
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 11: Indexing and Hashing

Tuesday, February 5, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.
 Search Key - set of attributes used to look up records in a file.
 An index file consists of records (called index entries) of the form

 Two basic kinds of indices:
 Ordered indices: search keys are stored in sorted order
 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Index Evaluation Metrics

 Access types supported efficiently. E.g.,
 records with a specified value in the attribute (point query)
 or records with an attribute value falling in a specified range of

values (range query)
 Access time
 Insertion time
 Deletion time
 Space overhead

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts

 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Ordered Indices
 ordered index: index entries are stored sorted on the search key value.
 primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.
 Also called clustering index
 The search key of a primary index is usually but not necessarily the

primary key.
 secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called
non-clustering index.

 indexed-sequential file: ordered sequential file with a primary
index.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Dense Index Files

 Dense index — Index record appears for every search-key
value in the file.

 E.g. index on ID attribute of instructor relation

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Sparse Index Files
 Sparse Index: contains index records for only some search-key

values.
 Applicable when records are sequentially ordered on search-

key
 To locate a record with search-key value K we:

 Find index record with largest search-key value < K
 Search file sequentially starting at the record to which the index

record points

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Sparse Index Files (Cont.)

 Compared to dense indices:
 Less space and less maintenance overhead for insertions and

deletions.
 Generally slower than dense index for locating records.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices

B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

B+-Tree Index Files
 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

 Reorganization of entire file is not required to maintain
performance.

 (Minor) disadvantage of B+-trees:
 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages
 B+-trees are used extensively

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example of B+-Tree

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length
 Each node that is not a root or a leaf has between n/2

and n children.
 A leaf node has between (n–1)/2 and n–1 values

A B+-tree is a rooted tree satisfying the following properties:

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

B+-Tree Node Structure

 Typical node

 Ki are the search-key values
 Pi are pointers to children (for non-leaf nodes) or

pointers to records or buckets of records (for leaf nodes).
 The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-
key value Ki,

 Pn points to next leaf node in search-key order

Properties of a leaf node:

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Non-Leaf Nodes in B+-Trees
 For a non-leaf node with n pointers:

 All the search-keys in the subtree to which P1 points are less
than K1

 For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less
than Ki

 All the search-keys in the subtree to which Pn points have
values greater than or equal to Kn–1

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Queries on B+-Trees
 Find record with search-key value V.

1. C=root
2. While C is not a leaf node {

1. Let i be least value s.t. Ki ≥ V.
2. If no such exists,

– C = last non-null pointer in C
3. Else if (V= Ki)

– C = Pi +1

– else
– C = Pi

}
3. Let i be least value s.t. Ki = V
4. If there is such a value i, follow pointer Pi to find all desired records.
5. Else no record with search-key value k exists.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Queries on B+-Trees
 Find record with search-key value V.

1. C=root
2. While C is not a leaf node {

1. Let i be least value s.t. Ki ≥ V.
2. If no such exists,

– C = last non-null pointer in C
3. Else if (V= Ki)

– C = Pi +1

– else
– C = Pi

}
3. Let i be least value s.t. Ki = V
4. If there is such a value i, follow pointer Pi to find all desired records.
5. Else no record with search-key value k exists.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Queries on B+-Trees (Cont.)

 If there are K search-key values, the height of the tree is no
more than logn/2(K).

 A node is generally the same size as a disk block, typically 4
kilobytes
 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100
 at most log50(1,000,000) = 4 nodes are accessed in a

lookup.
 Contrast this with a balanced binary tree with 1 million search

key values — around 20 nodes are accessed in a lookup

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then
1. add the record to the main file (and create a bucket if

necessary)
2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node
3. Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)
 Splitting a leaf node:

 Keep the first n/2 (search-key value, pointer) pairs in the original
node, and place the rest in a new node.

 Let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

 If the parent is full (overfull), split it and propagate the split
further up (till a node that is not full is found).

 In the worst case the, root node may be split increasing the height
of the tree by 1.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)
 Splitting a leaf node:

 Keep the first n/2 (search-key value, pointer) pairs in the original
node, and place the rest in a new node.

 Let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

 If the parent is full (overfull), split it and propagate the split
further up (till a node that is not full is found).

 In the worst case the, root node may be split increasing the height
of the tree by 1.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)
 Splitting a leaf node:

 Keep the first n/2 (search-key value, pointer) pairs in the original
node, and place the rest in a new node.

 Let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

 If the parent is full (overfull), split it and propagate the split
further up (till a node that is not full is found).

 In the worst case the, root node may be split increasing the height
of the tree by 1.

After inserting Adams

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)
 Splitting a leaf node:

 Keep the first n/2 (search-key value, pointer) pairs in the original
node, and place the rest in a new node.

 Let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

 If the parent is full (overfull), split it and propagate the split
further up (till a node that is not full is found).

 In the worst case the, root node may be split increasing the height
of the tree by 1.

After inserting Adams

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)
 Splitting a leaf node:

 Keep the first n/2 (search-key value, pointer) pairs in the original
node, and place the rest in a new node.

 Let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

 If the parent is full (overfull), split it and propagate the split
further up (till a node that is not full is found).

 In the worst case the, root node may be split increasing the height
of the tree by 1.

Next step: insert entry with (Califieri,pointer-to-new-node) into parent

After inserting Adams

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

 Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N

 Copy N to an in-memory area M with space for n+1 pointers and n
keys

 Insert (k,p) into M
 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node
Nʼ

 Insert (K n/2,Nʼ) into parent N

 Read pseudocode in book!

Crick

Insertion in B+-Trees (Cont.)

Adams Brandt Califieri Crick Adams Brandt

 Califieri

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

B+-Tree Insertion

after insertion of “Lamport”

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file
 Remove (search-key value, pointer) from the leaf node if the bucket has

become empty
 If the node has too few entries due to the removal (underfull), and the

entries in the node and a sibling fit into a single node, then merge siblings:
 Insert all the search-key values in the two nodes into a single node (the

one on the left), and delete the other node.
 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node,

from its parent, recursively using the above procedure.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:
 Update the corresponding search-key value in the parent of the

node.
 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.
 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root (the tree height decreases).

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example of B+-tree Deletion

after deletion of “Gold”

 Node with Gold and Katz became underfull, and was merged with its sibling
 Parent node becomes underfull, and is merged with its sibling

 Value separating two nodes (at the parent) is pulled down when merging
 Root node then has only one child, and is deleted

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu”

 Leaf containing Singh and Wu became underfull, and borrowed a value Kim from its left sibling (rebalancing)

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

What would be the right separator for

...Kim and Mozart...?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

What would be the right separator for

...Kim and Mozart...?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

What would be the right separator for

...Kim and Mozart...?

What would be the right separator for

...El Said and Gold...?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

What would be the right separator for

...Kim and Mozart...?

What would be the right separator for

...El Said and Gold...?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files

Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Multiple-Key Access

 Use multiple indices for certain types of queries.
 Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on single
attributes:
1.
Use index on dept_name to find instructors with department

name Finance; test salary = 80000
2.
Use index on salary to find instructors with a salary of $80000;

test dept_name = “Finance”.
3.
Use dept_name index to find pointers to all records pertaining to

the “Finance” department. Similarly use index on salary. Take
intersection of both sets of pointers obtained.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Indices on Multiple Keys

 Composite search keys are search keys containing
more than one attribute
 E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either
 a1 < b1, or
 a1=b1 and a2 < b2

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Indices on Multiple Keys

 Composite search keys are search keys containing
more than one attribute
 E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either
 a1 < b1, or
 a1=b1 and a2 < b2

(ID, dept_name, salary)
1, Art, 20000
2, Art, 40000
3, Art, 60000
4, Art, 80000
5, Business, 20000
6, Business, 40000
7, Business, 60000
8, Business, 80000
9, Finance, 20000
10, Finance, 40000
11, Finance, 60000
12, Finance, 80000

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Indices on Multiple Attributes

 Can efficiently handle
 where dept_name = “Finance” and salary = 80000

 Can also efficiently handle
 where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle
 where dept_name < “Finance” and balance = 80000

Suppose we have an index on combined search-key
 (dept_name, salary).

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Indices on Multiple Attributes

 Can efficiently handle
 where dept_name = “Finance” and salary = 80000

 Can also efficiently handle
 where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle
 where dept_name < “Finance” and balance = 80000

Suppose we have an index on combined search-key
 (dept_name, salary).

(ID, dept_name, salary)
1, Art, 20000
2, Art, 40000
3, Art, 60000
4, Art, 80000
5, Business, 20000
6, Business, 40000
7, Business, 60000
8, Business, 80000
9, Finance, 20000
10, Finance, 40000
11, Finance, 60000
12, Finance, 80000

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access

 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Static Hashing

 A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.

 Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of
 Insufficient buckets
 Skew in distribution of records.

 Although the probability of bucket overflow can be reduced, it cannot
be eliminated; it is handled by using overflow chaining (or bucket
chaining).

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of
bucket addresses. Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows, performance
will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing

Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Dynamic Hashing
 Good for database that grows and shrinks in size
 Allows the hash function to be modified dynamically
 Extendable hashing – one form of dynamic hashing

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 The length of the prefix grows and shrinks as the size of the
database grows and shrinks..

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Initial Hash structure; 1 bucket; bucket size = 2

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of “Mozart”, “Srinivasan”,
 and “Wu” records

0
1

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of “Mozart”, “Srinivasan”,
 and “Wu” records

0
1

 What if a record about
Einstein in Physics is
entered?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of Einstein record

00
01
10
11

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of Einstein record

00
01
10
11

What if (Katz, Comp. Sci.) and
(Brandt, Comp. Sci.) are inserted?

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of Einstein record

00
01
10
11

What if (Katz, Comp. Sci.) and
(Brandt, Comp. Sci.) are inserted?

Chaining!!

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing

 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization (hashing)
 Is it desirable to optimize average access time at the expense of

worst-case access time? (hashing)
 Expected type of queries:

 Hashing is generally better at point queries.
 If range queries are common, ordered indices are to be

preferred
 In practice:

 PostgreSQL supports hash indices, but discourages use due to
poor performance

 Oracle supports static hash organization, but not hash indices
 SQLServer supports only B+-trees

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing

Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Bitmap Indices

 designed for efficient querying on multiple keys
 Bitmap for each attribute has as many bits as records
 In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute (0 otherwise)

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices

 Index Definition in SQL

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Index Definition in SQL

 Create an index

 create index <index-name> on <relation-name>

 (<attribute-list>)

E.g.: create index b-index on branch(branch_name)
 Use create unique index to indirectly specify and enforce the

condition that the search key is a candidate key.
 Not really required if SQL unique integrity constraint is supported

 To drop an index

 drop index <index-name>

 Most database systems allow specification of type of index, and
clustering.

Tuesday, February 5, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts
 Ordered Indices
 B+-Tree Index Files
 Multiple-Key Access
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices
 Index Definition in SQL

Tuesday, February 5, 2013

