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Basic Steps in Query Processing

1.
 Parsing and translation
2.
 Optimization
3.
 Evaluation
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Query Optimization

 Amongst all equivalent evaluation plans choose the one with 
lowest cost (Chap 14). 

 In this chapter we study

 How to measure query costs

 Algorithms for evaluating relational algebra operations
 How to combine algorithms for individual operations in 

order to evaluate a complete expression
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Measures of Query Cost

 Cost is generally measured as total elapsed time for answering 
query
 Many factors contribute to time cost

disk accesses, CPU, or even network communication
 Typically disk access is the predominant cost, and is also 

relatively easy to estimate.   Measured by taking into account
 Number of seeks             * average-seek-cost
 Number of blocks read     * average-block-read-cost
 Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block 
– data is read back after being written to ensure that the 

write was successful
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Measures of Query Cost (Cont.)

 For simplicity we just use the number of block transfers from disk 
and the number of seeks as the cost measures
 tT – time to transfer one block
 tS – time for one seek
 Cost for b block transfers plus S seeks

        b * tT + S * tS 
 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account
 We do not include cost to writing output to disk in our cost formulae 

(why?)
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Selection Operation
 File scan 
 Algorithm A1 (linear search).  Scan each file block and test all 

records to see whether they satisfy the selection condition.
 Cost estimate = br block transfers + 1 seek

br  denotes number of blocks containing records from relation r

 If selection is on a key attribute, can stop on finding record
cost = (br /2) block transfers + 1 seek

 Linear search can be applied regardless of 
 selection condition or
 ordering of records in the file, or 
 availability of indices
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Selections Using Indices
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Selections Using Indices

 Index scan – search algorithms that use an index
 selection condition must be on search-key of index.

 A2 (primary index, equality on key).  Retrieve a single record 
that satisfies the corresponding equality condition  
 Cost = (hi + 1) * (tT + tS)

 A3 (primary index, equality on nonkey) Retrieve multiple 
records. 
 Records will be on consecutive blocks

Let b = number of blocks containing matching records
 Cost = hi * (tT + tS) + tS + tT * b
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Selections Using Indices
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Selections Using Indices

 A4 (secondary index, equality on nonkey).
 Retrieve a single record if the search-key is a candidate key

Cost = (hi + 1) * (tT + tS)
 Retrieve multiple records if search-key is not a candidate key

each of n matching records may be on a different block  
Cost =  (hi + n) * (tT + tS) 

– Can be very expensive!
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Selections Involving Comparisons
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Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:
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Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r)  use index to find first tuple ≥ v  and scan relation 

sequentially  from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not 

use index

12
Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r)  use index to find first tuple ≥ v  and scan relation 

sequentially  from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not 

use index
 A6 (secondary index, comparison). 

For σA ≥ V(r)  use index to find first index entry ≥ v and scan index 
sequentially  from there, to find pointers to records.

For σA≤V (r) just scan leaf pages of index finding pointers to 
records, till first entry > v
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).  

 Use appropriate composite (multiple-key) index if available.
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).  

 Use appropriate composite (multiple-key) index if available.
 A9 (conjunctive selection by intersection of identifiers). 

 Requires indices with record pointers. 
 Use corresponding index for each condition, and take intersection 

of all the obtained sets of record pointers. 
 Then fetch records from file
 If some conditions do not have appropriate indices, apply test in 

memory.
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Algorithms for Complex Selections
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Algorithms for Complex Selections

 Disjunction:σθ1∨ θ2 ∨. . . θn (r). 
 A10 (disjunctive selection by union of identifiers). 

 Applicable if all  conditions have available indices.  
Otherwise use linear scan.

 Use corresponding index for each condition, and take union 
of all the obtained sets of record pointers. 

 Then fetch records from file
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Sorting

 We may build an index on the relation, and then use the index 
to read the relation in sorted order.  May lead to one disk block 
access for each tuple.

 For relations that fit in memory, techniques like quicksort can 
be used.  For relations that donʼt fit in memory, external 
sort-merge is a good choice. 

16
Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

External Sort-Merge

1. Create sorted runs.  Let i be 0 initially. 
 Repeatedly do the following till the end of the relation:
     (a)  Read M blocks of relation into memory
     (b)  Sort the in-memory blocks
     (c)  Write sorted data to run Ri; increment i.
Let the final value of i be N

2. Merge the runs (next slide)…..

Let M denote memory size (in pages). 
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Example: External Sorting Using Sort-Merge
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Join Operation

 Several different algorithms to implement joins
 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Choice based on cost estimate
 Examples use the following information

 Number of records of student:  5,000     takes: 10,000
 Number of blocks of   student:     100     takes:      400
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Nested-Loop Join

 To compute the theta join        r      θ s
for each tuple tr in r do begin

 for each tuple ts  in s do begin

 
 test pair (tr,ts) to see if they satisfy the join condition θ 

 
 if they do, add tr • ts to the result.

 end
end

 r  is called the outer relation and s the inner relation of the join.
 Requires no indices and can be used with any kind of join 

condition (not necessarily equi-join).
 Expensive since it examines every pair of tuples in the two 

relations. 
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

4 5
7 8

Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
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 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner 
relation is paired with every block of outer relation.


 
for each block Br of r do begin


 for each block Bs of s do begin


 
 for each tuple tr in Br  do begin


 
 
 for each tuple ts in Bs do begin


 
 
 
 Check if (tr,ts) satisfy the join condition 


 
 
 
 if they do, add tr • ts to the result.


 
 
 end


 
 end


 end

end
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
+ 2 * br  seeks
 Each block in the inner relation s is read once 

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.
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Indexed Nested-Loop Join

 Index lookups can replace file scans if
 join is an equi-join or natural join and
 an index is available on the inner relationʼs join attribute

 Can construct an index just to compute a join.
 For each tuple tr in the outer relation r, use the index to look up 

tuples in s that satisfy the join condition with tuple tr.
 Worst case:  buffer has space for only one page of r, and, for each 

tuple in r, we perform an index lookup on s.
 Cost of the join:  br (tT + tS) + nr ∗ c

 Where c is the cost of traversing index and fetching all matching s 
tuples for one tuple or r

 c can be estimated as cost of a single selection on s using the join 
condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.
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Merge-Join
1. Sort both relations on their join attribute (if not already sorted on 

the join attributes).
2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge 
algorithm.  

2. Main difference is handling of duplicate values in join 
attribute — every pair with same value on join attribute must 
be matched

3. Detailed algorithm in book
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Merge-Join (Cont.)

 Can be used for equi-joins and natural joins
 Each block needs to be read only once (assuming all tuples for any 

given value of the join attributes fit in memory
 Thus the cost of merge join is: 

         br + bs  block transfers  + br / bb + bs / bb  seeks
 + the cost of sorting if relations are unsorted.
  bb: # of buffer blocks allocated for each relation (how many 

blocks we read each time)
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Hash-Join

 Applicable for equi-joins and natural joins.
 A hash function h is used to partition tuples of both relations 
 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the 

common attributes of r and s used in the natural join. 

 r0, r1, . . ., rn denote partitions of r tuples

Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).

 r0,, r1. . ., rn denotes partitions of s tuples

Each tuple ts ∈s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book,  ri   is denoted as Hri, si is denoted as Hsi  and

 n is denoted as nh. 
28
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Hash-Join (Cont.)
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Hash-Join (Cont.)

 r  tuples in ri need only to be compared with s tuples in si 
Need not be compared with s tuples in any other partition, 
since:
 an r tuple and an s tuple that satisfy the join condition 

will have the same value for the join attributes.
 If that value is hashed to some value i, the r tuple has 

to be in ri and the s tuple in si.
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Hash-Join Algorithm

1.
 Partition the relation s using hashing function h.  When 
partitioning a relation, one block of memory is reserved as 
the output buffer for each partition.

2.
 Partition r similarly.
3.
 For each i:

(a)
 Load si into memory and build an in-memory 
hash index on it using the join attribute.  

(b)
 Read the tuples in ri from the disk one by one.  
For each tuple tr locate each matching tuple ts in si using 
the in-memory hash index.  Output the concatenation of 
their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and  r  is called the probe input.
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Hash-Join algorithm (Cont.)

 The value n and the hash function h is chosen such that each 
si should fit in memory.

 Typically n is chosen as bs/M * f  where f is a “fudge 
factor”, typically around 1.2

 The probe relation partitions si need not fit in memory

  bs: # of disk blocks for relation S.

 M: # of memory pages
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Cost of Hash-Join

 Cost of hash join:
          3(br + bs) +4 ∗ nh  block transfers
         2( br / bb + bs / bb) + 2 ∗ nh seeks
 partitioning

 read: b_r + b_s blocks
 write: b_r + b_s blocks + 2 nh blocks (last block of each partition)

 matching
 build: b_s + nh blocks

 probe: b_r + nh blocks

 If the entire build input can be kept in main memory no partitioning is 
required
 Cost estimate goes down to br + bs.
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Chapter 12:  Query Processing

 Overview 
 Measures of Query Cost
 Selection Operation  
 Sorting 
 Join Operation 

Other Operations
 duplicate elimination / projection
 aggregation / set operations
 outer join

 Evaluation of Expressions
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Other Operations

 Duplicate elimination can be implemented via hashing or 
sorting.
 On sorting duplicates will come adjacent to each other, and all 

but one set of duplicates can be deleted.  
 Optimization: duplicates can be deleted during run generation 

as well as at intermediate merge steps in external sort-merge.
 Hashing is similar – duplicates will come into the same 

bucket.
 Projection:

 perform projection on each tuple 
 followed by duplicate elimination. 
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Other Operations : Aggregation
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
 Sorting or hashing can be used to bring tuples in the same 

group together, and then the aggregate functions can be 
applied on each group. 
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
 Sorting or hashing can be used to bring tuples in the same 

group together, and then the aggregate functions can be 
applied on each group. 

 Optimization: combine tuples in the same group during run 
generation and intermediate merges, by computing partial 
aggregate values
For count, min, max, sum: keep aggregate values on tuples 

found so far in the group.  
– When combining partial aggregate for count, add up the 

aggregates
For avg, keep sum and count, and divide sum by count at 

the end
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Other Operations : Set Operations

 Set operations (∪, ∩ and ):  can either use variant of merge-join 
after sorting, or variant of hash-join.

 E.g., Set operations using hashing:
1. Partition both relations using the same hash function
2. Process each partition i as follows.  

1. Using a different hashing function, build an in-memory hash 
index on ri.

2. Process si as follows
 r ∪ s:  

1. Add tuples in si to the hash index if they are not 
already in it.  

2. At end of si add the tuples in the hash index to the 
result.
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Other Operations : Set Operations

 E.g., Set operations using hashing:
1. as before partition r and s, 
2. as before, process each partition i as follows

1. build a hash index on ri
2. Process si as follows
 r ∩ s: 

1. output tuples in si to the result if they are already 
there in the hash index

  r – s: 
1. for each tuple in si, if it is there in the hash index, 

delete it from the index. 
2.  At end of si add remaining tuples in the hash 

index to the result. 
38
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Chapter 12:  Query Processing

 Overview 
 Measures of Query Cost
 Selection Operation  
 Sorting 
 Join Operation 
 Other Operations
Evaluation of Expressions

 materialization
 pipelining

pull-based (demand-driven; lazy)
push-based (produce-driven; eager)
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Evaluation of Expressions

 So far: we have seen algorithms for individual operations
 Alternatives for evaluating an entire expression tree

 Materialization:  generate results of an expression whose 
inputs are relations or are already computed, materialize 
(store) it on disk.  Repeat.

 Pipelining:  pass on tuples to parent operations even as an 
operation is being executed

 We study above alternatives in more detail

40
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Materialization

 Materialized evaluation:  evaluate one operation at a time, 
starting at the lowest-level.  Use intermediate results materialized 
into temporary relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute 
the projection on name. 

41
Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Materialization (Cont.)

 Materialized evaluation is always applicable
 Cost of writing results to disk and reading them back can be 

quite high
 Double buffering: use two output buffers for each operation, 

when one is full write it to disk while the other is getting filled
 Allows overlap of disk writes with computation and reduces 

execution time
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Pipelining

 Pipelined evaluation :  evaluate several operations 
simultaneously, passing the results of one operation on to the next.

 E.g., in previous expression tree, donʼt store result of

 
 instead, pass tuples directly to the join..  Similarly, donʼt store 

result of join, pass tuples directly to projection. 
 Much cheaper than materialization: no need to store a temporary 

relation to disk.
 Pipelining may not always be possible – e.g., sort, hash-join. 
 For pipelining to be effective, use evaluation algorithms that 

generate output tuples even as tuples are received for inputs to the 
operation. 

 Pipelines can be executed in two ways:  demand driven and 
producer driven 
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Pipelining (Cont.)

 In demand driven  (or lazy or pull-based) evaluation
 system repeatedly requests next tuple  from top level operation
 Each operation requests  next tuple from children operations as 

required, in order to output its next tuple
 In producer-driven (or eager or push-based) pipelining

 Operators produce tuples eagerly and pass them up to their parents
 Buffer maintained between operators, child puts tuples in buffer, 

parent removes tuples from buffer
 if buffer is full, child waits till there is space in the buffer, and then 

generates more tuples
 System schedules operations that have space in output buffer and can 

process more input tuples
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Pipelining (Cont.)

 Implementation of demand-driven pipelining
 Each operation is implemented as an iterator implementing the 

following operations
open()

– E.g. file scan: initialize file scan
»  state: pointer to beginning of file

– E.g.merge join: sort relations;
»  state: pointers to beginning of sorted relations

  next()
– E.g. for file scan: Output next tuple, and advance and store 

file pointer
– E.g. for merge join:  continue with merge from earlier state 

till 
next output tuple is found.  Save pointers as iterator state.

close()
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Chapter 12:  Query Processing
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