

Chapter 2: Intro to Relational Model

Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan

Thursday, January 31, 2013

Chapter 2: Introduction to the Relational Model

- Structure of Relational Databases
 - relation
 - attributes
 - relation schema / relation instance
- Database Schema
- Keys
 - superkey / candidate key / primary key / foreign key
- Schema Diagrams
- Relational Query Languages
- Relational Operations
 - selection / projection / natural join / Cartesian product/ union
 - composition of operators

Example of a Relation

	+	+		attributes (or columns)
ID	name	dept_name	salary]
10101 12121 15151 22222 32343 33456 45565 58583 76543 76543 76766 83821	Srinivasan Wu Mozart Einstein El Said Gold Katz Califieri Singh Crick Brandt	Comp. Sci. Finance Music Physics History Physics Comp. Sci. History Finance Biology Comp. Sci.	65000 90000 40000 95000 60000 87000 75000 62000 80000 72000 92000	tuples (or rows)
98345	Kim	Elec. Eng.	80000	

Attributes

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be **atomic**; that is, indivisible
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations

Relation Schema and Instance

 $\blacksquare A_1, A_2, \dots, A_n \text{ are attributes}$

 $R = (A_1, A_2, ..., A_n)$ is a relation schema

Example:

instructor = (*ID*, *name*, *dept_name*, *salary*)

Formally, given sets D_1, D_2, \dots, D_n a relation *r* is a subset of $D_1 \times D_2 \times \dots \times D_n$

Thus, a relation is a set of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

- The current values (relation instance) of a relation are specified by a table
 - An element *t* of *r* is a *tuple*, represented by a *row* in a table

Relations are Unordered

Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
Example: *instructor* relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database Schema

A database consists of multiple relations

Information about an enterprise is broken up into parts

instructor student advisor

Bad design:

univ (*instructor -ID, name, dept_name, salary, student_Id*, ..) results in

- repetition of information (e.g., two students have the same instructor)
- the need for null values (e.g., represent an student with no advisor)
- Normalization theory (Chapter 7) deals with how to design "good" relation schemas

What is a key?

Dictionary

key¹ |kē|

 $noun\,(\,pl.\,\mathbf{keys}\,)$

1 a small piece of shaped metal with incisions cut to fit the wards of a particular lock, and that is inserted into a lock and turned to open or close it.

 a similar implement for operating a switch in the form of a lock, esp. one operating the ignition of a motor vehicle.

• short for KEY CARD .

 an instrument for grasping and turning a screw, peg, or nut, esp. one for winding a clock or turning a valve.

 a pin, bolt, or wedge inserted between other pieces, or fitting into a hole or space designed for it, so as to lock parts together.

2 one of several buttons on a panel for operating a typewriter, word processor, or computer terminal.

 a lever depressed by the finger in playing an instrument such as the organ, piano, flute, or concertina.

 a lever operating a mechanical device for making or breaking an electric circuit, for example, in telegraphy.

3 a thing that provides a means of gaining access to or understanding something. the key

to Jack's behavior may lie submerged in his unhappy past.

- an explanatory list of symbols used in a map, table, etc.
- a set of answers to exercises or problems.

Let $K \subseteq R$

K is a superkey of R if values for K are sufficient to identify a *unique* tuple of each possible relation r(R)

Example: {*ID*} and {ID, name} are both superkeys of *instructor*.

- Superkey *K* is a **candidate key** if *K* is *minimal* Example: {*ID*} is a candidate key for *Instructor*
- One of the candidate keys is selected to be the primary key.

• which one?

- A relation r₁ may have attributes that correspond to the primary key of another relation r₂. The attribute is called a foreign key.
 - r1: referencing relation
 - r₂: **referenced** relation
 - Foreign key constraint: foreign key values in the referencing relation must appear in the referenced relation.

which one?

- A relation r₁ may have attributes that correspond to the primary key of another relation r₂. The attribute is called a foreign key.
 - r1: referencing relation
 - r₂: referenced relation
 - Foreign key constraint: foreign key values in the referencing relation must appear in the referenced relation.

Schema Diagram for University Database

Relational Query Languages

- Procedural vs. non-procedural, or declarative
- "Pure" languages:
 - Relational algebra (Section 6.1)
 - Tuple relational calculus (Section 6.2)
 - Domain relational calculus (Section 6.3)
- Relational operators
 - selection
 - projection
 - natural join
 - Cartesian product
 - union

Selection of tuples

Relation r

Select tuples with A=B and D > 5

 $\sigma_{A=B \text{ and } D>5}$ (r)

Selection of Columns (Attributes)

Relation *r*:

13

Joining two relations – Cartesian Product

Relations r, s:

r x *s*:

A	В	С	D	Ε
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Union of two relations

Relations r, s:

r ∪ s:

Set difference of two relations

Relations r, s:

■ r — s:

Set Intersection of two relations

S

Relation r, s:

Natural Join of Two Relations

Relation *r* on relation schema *R*, relation *s* on relation schema *S*:

instructor_id	department_id
А	1
В	1
С	2

department_id	college
1	Х
2	Y

Natural Join

■ r⊠s

instructor_id	department_id	college
А	1	X
В	1	Х
С	2	Υ

find each pair of matching tuples

(i.e., tuples t_r from r and t_s from s such that

 t_r and t_s have the same value on each **common attribute** in $R \cap S$

output the concatenation of matching tuples

Relational Operations

Symbol (Name)	Example of Use	
σ (Calastian)	σ _{salary>=85000} (instructor)	
(Selection)	Return rows of the input relation that satisfy the predicate.	
II (Projection)	П _{ID, salary} (instructor)	
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.	
\bowtie	instructor 🖂 department	
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.	
×	instructor × department	
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)	
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$	
(entony	Output the union of tuples from the two input relations.	

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \ x \ s)$

rxs

- Structure of Relational Databases
 - relation
 - attributes
 - relation schema / relation instance
- Database Schema
- Keys
 - superkey / candidate key / primary key / foreign key
- Schema Diagrams
- Relational Query Languages
- Relational Operations
 - selection / projection / natural join / Cartesian product/ union
 - composition of operators