GSM) that captures dependencies among

features p(y, xj |xo)
I Use GSM to provide intermediate rewards

rm(s, i) = H(y|xo)� �H(y|xo, xi) (information gain)

I Use GSM to provide side information, i.e.,
! Confidence: current prediction ŷ and likelihood p(y|xo)
! Imputed values & uncertainties of unobserved features to guide exploration
! Utility of feature i: expected information gain
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Active Feature Acquisition w/ Generative Surrogate Models [LO21]

Figure courtesy of Dr. Junier Oliva, Computer Science Department, University of North
Carolina at Chapel Hill
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Active Feature Acquisition w/ Generative Surrogate Models [LO21]

I Proposed approach is non–greedy
I Surrogate model is agnostic to feature acquisition policy ! build prediction model

f✓(·) that takes both current state xo and side information as inputs
I Prediction model is simultaneously trained with policy, and weight sharing between

them learns better representations
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Some Results2

I Efficient Dynamic Discovery of High-Value Information with Partial VAE (EDDI)
[MTP+19]  greedy acquisition based on VAE

I Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding
(JAFA) [SHY18]  plain reinforcement learning optimization with Q–learning

2Slide courtesy of Dr. Junier Oliva, Computer Science Department, University of North Carolina at
Chapel Hill
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Enabling Instance–wise Feature Acquisition Orders [LZ21]

I Features are sequentially acquired one at a time
I Goal: jointly determine the order by which features should be acquired, the number

of features to acquire, and the classification strategy to be used for each data
instance during testing

I Our prior work [LZC21b, LZC21a] studied instance–wise feature acquisition when
the order by which featured are reviewed is fixed and common to all data instances
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Problem Description

I F , {F1, F2, . . . , FK}: set of features
I K: total number of features
I C 2 {c1, . . . , cL}: class variable
I e(Fk): cost of acquiring feature Fk

I Qij : cost of selecting class cj when class ci is true
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Optimization Setup

I Introduce random variables
I �: order by which features are acquired

e.g., If K = 3, then � = (F3, F1, F2) is a valid order
I �(R) 2 {0, . . . ,K}: last feature acquired before classification decision

e.g., �(R = 2) = F2 means stop after acquiring feature F2

I D�(R) 2 {1, . . . , L}: classification decision for data instance under considera-
tion based on �(R) features
e.g., {D�(R=1) = 1} deciding in favor of class c1 based on {F3, F1}

min�,�(R),D�(R)
J(�,�(R), D�(R))

J(�,�(R), D�(R)) = E
(

RX

k=1

e(F�(k)) +
LX

j=1

LX

i=1

QijP (D�(R) = j, C = ci)

)
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Optimum Solution Outline

I ⇡�(k) , [⇡1
�(k), . . . ,⇡

L
�(k)]: posterior prob vector w/ ⇡

i
�(k) , P (C = ci|F�(1), . . . , F�(k))

I Optimum feature acquisition strategy via dynamic programming
I Last stage

J̄K(⇡�K ) = g(⇡�K ),

I Any intermediate stage

J̄k(⇡�k) = min
⇥
g(⇡�k), Āk(⇡�k)

⇤

g
�
⇡�k

�
= min

16j6L

⇥
Q

T
j ⇡�k

⇤

Āk(⇡�k) = min
Fk+12Zk

⇥
e(Fk+1) +

X

Fk+1

�T (Fk+1|F�1 , . . . , F�k , C)⇡�k J̄k+1(⇡�k+1)
⇤

I Optimum classification strategy

D
⇤
�(R) = arg min

16j6L

⇥
Q

T
j ⇡�(R)

⇤
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Theoretical Results

I Function g($) is continuous, concave, and piecewise lin-
ear, and represented by set {QT

j }Lj=1 of L vectors
I Functions Āk(⇡�k), k = 0, . . . ,K � 1, are continuous,

concave, and piecewise linear
I At every stage k 2 {0, . . . ,K}, there exists a finite set

{↵i
k} of vectors such that

J̄k($) = min
i
[↵i

k$]

{↵i
k} =

nn
�
F�k+1

k

o
[ {QT

j }Lj=1

o
, k 2 {0, . . . ,K � 1}

{↵i
K} = {QT

j }Lj=1
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IFCO Algorithm

I The input vector sets {�F�(k)

k } can be computed using a standard point–based value
iteration algorithm [KLC98]
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Some Results

I Three DNA microarray datasets:
MLL (5, 848 features), Lung2
(3, 312 features), Car (9, 182 fea-
tures)

I One email dataset: Spambase (57
features)
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Some Results

I IMDB movie reviews dataset (89, 523 features)


