
©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

1
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions
 join types: inner join, left/right/full outer join
 join conditions: natural, on <predicate>, using

 Views
 Integrity Constraints

 primary key
 foreign key
 not null
 unique
 check <predicate>
 assertion

2
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of information.
 Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.
 Uses null values.

3
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

4
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

5
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

6
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result another
relation.

 Join type – defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

 Join condition – defines which tuples in the two relations match, and
what attributes are present in the result of the join.

7
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Joined Relations – Examples
 course inner join prereq on course.course_id = prereq.course_id

 course left outer join prereq on course.course_id = prereq.course_id

8

 course natural right outer join prereq

 course full outer join prereq using (course_id)

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Views

 In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

 A view provides a mechanism to hide certain data from the view
of certain users.

 A view of instructors without their salary
 create view faculty as
 select ID, name, dept_name
 from instructor

 Find all instructors in the Biology department
 select name
 from faculty
 where dept_name = ʻBiologyʼ

9
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty values (ʼ30765ʼ, ʼGreenʼ, ʼMusicʼ);

 This insertion must be represented by the insertion of the tuple

 (ʼ30765ʼ, ʼGreenʼ, ʼMusicʼ, null)

 into the instructor relation.

10
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

 Constraints on a Single Relation
 not null
 primary key

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, … Am
form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary keys).
 check (P), where P is a predicate

11

create table teaches (
 course_id varchar (8),
 instructor_id varchar (8),
 semester varchar (6),
 year numeric (4,0),
 classroom varchar (6) not null,
 primary key (course_id, instructor_id, semester, year),

// implies unique (course_id, instructor_id, semester, year),
 check (semester in (ʼFallʼ, ʼWinterʼ, ʼSpringʼ, ʼSummerʼ))
);

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.
 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there
exists a tuple in the department relation for “Biology”.

12

 create table course (
 course_id char(5) primary key,
 title varchar(20),
 dept_name varchar(20) references department
)

Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Assertion

 create assertion <assertion-name> check <predicate>;

 Every loan has at least one borrower who maintains an account with a
minimum balance of $1000.00

 create assertion balance_constraint check
 (not exists (
 select *

 from loan

 where not exists (
 select *

 from borrower, depositor, account

 where loan.loan_number = borrower.loan_number

 and borrower.customer_name = depositor.customer_name

 and depositor.account_number = account.account_number

 and account.balance >= 1000)))

13
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions
 join types: inner join, left/right/full outer join
 join conditions: natural, on <predicate>, using

 Views
 Integrity Constraints

 primary key
 foreign key
 not null
 unique
 check <predicate>
 assertion

14
Tuesday, February 19, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

End of Chapter 4

15
Tuesday, February 19, 2013

