

Chapter 12: Query Processing

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Tuesday, April 2, 2013

Chapter 12: Query Processing

Overview

- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Query Optimization

- Amongst all equivalent evaluation plans choose the one with lowest cost (Chap 14).
- In this chapter we study
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
 - Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful

Measures of Query Cost (Cont.)

- For simplicity we just use the **number of block transfers** from disk and the **number of seeks** as the cost measures
 - t_{T} time to transfer one block
 - t_s time for one seek
 - Cost for b block transfers plus S seeks $b * t_T + S * t_S$
- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae (why?)

Chapter 12: Query Processing

Overview

Measures of Query Cost

Selection Operation

- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Selection Operation

File scan

- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices

Index scan – search algorithms that use an index

- selection condition must be on search-key of index.
- A2 (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition

• $Cost = (h_i + 1) * (t_T + t_S)$

- **A3** (primary index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records

•
$$Cost = h_i * (t_T + t_S) + t_S + t_T * b$$

- A4 (secondary index, equality on nonkey).
 - Retrieve a single record if the search-key is a candidate key
 - $Cost = (h_i + 1) * (t_T + t_S)$
 - Retrieve multiple records if search-key is not a candidate key
 - each of *n* matching records may be on a different block

• Cost =
$$(h_i + n) * (t_T + t_S)$$

- Can be very expensive!

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- **A5** (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge v$ and scan relation sequentially from there
 - For σ_{A≤V}(r) just scan relation sequentially till first tuple > v; do not use index

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- **A5** (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge v$ and scan relation sequentially from there
 - For σ_{A≤V}(r) just scan relation sequentially till first tuple > v; do not use index
- A6 (secondary index, comparison).
 - ► For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - For σ_{A≤V}(r) just scan leaf pages of index finding pointers to records, till first entry > v

Conjunction: $\sigma_{\theta 1} \wedge \theta_{\theta 2} \wedge \dots \theta_{\theta n}(r)$

- **Conjunction**: $\sigma_{\theta 1} \wedge \theta_{\theta 2} \wedge \dots \theta_{\theta n}(r)$
- **A7** (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta i}$ (*r*).
 - Test other conditions on tuple after fetching it into memory buffer.

- **Conjunction**: $\sigma_{\theta 1} \wedge \theta_{\theta 2} \wedge \dots \theta_{\theta n}(r)$
- **A7** (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta i}$ (*r*).
 - Test other conditions on tuple after fetching it into memory buffer.
- **A8** (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.

1

Implementation of Complex Selections

- **Conjunction**: $\sigma_{\theta 1} \wedge \theta_{\theta 2} \wedge \dots \theta_{\theta n}(r)$
- **A7** (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta i}$ (*r*).
 - Test other conditions on tuple after fetching it into memory buffer.
- **A8** (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Database System Concepts - 6th Edition

Algorithms for Complex Selections

Algorithms for Complex Selections

- **Disjunction**: $\sigma_{\theta 1} \vee_{\theta 2} \vee \ldots \otimes_{\theta n} (r)$.
- A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation

Sorting

- Join Operation
- Other Operations
- Evaluation of Expressions

Sorting

- We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each tuple.
- For relations that fit in memory, techniques like quicksort can be used. For relations that don't fit in memory, external sort-merge is a good choice.

External Sort-Merge

Let *M* denote memory size (in pages).

1. Create sorted runs. Let *i* be 0 initially.

Repeatedly do the following till the end of the relation:

- (a) Read *M* blocks of relation into memory
- (b) Sort the in-memory blocks
- (c) Write sorted data to run R_i ; increment *i*.

Let the final value of *i* be N

2. Merge the runs (next slide).....

Example: External Sorting Using Sort-Merge

24 g 19 а 31 d 33 С b 14 16 e 16 r d 21 3 m 2 р d 7 14 а

initial

relation

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Other Operations
- Evaluation of Expressions

Join Operation

Several different algorithms to implement joins

- Nested-loop join
- Block nested-loop join
- Indexed nested-loop join
- Merge-join
- Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400

Nested-Loop Join

To compute the theta join $r \Join_{\theta} s$

for each tuple t_r in r do begin

for each tuple t_s in s do begin

test pair (t_r, t_s) to see if they satisfy the join condition θ if they do, add $t_r \cdot t_s$ to the result.

end

end

- *r* is called the **outer relation** and *s* the **inner relation** of the join.
- Requires no indices and can be used with any kind of join condition (not necessarily equi-join).
- Expensive since it examines every pair of tuples in the two relations.

In the worst case, the estimated cost is $n_r * b_s + b_r$ block transfers, plus $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - ▶ 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

r [x x] [x x] [x x]

s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with *student* as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

s [x x] [x x]

Database System Concepts - 6th Edition

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

0

r [x x] [x x] [x x]

s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

r [x x] [x x] [x x]

2 3 s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

r [x x] [x x] [x x]

⁴23 s [x x] [x x]

Database System Concepts - 6th Edition

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

r [x x] [x x] [x x]

⁴₂ ⁵₃ s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - ▶ 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

r [x x] [x x] [x x]

⁴₂ ⁵₃ s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

1 6 r [x x] [x x] [x x] 7 4 5 2 3 s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

1 6 r [x x] [x x] [x x] 7 8 4 5 2 3 s [x x] [x x]

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

```
r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}
r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}
r \begin{bmatrix} x & x \end{bmatrix}
```


In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

```
r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}
```


In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

If the smaller relation fits entirely in memory, use that as the inner relation.

Reduces cost to $b_r + b_s$ block transfers and 2 seeks

Assuming worst case memory availability cost estimate is

- with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
- with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 2 \\ 3 \\ 5 \\ 6 \\ \end{cases}$

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 2 \\ 3 \\ 5 \\ 6 \end{bmatrix}$

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 6 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 7 & 8 \\ 4 & 5 \\ 2 & 3 \\ 8 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 2 \\ 3 \\ 5 \\ 6 \\ 8 \\ \end{bmatrix}$

In the worst case, the estimated cost is

 $n_r * b_s + b_r$ block transfers, plus

 $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 * 400 + 100 = 2,000,100 block transfers,
 - ▶ 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.

 $r \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 4 & 5 \\ 2 & 3 \end{bmatrix}$ S [x x] [x x] $\begin{bmatrix} 2 \\ 3 \\ 5 \\ 6 \\ 8 \end{bmatrix}$

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B<sub>r</sub> of r do begin
    for each block B<sub>s</sub> of s do begin
        for each tuple t_r in B_r do begin
            for each tuple t_s in B_s do begin
                Check if (t_r, t_s) satisfy the join condition
               if they do, add t_r \cdot t_s to the result.
            end
        end
    end
end
```


- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

s [x x] [x x]

r [x x] [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

r [x x] [x x] [x x]

s [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

2 s [x x] [x x]

r [x x] [x x] [x x]

Database System Concepts - 6th Edition

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

2 3 s [x x] [x x]

r [x x] [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

2 3 s [x x] [x x]

1 4 r [x x] [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

r [x x] [x x] [x x]

523 s [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

52 63 s [x x] [x x]

1 4 r [x x] [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

52 63 s [x x] [x x]

1 4 7 r [x x] [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

1 4 7 r [x x] [x x] [x x] 8 5 2 6 3 s [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

1 4 7 r [x x] [x x] [x x] 8 9 5 6 3 s [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

r [x x] s [x x] [x x]

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

 $r \begin{bmatrix} 1 & x \\ x & x \end{bmatrix} \begin{bmatrix} 4 & 7 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{bmatrix} 8 & 9 \\ 5 & 6 \\ 3 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

 $r \begin{bmatrix} 1 & x \\ x & x \end{bmatrix} \begin{bmatrix} 4 & 7 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{bmatrix} 8 & 9 \\ 5 & 6 \\ 3 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

 $r \begin{bmatrix} 1 & x \\ x & x \end{bmatrix} \begin{bmatrix} 4 & 7 \\ x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 8 & 9 \\ 5 & 6 \\ 3 \\ 8 \\ 5 \end{bmatrix}$ $s \begin{bmatrix} x & x \end{bmatrix} \begin{bmatrix} x & x \end{bmatrix}$ $\begin{cases} 2 \\ 4 \end{bmatrix}$

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
 - Best case: $b_r + b_s$ block transfers + 2 seeks.

Indexed Nested-Loop Join

r [x x] [x x] [x x]

S [X X] [X X]

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.

Cost of the join: $b_r (t_T + t_S) + n_r * c$

- Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
- c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both *r* and *s*, use the relation with fewer tuples as the outer relation.

Merge-Join

- 1. Sort both relations on their join attribute (if not already sorted on the join attributes).
- 2. Merge the sorted relations to join them
 - 1. Join step is similar to the merge stage of the sort-merge algorithm.
 - Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched
 a1 a2
 a1 a3
 - 3. Detailed algorithm in book

Merge-Join (Cont.)

- Can be used for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
 - Thus the cost of merge join is:
 - $b_r + b_s$ block transfers $+ [b_r/b_b] + [b_s/b_b]$ seeks
 - + the cost of sorting if relations are unsorted.
 - *b_b*, # of buffer blocks allocated for each relation (how many blocks we read each time)

Hash-Join

- $\begin{array}{ll} r=\!\!\{1,\,2,\,3,\,4,\,5,\,6,\,7\} & r1=\!\!\{1,\,2,\,3,\,4\},\,r2=\!\!\{5,\,6,\,7\} \\ s=\!\!\{2,\,4,\,6,\,8\} & s1=\!\!\{2,\,4\},\,s2=\!\!\{6,\,8\} \end{array}$
- Applicable for equi-joins and natural joins.
- A hash function *h* is used to partition tuples of both relations
- h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes of r and s used in the natural join.
 - r_0, r_1, \ldots, r_n denote partitions of *r* tuples
 - Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r [JoinAttrs])$.
 - $r_{0,r}$, r_1 ..., r_n denotes partitions of s tuples
 - Each tuple $t_s \in s$ is put in partition s_i , where $i = h(t_s [JoinAttrs])$.
- **Note:** In book, r_i is denoted as H_{r_i} s_i is denoted as H_{s_i} and
 - *n* is denoted as $n_{h.}$

Database System Concepts - 6th Edition

Tuesday, April 2, 2013

Hash-Join (Cont.)

- *r* tuples in r_i need only to be compared with *s* tuples in s_i Need not be compared with *s* tuples in any other partition, since:
 - an r tuple and an s tuple that satisfy the join condition will have the same value for the join attributes.
 - If that value is hashed to some value *i*, the *r* tuple has to be in *r_i* and the *s* tuple in *s_i*.

Hash-Join Algorithm

The hash-join of *r* and *s* is computed as follows.

- 1. Partition the relation *s* using hashing function *h*. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each *i*:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes.

Relation *s* is called the **build input** and *r* is called the **probe input**.

Hash-Join algorithm (Cont.)

The value *n* and the hash function *h* is chosen such that each s_i should fit in memory.

- Typically n is chosen as [b_s/M] * f where f is a "fudge factor", typically around 1.2
- The probe relation partitions s_i need not fit in memory
- b_s: # of disk blocks for relation S.
- M: # of memory pages

Cost of Hash-Join

Cost of hash join: $3(b_r + b_s) + 4 * n_h$ block transfers $2([b_r/b_b] + [b_s/b_b]) + 2 * n_h$ seeks • partitioning • read: b r + b s blocks

write: b_r + b_s blocks + 2 n_h blocks (last block of each partition)

matching

build: b_s + n_h blocks

• probe: $b_r + n_h$ blocks

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to $b_r + b_s$.

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
 - duplicate elimination / projection
 - aggregation / set operations
 - outer join
- Evaluation of Expressions

Other Operations

- **Duplicate elimination** can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Aggregation can be implemented in a manner similar to duplicate elimination.

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the aggregates

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations : Set Operations

- Set operations (\cup , \cap and —): can either use variant of merge-join after sorting, or variant of hash-join.
- E.g., Set operations using hashing:
 - 1. Partition both relations using the same hash function
 - 2. Process each partition *i* as follows.
 - 1. Using a different hashing function, build an in-memory hash index on r_i .
 - 2. Process s_i as follows
 - *r* ∪ *s*:
 - 1. Add tuples in s_i to the hash index if they are not already in it.
 - 2. At end of s_i add the tuples in the hash index to the result.

Other Operations : Set Operations

E.g., Set operations using hashing:

- 1. as before partition *r* and *s*,
- 2. as before, process each partition *i* as follows
 - 1. build a hash index on r_i
 - 2. Process s_i as follows

• r ∩ *s*:

1. output tuples in s_i to the result if they are already there in the hash index

● r – s:

- 1. for each tuple in s_i , if it is there in the hash index, delete it from the index.
- 2. At end of s_i add remaining tuples in the hash index to the result.

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions
 - materialization
 - pipelining
 - pull-based (demand-driven; lazy)
 - push-based (produce-driven; eager)

Evaluation of Expressions

So far: we have seen algorithms for individual operations

- Alternatives for evaluating an entire expression tree
 - Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk. Repeat.
 - Pipelining: pass on tuples to parent operations even as an operation is being executed
- We study above alternatives in more detail

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- E.g., in figure below, compute and store

 $\sigma_{building="Watson"}(department)$

then compute the store its join with *instructor*, and finally compute the projection on *name*.

Materialization (Cont.)

- Materialized evaluation is always applicable
- Cost of writing results to disk and reading them back can be quite high
- Double buffering: use two output buffers for each operation, when one is full write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Pipelined evaluation : evaluate several operations simultaneously, passing the results of one operation on to the next.
- E.g., in previous expression tree, don't store result of

 $\sigma_{building="Watson"}(department)$

- instead, pass tuples directly to the join. Similarly, don't store result of join, pass tuples directly to projection.
- Much cheaper than materialization: no need to store a temporary relation to disk.
- Pipelining may not always be possible e.g., sort, hash-join.
- For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are received for inputs to the operation.
- Pipelines can be executed in two ways: demand driven and producer driven

Pipelining (Cont.)

In demand driven (or lazy or pull-based) evaluation

- system repeatedly requests next tuple from top level operation
- Each operation requests next tuple from children operations as required, in order to output its next tuple
- In producer-driven (or eager or push-based) pipelining
 - Operators produce tuples eagerly and pass them up to their parents
 - Buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
 - if buffer is full, child waits till there is space in the buffer, and then generates more tuples
 - System schedules operations that have space in output buffer and can process more input tuples

Pipelining (Cont.)

Implementation of demand-driven pipelining

- Each operation is implemented as an iterator implementing the following operations
 - > open()
 - E.g. file scan: initialize file scan
 - » state: pointer to beginning of file
 - E.g.merge join: sort relations;
 - » state: pointers to beginning of sorted relations
 - next()
 - E.g. for file scan: Output next tuple, and advance and store file pointer
 - E.g. for merge join: continue with merge from earlier state till

next output tuple is found. Save pointers as iterator state.

close()

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Other Operations
 - duplicate elimination / projection
 - aggregation / set operations
 - outer join
 - Evaluation of Expressions
 - materialization
 - pipelining
 - pull-based (demand-driven; lazy)
 - push-based (produce-driven; eager)

End of Chapter

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

47