
©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

1
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions
 join types: inner join, left/right/full outer join
 join conditions: natural, on <predicate>, using

 Views
 Integrity Constraints

 primary key
 foreign key
 not null
 unique
 check <predicate>
 assertion

2
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of information.
 Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.
 Uses null values.

3
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

5
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

6
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result another
relation.

 Join type – defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

 Join condition – defines which tuples in the two relations match, and
what attributes are present in the result of the join.

7
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Joined Relations – Examples
 course inner join prereq on course.course_id = prereq.course_id

 course left outer join prereq on course.course_id = prereq.course_id

8

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Views

 In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

 A view provides a mechanism to hide certain data from the view
of certain users.

 A view of instructors without their salary
 create view faculty as
 select ID, name, dept_name
 from instructor

 Find all instructors in the Biology department
 select name
 from faculty
 where dept_name = ʻBiologyʼ

9
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier
 insert into faculty values (ʼ30765ʼ, ʼGreenʼ, ʼMusicʼ);
 This insertion must be represented by the insertion of the tuple
 (ʼ30765ʼ, ʼGreenʼ, ʼMusicʼ, null)
 into the instructor relation.

10
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

 Constraints on a Single Relation
 not null
 primary key

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, … Am
form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary keys).
 check (P), where P is a predicate

11

create table teaches (
 course_id varchar (8),
 instructor_id varchar (8),
 semester varchar (6),
 year numeric (4,0),
 classroom varchar (6) not null,
 primary key (course_id, instructor_id, semester, year),

// implies unique (course_id, instructor_id, semester, year),
 check (semester in (ʼFallʼ, ʼWinterʼ, ʼSpringʼ, ʼSummerʼ))
);

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.
 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there
exists a tuple in the department relation for “Biology”.

12

 create table course (
 course_id char(5) primary key,
 title varchar(20),
 dept_name varchar(20) references department
)

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Assertion

 create assertion <assertion-name> check <predicate>;

 Every loan has at least one borrower who maintains an account with a
minimum balance of $1000.00

 create assertion balance_constraint check
 (not exists (
 select *

 from loan
 where not exists (
 select *
 from borrower, depositor, account
 where loan.loan_number = borrower.loan_number
 and borrower.customer_name = depositor.customer_name
 and depositor.account_number = account.account_number
 and account.balance >= 1000)))

13
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions
 join types: inner join, left/right/full outer join
 join conditions: natural, on <predicate>, using

 Views
 Integrity Constraints

 primary key
 foreign key
 not null
 unique
 check <predicate>
 assertion

14
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

End of Chapter 4

15
Tuesday, February 19, 2013

