

Chapter 8: Relational Database Design

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Tuesday, March 26, 2013

Chapter 8: Relational Database Design

Features of Good Relational Design

- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

Combine Schemas?

Suppose we combine *instructor* and *department* into *inst_dept*

Result is possible **repetition** of information

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

How to split *inst_dept* (*ID*, *name*, *salary*, *dept_name*, *building*, *budget*)?

dept(<u>dept_name</u>, building, budget)

- dept(<u>dept_name</u>, building, budget)
- inst(<u>ID</u>, name, salary, dept_name)

- dept(<u>dept_name</u>, building, budget)
- inst(<u>ID</u>, name, salary, dept_name)
- Why?

- dept(<u>dept_name</u>, building, budget)
- inst(<u>ID</u>, name, salary, dept_name)
- Why?
 - functional dependency:

How to split *inst_dept* (*ID*, *name*, *salary*, *dept_name*, *building*, *budget*)?

- dept(<u>dept_name</u>, building, budget)
- inst(<u>ID</u>, name, salary, dept_name)
- Why?
 - functional dependency:

 $dept_name \rightarrow building, budget$

How to split inst_dept (ID, name, salary, dept_name, building, budget)?

- dept(<u>dept_name</u>, building, budget)
- inst(<u>ID</u>, name, salary, dept_name)
- Why?
 - functional dependency:

 $dept_name \rightarrow building, budget$

How about splitting *inst(ID, name, salary, dept_name)* into the following?

- inst1(ID, name)
- inst2(name, salary, dept_name)

A Lossy Decomposition

Lossless-join Decomposition

- A decomposition of *R* into *R*₁ and *R*₂ is **lossless** if at least one of the following dependencies holds (**common attributes** form a **superkey** in R₁ or R₂) :
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

Goal – Devise a Theory for the Following

- Decide whether a particular relation *R* is in "good" form.
- If *R* is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - each relation is in good form
 - the decomposition is **lossless**
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

First Normal Form

Domain is **atomic** if its elements are considered to be indivisible units

Examples of non-atomic domains:

set of names, composite attributes

A relational schema R is in **first normal form** if the domains of all attributes of R are atomic

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

Functional Dependencies

The value for a certain set of attributes determines uniquely the value for another set of attributes.

• E.g: SSN \rightarrow name

Let *R* be a relation schema

 $\alpha \subseteq R$ and $\beta \subseteq R$

 $\alpha \rightarrow \beta$

The functional dependency

if and only if

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Example: Consider r(A,B) with the following instance of r.

$$\begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 3 & 7 \end{bmatrix} \quad \blacksquare \quad A \rightarrow B \text{ or } B \rightarrow A?$$

Functional Dependencies

The value for a certain set of attributes determines uniquely the value for another set of attributes.

• E.g: SSN \rightarrow name

Let *R* be a relation schema

 $\alpha \subseteq R$ and $\beta \subseteq R$

 $\alpha \rightarrow \beta$

The functional dependency

if and only if

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Example: Consider *r*(A,B) with the following instance of *r*.

$$\begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 3 & 7 \end{bmatrix} \qquad A \rightarrow B \text{ or } B \rightarrow A?$$

Functional Dependencies (Cont.)

- A functional dependency is **trivial** if it is satisfied by all instances of a relation
 - Example:
 - name → name
 - ID, name \rightarrow ID
 - In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

Closure of a Set of Functional Dependencies

Given a set *F* of functional dependencies, other functional dependencies are implied by *F*.

• If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$

- The set of all functional dependencies implied by F is the closure of F.
- We denote the closure of F by F⁺.
- Is F+ a superset of F?

Closure of a Set of Functional Dependencies

- Given a set *F* of functional dependencies, other functional dependencies are implied by *F*.
 - If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$
- The set of all functional dependencies implied by F is the closure of F.
- We denote the closure of F by F⁺.
- Is F+ a superset of F?

yes

Boyce-Codd Normal Form

A relation schema *R* is in BCNF with respect to a set *F* of functional dependencies if for **each nontrivial** FD $\alpha \rightarrow \beta$ in *F*⁺, α is a superkey for *R*

Is the following in BCNF?

instr_dept (ID, name, salary, dept_name, building, budget)

Boyce-Codd Normal Form

A relation schema *R* is in BCNF with respect to a set *F* of functional dependencies if for **each nontrivial** FD $\alpha \rightarrow \beta$ in *F*⁺, α is a superkey for *R*

Is the following in BCNF?

instr_dept (*ID, name, salary, dept_name, building, budget*)

No, because $dept_name \rightarrow building$, budget, but $dept_name$ is not a superkey

Given:

instr_dept (*ID, name, salary, dept_name, building, budget*) and *dept_name→ building, budget,* How to split *instr_dept?*

Given:

instr_dept (*ID, name, salary<u>, dept_name</u>, building, budget*) and *dept_name→ building, budget,* How to split *instr_dept?*

dept (dept name, building, budget)

Given:

instr_dept (*ID, name, salary<u>, dept_name</u>, building, budget*) and *dept_name→ building, budget,* How to split *instr_dept?*

dept (dept name, building, budget)

instr(<u>ID,</u> name, salary, dept_name)

Given:

instr_dept (<u>ID, name, salary, dept_name, building, budget</u>) and *dept_name→ building, budget,* How to split *instr_dept*?

dept (dept name, building, budget)

budget) instr(<u>ID,</u>name, salary, dept_name)

Is it a lossless decomposion?

Given:

instr_dept (*ID, name, salary<u>, dept_name</u>, building, budget*) and *dept_name→ building, budget,* How to split *instr_dept*?

dept (dept name, building, budget)

Is it a lossless decomposion?

Given schema *R* and a non-trivial dependency $\alpha \rightarrow \beta$ that causes a violation of BCNF.

We decompose *R* into:

- (α U β)
- (R (β α))

instr(ID, name, salary, dept_name)

Given:

instr_dept (*ID, name, salary<u>, dept_name</u>, building, budget*) and *dept_name→ building, budget,* How to split *instr_dept*?

dept (dept name, building, budget)

Is it a lossless decomposion?

Given schema *R* and a non-trivial dependency $\alpha \rightarrow \beta$ that causes a violation of BCNF.

We decompose R into:

- (α U β)
- (*R*-(β-α))

instr(<u>ID</u>, name, salary, dept_name)

- In our example,
 - $\alpha = dept_name$
 - $\beta = building, budget$
 - (α U β) = (*dept_name*, building, budget)
 - (*R*-(β-α)) = (*ID*, name, salary, dept_name)

BCNF and Dependency Preservation

- Functional dependencies are costly to check unless they pertain to only one relation
 - e.g., Given R1=(J, K), R2=(K, L), F={ $JK \rightarrow L$ } is expensive to check since it requires R1 \bowtie R2
- If it is sufficient to test functional dependencies on each individual relation of a decomposition, then that decomposition is *dependency preserving*.
- It is not always possible to achieve both BCNF and dependency preservation

e.g., R(J, K, L) $F = \{JK \rightarrow L,$ $L \rightarrow K\}$

BCNF and Dependency Preservation

- Functional dependencies are costly to check unless they pertain to only one relation
 - e.g., Given R1=(J, K), R2=(K, L), F={ $JK \rightarrow L$ } is expensive to check since it requires R1 \bowtie R2
- If it is sufficient to test functional dependencies on each individual relation of a decomposition, then that decomposition is *dependency preserving*.
- It is not always possible to achieve both BCNF and dependency preservation

e.g.,

$$R(J, K, L)$$
 $R1(L, K)$
 $F = \{JK \rightarrow L,$
 $L \rightarrow K\}$

BCNF and Dependency Preservation

- Functional dependencies are costly to check unless they pertain to only one relation
 - e.g., Given R1=(J, K), R2=(K, L), F={ $JK \rightarrow L$ } is expensive to check since it requires R1 \bowtie R2
- If it is sufficient to test functional dependencies on each individual relation of a decomposition, then that decomposition is *dependency preserving*.
- It is not always possible to achieve both BCNF and dependency preservation

e.g.,

$$R(J, K, L) \qquad R1(L, K)$$

$$F = \{JK \rightarrow L, \qquad R2(J, L)$$

$$L \rightarrow K\} \qquad R2(J, L)$$

BCNF and Dependency Preservation

- Functional dependencies are costly to check unless they pertain to only one relation
 - e.g., Given R1=(J, K), R2=(K, L), F={ $JK \rightarrow L$ } is expensive to check since it requires R1 \bowtie R2
- If it is sufficient to test functional dependencies on each individual relation of a decomposition, then that decomposition is *dependency preserving*.
- It is not always possible to achieve both BCNF and dependency preservation

e.g.,

$$R(J, K, L) \qquad R1(L, K)$$

$$F = \{JK \rightarrow L, \qquad R2(J, L)$$

$$L \rightarrow K\}$$

We can consider a weaker normal form, known as third normal form.

Goals of Normalization

- Let R be a relation schema with a set F of functional dependencies.
- Decide whether *R* is in "good" form.
- If *R* is not in "good" form, decompose it into a set of relation schema $\{R_1, R_2, ..., R_n\}$ such that
 - each relation schema is in good form
 - the decomposition is a lossless-join decomposition
 - Preferably, the decomposition should be dependency preserving (sometimes not possible)

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

Third Normal Form

A relation schema *R* is in **third normal form (3NF)** if for all:

 $\alpha \twoheadrightarrow \beta \text{ in } F^{\scriptscriptstyle +}$

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for *R*
- Each attribute *A* in β α is contained in a candidate key for *R*.
- Third condition is a relaxation of BCNF to ensure dependency preservation.
 - R(J, L, K) $F = \{ JK \rightarrow L, L \rightarrow K \}$
 - Want to say that $L \rightarrow K$ is OK.
- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form

Fourth Normal Form

- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

How good is BCNF?

Consider a relation

inst_info (ID, child_name, phone)

 where an instructor may have multiple phones (512-555-1234 and 512-555-4321) and multiple children (David and William)

ID	child_name	phone	
99999	David	512-555-1234	
99999	David	512-555-4321	
99999	William	512-555-1234	
99999	William	512-555-4321	

There are no non-trivial functional dependencies and therefore the relation is in BCNF

But, there is redundancy. Solution?

How good is BCNF?

Consider a relation

inst_info (ID, child_name, phone)

 where an instructor may have multiple phones (512-555-1234 and 512-555-4321) and multiple children (David and William)

ID	child_name	phone	
99999	David	512-555-1234	
99999	David	512-555-4321	
99999	William	512-555-1234	
99999	William	512-555-4321	

- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- But, there is redundancy. Solution?
- Decompose inst_info into inst_child(ID, child_name) and inst_phone(ID, phone)

Fourth Normal Form

- A relation schema *R* is in **4NF** with respect to a set *D* of functional and multivalued dependencies if for all multivalued dependencies of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - α is a superkey for schema *R*
- If a relation is in 4NF it is in BCNF

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form

More Normal Forms

- Database-Design Process
- Functional Dependency Theory

Further Normal Forms

Join dependencies generalize multivalued dependencies

- lead to project-join normal form (PJNF) (also called fifth normal form)
- A class of even more general constraints, leads to a normal form called **domain-key normal form**.
- Problem with these generalized constraints: are hard to reason with, and no set of sound and complete set of inference rules exists.

Hence rarely used

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory

ER Model and Normalization

- When an E-R diagram is carefully designed, the tables generated from the E-R diagram should not need further normalization.
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes to other attributes
 - An employee entity with attributes department_name and building, and with a FD department_name→ building
 - Good design would have made department an entity

Denormalization for Performance

May want to use non-normalized schema for performance (no join)

- faster lookup
- extra space and extra execution time for updates

Ch

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process

Functional Dependency Theory

Closure of a Set of Functional Dependencies

- We can find F^{+,} the closure of F, by repeatedly applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ (reflexivity)
 - e.g., {ID, name} \rightarrow ID
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)

▶ e.g., If ID → name, then {ID, address} → {name, address}

- if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)
 - ▶ e.g., If ID \rightarrow SSN and SSN \rightarrow name, then ID \rightarrow name

Tuesday, March 26, 2013

Closure of Functional Dependencies (Cont.)

- Additional rules:
 - If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds (union)
 - e.g., If ID \rightarrow name and ID \rightarrow address, then ID \rightarrow {name, address}
 - If α → β γ holds, then α → β holds and α → γ holds (decomposition)
 e.g., If ID → {name, address}, then ID → name and ID → address
 - If α → β holds and γ β → δ holds, then α γ → δ holds (pseudotransitivity)
 e.g., If ID → name and {name, address} → phone_number, then {ID, address} → phone_number.

The above rules can be inferred from Armstrong's axioms.

Closure of Attribute Sets

Given a set of attributes α, define the *closure* of α under *F* (denoted by α⁺) as the set of attributes that are functionally determined by α under *F*

Algorithm to compute α^+ , the closure of α under *F*

```
result := α;

while (changes to result) do

for each β → γ in F do

begin

if β ⊆ result then result := result ∪ γ

end
```


R = (A, B, C, G, H, I) $F = \{A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H\}$ $(AG)^{+}$ 1. AG

R = (A, B, C, G, H, I) $F = \{A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H\}$ $(AG)^{+}$ 1. AG $2. ABCG \qquad (A \rightarrow C \text{ and } A \rightarrow B)$

- $\blacksquare R = (A, B, C, G, H, I)$ $F = \{A \to B\}$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$ (*AG*)+ 1. *AG* 2. ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH

 $(CG \rightarrow H)$

R = (A, B, C, G, H, I) $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$ $(AG)^{+}$ 1. AG 2. ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$ 3. ABCGH $(CG \rightarrow H)$ 4. ABCGHI $(CG \rightarrow I)$

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$ $(AG)^{+}$ 1. AG 2. ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$ 3. ABCGH $(CG \rightarrow H)$ 4. ABCGHI $(CG \rightarrow I)$
 - Is AG a candidate key?

- $\blacksquare R = (A, B, C, G, H, I)$
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- (*AG)*+
 - 1. *AG*
 - 2. *ABCG* $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH $(CG \rightarrow H)$
 - 4. ABCGHI $(CG \rightarrow I)$
- Is AG a candidate key?
 - 1. Is AG a super key?

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- (*AG*)+
 - 1. *AG*
 - 2. *ABCG* $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH $(CG \rightarrow H)$
 - 4. ABCGHI $(CG \rightarrow I)$
- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Is $AG \rightarrow R?$ (Is (AG)+ \supseteq R?)

- $\blacksquare R = (A, B, C, G, H, I)$
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
 - (*AG*)+
 - 1. *AG*
 - 2. *ABCG* $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH $(CG \rightarrow H)$
 - 4. ABCGHI $(CG \rightarrow I)$
 - Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Is $AG \rightarrow R?$ (Is $(AG)^+ \supseteq R?$)
 - 2. Is any subset of AG a superkey?

- $\blacksquare R = (A, B, C, G, H, I)$
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
 - (*AG*)+
 - 1. *AG*
 - 2. *ABCG* $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH $(CG \rightarrow H)$
 - 4. ABCGHI $(CG \rightarrow I)$
 - Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Is $AG \rightarrow R?$ (Is $(AG)^+ \supseteq R?$)
 - 2. Is any subset of AG a superkey?
 - 1. Is $A \rightarrow R$? (Is (A)+ \supseteq R?)

- $\blacksquare R = (A, B, C, G, H, I)$
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
 - (*AG*)+
 - 1. *AG*
 - 2. *ABCG* $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. ABCGH $(CG \rightarrow H)$
 - 4. ABCGHI $(CG \rightarrow I)$
 - Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Is $AG \rightarrow R?$ (Is $(AG)^+ \supseteq R?$)
 - 2. Is any subset of AG a superkey?
 - 1. Is $A \rightarrow R$? (Is (A)+ \supseteq R?)
 - 2. Is $G \rightarrow R$? (Is (G)+ \supseteq R?)

Uses of Attribute Closure

Testing for superkey:

- To test if α is a superkey, we compute $\alpha^{+,}$ and check if α^+ contains all attributes of *R*.
- Testing functional dependencies
 - To check if a functional dependency α → β holds, compute α⁺ by using attribute closure, and then check if it contains β.
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ .

Canonical Cover

- A canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies
 - E.g.: on **RHS**: F1={ $A \rightarrow B$, $B \rightarrow C$, $A \rightarrow CD$ } can be simplified to F2={ $A \rightarrow B$, $B \rightarrow C$, $A \rightarrow D$ }

• since $A \rightarrow C$ in F1 can be inferred from F2 (and F1 trivially implies F2)

- E.g.: on LHS: F1={ $A \rightarrow B, B \rightarrow C, AC \rightarrow D$ } can be simplified to F2={ $A \rightarrow B, B \rightarrow C, A \rightarrow D$ }
- since $A \rightarrow D$ in F2 can be inferred from F1 (and F2 trivially implies F1)

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$

• Is *B* is extraneous in $AB \rightarrow C$?

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$

- Is *B* is extraneous in $AB \rightarrow C$?
- Yes, because $F' = \{A \rightarrow C\}$ can be implied from F.

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$

- Is *B* is extraneous in $AB \rightarrow C$?
- Yes, because $F' = \{A \rightarrow C\}$ can be implied from *F*.

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$

• Is C is extraneous in $AB \rightarrow CD$?

- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - Is *B* is extraneous in $AB \rightarrow C$?
 - Yes, because $F' = \{A \rightarrow C\}$ can be implied from F.
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - Is C is extraneous in $AB \rightarrow CD$?
 - Yes, since *F* can be implied from $F' = \{A \rightarrow C, AB \rightarrow D\}$.

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$

• Is B is extraneous in $AB \rightarrow C$?

• Yes, because $F' = \{A \rightarrow C\}$ can be implied from F.

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$

Is C is extraneous in $AB \rightarrow CD$?

• Yes, since *F* can be implied from $F' = \{A \rightarrow C, AB \rightarrow D\}$.

Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.

 Attribute A is extraneous in α if A ∈ α and F logically implies (F - {α → β}) ∪ {(α - A) → β}.

Attribute A is **extraneous** in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F.

Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one

Database System Concepts - 6th Edition

Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C\}$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if $B \rightarrow C$ is implied by the other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$
 - Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases

The canonical cover is: $A \rightarrow B$

$$B \rightarrow C$$

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Boyce-Codd Normal Form
- Third Normal Form
- Fourth Normal Form
- More Normal Forms
- Database-Design Process
- Functional Dependency Theory