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Advanced Topics
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Advanced Topics

I Feature Acquisition
I Interpretability (e.g., [liy23])
I Dealing with structure (e.g., multidimensional Bayesian network classification

[ELZ21, EZ23])
I Reducing label uncertainty or learning to defer (e.g., dynamic classifier selection

[EZC23b, EZC23a])
I Feature Selection

I Incorporating fairness constraints (e.g., [GSSV22])
I Feature selection for hierarchical classification (e.g., [ZHZ+19])
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Is Instance–wise Feature Acquisition Interpretrable? [liy23]

I Using sparse set of features to classify data instances is essential for model inter-
pretability

I Observe which features contribute to each model output
I Sparsity can be achieved

I globally by incorporating regularizer to objective function
I instance–level, e.g., evaluate features along different decision paths in decision

trees
I Goal: assess interpretability of IFCO [LZ21]
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Interpretability of IFCO

I Model–based interpretability: humans can understand how model behaves and which
factors influence its decision–making process

I Post–hoc interpretability: relationships learned by model from given dataset



94/146

Dataset & Baselines

I For demonstration purpose, we use the German credit–risk dataset: classify people
as high or low credit risk

I Standard interpretable models:
I Logistic regression with L1–norm regularizer (LR)
I Decision tree (DT)
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Model–based Interpretability

I Sparsity: use sparse set of features for classification
I LR: global sparsity by using the L1–norm penalty
I DT: instance–level sparsity by evaluating features along different branches (greedy

learning of tree structure)
I IFCO: instance–level sparsity by using feature acquisition cost

PR
k=1 e(F�(k))

I Sparsity stability: interpretations are meaningless if sparsity varies drastically due to
small perturbation in training dataset
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Model–based Interpretability

I Simulatability: human can reason about decision–making process
I LR: dot product between feature vector and weight vector
I DT: hierarchical decision–making
I IFCO:
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Model–based Interpretability

I Modularity: ability to interpret meaningful portions of decision–making process in-
dependently

I LR: affine transformation of input feature space (i.e., wiFi)
I DT: each tree node is modular block that contributes to final classification

decision
I IFCO: sequential decision–making process based on sufficient statistic

⇡�⇤(k) =

⇣
�
�
F�⇤(k)|F�(1), . . . , F�⇤(k�1), C

�⌘
⇡�⇤(k�1)

�T (F�⇤(k)|F�⇤(1), . . . , F�⇤(k�1), C)⇡�⇤(k�1)

I Conditional independence assumption helps to decompose ⇡�⇤(k) into simple and mean-
ingful portions in terms of P (F�⇤(k)|C)
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Post–hoc Interpretability: Dataset–level Interpretations

I Partial dependence: marginal effects of individual feature on output of machine
learning model

PD(Fi) ⇡
1

N

NX

n=1

f̂(Fi, F̄
(n)
i )
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Post–hoc Interpretability: Dataset–level Interpretations

I Feature importance: number of times specific feature contributes to specific classi-
fication decision
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Post–hoc Interpretability: Dataset–level Interpretations

I Accuracy stability: test accuracy should be stable for any perturbations in training
data

I Gradient boosted trees (XGB) (black box) requires 3.4 times more features for a
just 0.1% improvement
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Post–hoc Interpretability: Prediction–level interpretations

I bad checking account status
I good credit history
I good savings account status

Correctly predicted ! low credit–risk

I bad checking account status
I bad credit history
I credit history of 36 months
I no known property

Correctly predicted ! high credit–risk
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Instance–wise Multidimensional Classification [ELZ21, EZ23]

I Many real–world applications (e.g., medical diagnosis, behavioral analysis)
I Bayesian networks used to describe relationships between variables
I Variables not directly observable but can be inferred via features

I Multi–dimensional Bayesian network classification [GBBL21] learns underlying un-
known Bayesian network structure between variables in X and features in F , and
then performs inference to compute the values of variables in X
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Problem Statement

I What happens if features are acquired at a cost?
I Goal: accurately classify each data instance during testing, while keeping total

feature acquisition cost minimum when data instance label corresponds to known
Bayesian network of multiple class variables
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Optimization Setup

I G = (X,E): known Bayesian network structure
I X , {X1, X2, . . . , Xn}: set of nodes corresponding to categorical variables
I E: set of directed edges to represent relationships between categorical variables
I F , {FX1

1 , . . . , F
X1
K1

, F
X2
1 , . . . , F

X2
K2

, . . . , F
Xn
1 , . . . , F

Xn
Kn

}: set of features, where
F

Xi
k is kth feature associated with variable Xi

I e
i
k: cost of acquiring kth feature associated with variable Xi

I C
Xi
l : class value for variable Xi
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Optimization Setup

I Introduce random variables
I Ri 2 {0, . . . ,Ki}: last feature acquired before classification decision for vari-

able Xi

I DRi 2 {1, . . . , Ni}: classification decision based on Ri features for variable Xi

minR,DRJ(R,DR)

J(R,DR) = E
(

nX

i=1

RiX

k=1

e
i
k +

X

j

X

m

MmjP (DR = j,C = cm)

)

I The computational complexity of directly solving the above problem is high
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Alternative Approach

I Determine features to be acquired and classification decision for each categorical
variable Xi in G

J(Ri, DRi) = E
"

RiX

k=1

e
i
k +

NiX

l=1

NiX

m=1

M
i
lmP (DRi = l, Ci = C

Xi
m )

#
,

I How to account for relationships between categorical variables? propagate decisions
across G

I Initially, acquire features and make classification decisions for in–degree 0 nodes
I Use such decisions to drive feature acquisition and classification decisions for

each in–degree greater than 0 node
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ISEC Algorithm

Figure 6: (a) Original Bayesian network; (b) Feature acquisition and classification for variables

of in-degree 0; (c) Feature acquisition and classification for variables of in-degree > 0
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Some Results
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Joint Feature Acquisition & Classifier Selection [EZC23b, EZC23a]

I ML models cannot accurately predict all test instances
I Problematic, especially in risk–sensitive applications (e.g., autonomous vehicles,

medical diagnosis)
I To the best of our knowledge, instance–wise feature acquisition assumes single loss

function
I How to jointly acquire the subset of features based on which each example is to be

classified and the appropriate classifier to be used for this task?
I Assess difficulty of classifying data instances to guide decision making process
I Easy–to–classify data instances: few features and simple classifier
I Hard–to–classify data instances: more features and powerful classifier
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Problem Description

I X , [X1, . . . , XF ]>: feature vector containing F features
I cf : cost of acquiring f th feature
I Y 2 {1, . . . , N}: label
I C , {C1, . . . , CZ}: set of Z classifiers

Objective: jointly determine subset of features to be acquired, classifier
to be used and the label of each example
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Optimization Setup

I Introduce random variables
I S 2 {0, . . . , F}: last feature acquired before label assignment
I US 2 {0, . . . , Z}: classifier selected after S features have been acquired
I DS 2 {1, . . . , N}: classification decision for data instance under consideration

based on S features

minS,US ,DSL(S,US , DS)

L(S,US , DS) = E
(

SX

f=1

cf +
ZX

z=1

�zI{US=z}h
z
S + �I{US=0}

⇥
NX

j=1

NX

i=1

⌦ijP (DS = j, Y = i)

)
,
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Optimum Solution

I �f , [�1
f , . . . ,�

N
f ]T : posterior probability vector with �

i
f , P (Y = i|x1, . . . , xf )

I Optimum label assignment strategy

D
⇤
S =1jN [⌦T

j �S ].

I Optimum classifier selection strategy

U
⇤
S =06t6Z [�tH

t
S(�S)].

I Optimum feature acquisition strategy via dynamic programming

L̄f (�f ) = min
h
l(�f ), Īf (�f )

i

l(�f ) = min
06t6Z

[�tH
t
f (�f )]

Īf (�f ) = cf+1 +
X

xf+1

L̄f+1(�f+1)⇧
T
f+1(xf+1)�f
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Intuition

Figure 7: Illustration of classifier selection and label assignment processes in the case of two label

values (i.e., N = 2), a simple classifier (region A), and a single powerful classifier (region B).
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SFCS Algorithm
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Some Results

I Good balance between accuracy and average number of acquired features
I Classifier selection in instance–wise feature acquisition enhances accuracy, but in

most cases, increases average number of acquired features
I Why does SFCS–DT performs worse than DT?
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Some Results

(a) Diabetes dataset. (b) Magic dataset.

Figure 8: Distribution of average Gini impurity reduction (GIR) per example. “All” denotes

baselines that use all features (e.g., SVM, DT)

I Feature with higher GIR is more significant than a feature with lower GIR, since
latter cannot be used to effectively separate labels
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Some Results

Figure 9: Distribution of number of acquired features during testing for the Spambase dataset

using SFCS–3X (NB, SVM, DT).

I Classify most instances using simple classifier with few features
I When number of acquired features increases, SFCS switches to other classifiers

(difficult-to-classify instances)
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Causal Feature Selection for Algorithmic Fairness [GSSV22]

I Algorithmic fairness is critical when supervised classification models are used to
support decisions in high–stake domains

I Not discrimination–aware feature selection methods prefer features that improve
accuracy

I Goal: identify subset of new features to include in a dataset without worsening its
biases against protected groups

I Meant to be used during training dataset creation time
I Key challenge: one or more non–protected features can facilitate reconstruction

of protected information (e.g., infer race from zip code)
I Main idea: perform conditional independence tests between different subsets

of features
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Causal Feature Selection for Algorithmic Fairness [GSSV22]

I Input dataset comprises:
I Target variable Y (e.g., credit score)
I Set of protected/sensitive features S

(e.g., gender and race)
I Set of admissible features A (e.g., ex-

pected monthly usage)
I Protected variables can affect the out-

come through admissible features
I Features that are neither admissible nor

sensitive (e.g., age and education)

I Two–phase method using conditional
independence tests

I Identify features that do not cap-
ture information about sensitive
attributes

I Ensure fairness even if features
capture some information about
sensitive attributes
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Causal Feature Selection for Algorithmic Fairness [GSSV22]

I Find variables Xi independent of S by performing
conditional independence test

I Variables whose paths from S are blocked by A do
not provide any new information about S

I Check if Xi is conditionally independent of S
given A

I Variables Xi not independent of S even given A can
leak sensitive information

I If independent of Y given A, no effect on the
classifier

I Any variable that is not independent of S and Y even
after intervening on A should not be added
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Causal Feature Selection for Algorithmic Fairness [GSSV22]

I Causal DAG G captures functional dependencies between variables
I Variable X1 causes X2 iff X1 ! X2 in G

I Joint probability distribution can be decomposed similar to Bayesian networks
I Variables X and Y are d�separated given Z, if all paths between X and Y are

blocked by Z

I Ideally, the prediction and protected attributes should be d�separated in G

I do-operator: assign value x to variable X (do(X) = x) in G
0 induced by G, with

the difference that all incoming edges of X have been removed
I A classifier is considered fair if for any collection of values ↵ of A and output y0

P (Y 0 = y|do(S) = s, do(A) = ↵) = P (Y 0 = y|do(S) = s0, do(A) = ↵), 8A,S, Y 0

I Testing for causal fairness requires fully specified causal graphs (not available in
practise)

I Use conditional mutual information instead
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Causal Feature Selection for Algorithmic Fairness [GSSV22]

I Given A, D = A [T is causally fair if the Bayes optimal predictor Y 0, trained on
D satisfies causal fairness with respect to sensitive attributes S

I Goal: identify largest subset T such that Y 0, trained using these variables is fair
I New node Y

0 is added to G

I All features that impact the classifier output are made parents of Y 0
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Feature Selection for Hierarchical Classification [ZHZ+19]

I Large–scale classification tasks comprise hun-
dreds, thousands, or even tens of thousands of
class labels

I Class labels are structured (often in a tree)
I Class hierarchy divides the classification

task into small and easy subtasks
I Goal: Feature selection for hierarchical classifi-

cation tasks
I Relevant features may differ among classes
I Need to select different features for different

subtasks
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Feature Selection for Hierarchical Classification [ZHZ+19]

I Feature selection as penalized optimization

I min
W

L(XW,Y) + �R(W)

I Empirical loss L (e.g., logistic,
hinge, cross–entropy loss)

I Regularizer R and positive
constant �

I Structural sparsity with
`2,1�norm

I Goal: minimize
PN

i=0 (kXiWi �Yik2F + �kWik2,1)
I Closed form solution obtained for least squares loss

I Feature weight matrix Wi is computed for each internal node i

I Data instances of the ith node: Xi = [x1;x2; . . . ;xmi ]
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Feature Selection for Hierarchical Classification [ZHZ+19]

I Top–down recursive strategy
I Node ith’s top–ranked (w.r.t kwi

jkF ) features are selected
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Feature Selection for Hierarchical Classification [ZHZ+19]

I Hierarchical regularization with parent–child relationship
I Parent–child classes are similar to each other; should share common features
I Relationship is incorporated into regularizer:

PN
i=1 kWi �Wpik2F

I Hierarchical regularization with sibling relationship
I Siblings come from different subtrees
I Discriminative features must be selected for each sibling
I Hilbert–Schmidt Independence Criterion to penalize dependence between

selected features at sibling nodes
I Hierarchical regularization with family relationship

I Both parent–child and sibling relationships between categories incorporated
into the optimization problem
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Summary and Conclusion
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Still about Feature Selection vs Feature Acquisition?

I Global Feature Selection
I Identify, during training, a sub-

set of features (common across in-
stances)

I Online/streaming methods when
full feature set unavailable at train-
ing

I Instance–wise Feature Selection
I Identify, during testing, small sub-

set of features for each data in-
stance (varies between instances)

I Given a test instance, all of its fea-
tures must be available

I Active Feature Acquisition
I During training (related

to feature selection with
missing values)

I During testing, learned
model is used

I Instance–wise Feature Acquisition
I Different features acquired, during testing,

for each data instance
I Classification with costly features /

Dynamic instance–wise feature acquisition
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Feature Selection vs Feature Acquisition Visualized



130/146

Key Takeaways

I Traditional feature selection is conducted during training
I Feature acquisition 6= feature selection

I can be performed either during training or testing
I Instance–wise feature selection 6= instance–wise feature acquisition
I Both feature selection and feature acquisition approaches face significant challenges
I Instance–wise feature acquisition has broader implications to ML
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(Non Exhaustive List of) Topics This Tutorial Didn’t Cover

I Feature acquisition in both training and testing [DMW10]
I Group feature acquisition during testing [AJD24]
I Multiview/multimodal feature selection [YGSC15, LMF16, KAH20] and acquisition

[NZC20]
I Active feature acquisition for time series data [LO21, BBS22, KCV+23]
I Feature selection (prompting) for large language models
I Knowledge–driven feature acquisition
I Causality and feature selection
I Feature selection/acquisition for non–linear models

I Quantifying feature importance is difficult
I Interpreting findings becomes challenging
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Tutorial Slides

I Our coverage of state–of–the–art and challenges we identify are not exhaustive
I The slides can be found at: https://www.cs.albany.edu/~cchelmis/tutorials/

sdm/2024/
I Suggested citation:

Daphney–Stavroula Zois, Charalampos Chelmis, “From Feature Selection to Instance–
wse Feature Acquisition”, Minitutorial at SIAM International Conference on Data
Mining (SDM), Houston, TX, April 2024.

https://www.cs.albany.edu/~cchelmis/tutorials/sdm/2024/
https://www.cs.albany.edu/~cchelmis/tutorials/sdm/2024/
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