
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 12: Query Processing

Tuesday, April 2, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

Overview
 Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation
 Other Operations
 Evaluation of Expressions

2
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Basic Steps in Query Processing

1.
 Parsing and translation
2.
 Optimization
3.
 Evaluation

3
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Query Optimization

 Amongst all equivalent evaluation plans choose the one with
lowest cost (Chap 14).

 In this chapter we study

 How to measure query costs

 Algorithms for evaluating relational algebra operations
 How to combine algorithms for individual operations in

order to evaluate a complete expression

4
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview

Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation
 Other Operations
 Evaluation of Expressions

5
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Measures of Query Cost

 Cost is generally measured as total elapsed time for answering
query
 Many factors contribute to time cost

disk accesses, CPU, or even network communication
 Typically disk access is the predominant cost, and is also

relatively easy to estimate. Measured by taking into account
 Number of seeks * average-seek-cost
 Number of blocks read * average-block-read-cost
 Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block
– data is read back after being written to ensure that the

write was successful

6
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Measures of Query Cost (Cont.)

 For simplicity we just use the number of block transfers from disk
and the number of seeks as the cost measures
 tT – time to transfer one block
 tS – time for one seek
 Cost for b block transfers plus S seeks

 b * tT + S * tS
 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account
 We do not include cost to writing output to disk in our cost formulae

(why?)

7
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview
 Measures of Query Cost

Selection Operation
 Sorting
 Join Operation
 Other Operations
 Evaluation of Expressions

8
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selection Operation
 File scan
 Algorithm A1 (linear search). Scan each file block and test all

records to see whether they satisfy the selection condition.
 Cost estimate = br block transfers + 1 seek

br denotes number of blocks containing records from relation r

 If selection is on a key attribute, can stop on finding record
cost = (br /2) block transfers + 1 seek

 Linear search can be applied regardless of
 selection condition or
 ordering of records in the file, or
 availability of indices

9
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Using Indices

10
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Using Indices

 Index scan – search algorithms that use an index
 selection condition must be on search-key of index.

 A2 (primary index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition
 Cost = (hi + 1) * (tT + tS)

 A3 (primary index, equality on nonkey) Retrieve multiple
records.
 Records will be on consecutive blocks

Let b = number of blocks containing matching records
 Cost = hi * (tT + tS) + tS + tT * b

10
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Using Indices

11
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Using Indices

 A4 (secondary index, equality on nonkey).
 Retrieve a single record if the search-key is a candidate key

Cost = (hi + 1) * (tT + tS)
 Retrieve multiple records if search-key is not a candidate key

each of n matching records may be on a different block
Cost = (hi + n) * (tT + tS)

– Can be very expensive!

11
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Involving Comparisons

12
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

 a linear file scan,
 or by using indices in the following ways:

12
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

 a linear file scan,
 or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r) use index to find first tuple ≥ v and scan relation

sequentially from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not

use index

12
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

 a linear file scan,
 or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r) use index to find first tuple ≥ v and scan relation

sequentially from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not

use index
 A6 (secondary index, comparison).

For σA ≥ V(r) use index to find first index entry ≥ v and scan index
sequentially from there, to find pointers to records.

For σA≤V (r) just scan leaf pages of index finding pointers to
records, till first entry > v

12
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections

13
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections
 Conjunction: σθ1∧ θ2∧. . . θn(r)

13
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections
 Conjunction: σθ1∧ θ2∧. . . θn(r)
 A7 (conjunctive selection using one index).

 Select a combination of θi and algorithms A1 through A7 that
results in the least cost for σθi (r).

 Test other conditions on tuple after fetching it into memory buffer.

13
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections
 Conjunction: σθ1∧ θ2∧. . . θn(r)
 A7 (conjunctive selection using one index).

 Select a combination of θi and algorithms A1 through A7 that
results in the least cost for σθi (r).

 Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).

 Use appropriate composite (multiple-key) index if available.

13
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections
 Conjunction: σθ1∧ θ2∧. . . θn(r)
 A7 (conjunctive selection using one index).

 Select a combination of θi and algorithms A1 through A7 that
results in the least cost for σθi (r).

 Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).

 Use appropriate composite (multiple-key) index if available.
 A9 (conjunctive selection by intersection of identifiers).

 Requires indices with record pointers.
 Use corresponding index for each condition, and take intersection

of all the obtained sets of record pointers.
 Then fetch records from file
 If some conditions do not have appropriate indices, apply test in

memory.
13

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Algorithms for Complex Selections

14
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Algorithms for Complex Selections

 Disjunction:σθ1∨ θ2 ∨. . . θn (r).
 A10 (disjunctive selection by union of identifiers).

 Applicable if all conditions have available indices.
Otherwise use linear scan.

 Use corresponding index for each condition, and take union
of all the obtained sets of record pointers.

 Then fetch records from file

14
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview
 Measures of Query Cost
 Selection Operation
Sorting
 Join Operation
 Other Operations
 Evaluation of Expressions

15
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Sorting

 We may build an index on the relation, and then use the index
to read the relation in sorted order. May lead to one disk block
access for each tuple.

 For relations that fit in memory, techniques like quicksort can
be used. For relations that donʼt fit in memory, external
sort-merge is a good choice.

16
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

External Sort-Merge

1. Create sorted runs. Let i be 0 initially.
 Repeatedly do the following till the end of the relation:
 (a) Read M blocks of relation into memory
 (b) Sort the in-memory blocks
 (c) Write sorted data to run Ri; increment i.
Let the final value of i be N

2. Merge the runs (next slide)…..

Let M denote memory size (in pages).

17
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Example: External Sorting Using Sort-Merge

18
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview
 Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation

 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Other Operations
 Evaluation of Expressions

19
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Join Operation

 Several different algorithms to implement joins
 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Choice based on cost estimate
 Examples use the following information

 Number of records of student: 5,000 takes: 10,000
 Number of blocks of student: 100 takes: 400

20
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join

 To compute the theta join r θ s
for each tuple tr in r do begin

 for each tuple ts in s do begin

 test pair (tr,ts) to see if they satisfy the join condition θ

 if they do, add tr • ts to the result.

 end
end

 r is called the outer relation and s the inner relation of the join.
 Requires no indices and can be used with any kind of join

condition (not necessarily equi-join).
 Expensive since it examines every pair of tuples in the two

relations.

21
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3
4

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3
4 5

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

4 5

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

4 5
7

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

4 5
7 8

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

4 5
7 8

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 5
7 8

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 5
7 8

3

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4

4 5
7 8

3

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4

4 5
7 8

3
5

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4

4 5
7 8

3
5
6

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 7

4 5
7 8

3
5
6

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 7

4 5
7 8

3
5
6
8

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is

 nr ∗ bs + br block transfers, plus
 nr + br seeks

 If the smaller relation fits entirely in memory, use that as the
inner relation.
 Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks

 with takes as the outer relation
 10000 ∗ 100 + 400 = 1,000,400 block transfers and

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 7

4 5
7 8

3
5
6
8
9

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block Br of r do begin

 for each block Bs of s do begin

 for each tuple tr in Br do begin

 for each tuple ts in Bs do begin

 Check if (tr,ts) satisfy the join condition

 if they do, add tr • ts to the result.

 end

 end

 end

end

23
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1

2

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4

2 3

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4

2 3
5

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4

2 3
5 6

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

2 3
5 6

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

2 3
5 6
8

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

2 3
5 6
8 9

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2 3
5 6
8 9

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2

2 3
5 6
8 9

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2

3

2 3
5 6
8 9

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2

3

2 3
5 6
8 9

4

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2

3 5

2 3
5 6
8 9

4

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

 Worst case estimate: br ∗ bs + br block transfers
+ 2 * br seeks
 Each block in the inner relation s is read once

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24

r [x x] [x x] [x x]

s [x x] [x x]

1 4 7

1

2

3 5

2 3
5 6
8 9

4
6

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Indexed Nested-Loop Join

 Index lookups can replace file scans if
 join is an equi-join or natural join and
 an index is available on the inner relationʼs join attribute

 Can construct an index just to compute a join.
 For each tuple tr in the outer relation r, use the index to look up

tuples in s that satisfy the join condition with tuple tr.
 Worst case: buffer has space for only one page of r, and, for each

tuple in r, we perform an index lookup on s.
 Cost of the join: br (tT + tS) + nr ∗ c

 Where c is the cost of traversing index and fetching all matching s
tuples for one tuple or r

 c can be estimated as cost of a single selection on s using the join
condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

25

r [x x] [x x] [x x]

s [x x] [x x]

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Merge-Join
1. Sort both relations on their join attribute (if not already sorted on

the join attributes).
2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge
algorithm.

2. Main difference is handling of duplicate values in join
attribute — every pair with same value on join attribute must
be matched

3. Detailed algorithm in book

26
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Merge-Join (Cont.)

 Can be used for equi-joins and natural joins
 Each block needs to be read only once (assuming all tuples for any

given value of the join attributes fit in memory
 Thus the cost of merge join is:

 br + bs block transfers + br / bb + bs / bb seeks
 + the cost of sorting if relations are unsorted.
 bb: # of buffer blocks allocated for each relation (how many

blocks we read each time)

27
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Hash-Join

 Applicable for equi-joins and natural joins.
 A hash function h is used to partition tuples of both relations
 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the

common attributes of r and s used in the natural join.

 r0, r1, . . ., rn denote partitions of r tuples

Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).

 r0,, r1. . ., rn denotes partitions of s tuples

Each tuple ts ∈s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book, ri is denoted as Hri, si is denoted as Hsi and

 n is denoted as nh.
28

r={1, 2, 3, 4, 5, 6, 7}
s={2, 4, 6, 8}

r1={1, 2, 3, 4}, r2={5, 6, 7}
s1={2, 4}, s2={6, 8}

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Hash-Join (Cont.)

29

(A, xxx)
(B, xxx)

(B, xxx)
(A, xxx)

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Hash-Join (Cont.)

 r tuples in ri need only to be compared with s tuples in si
Need not be compared with s tuples in any other partition,
since:
 an r tuple and an s tuple that satisfy the join condition

will have the same value for the join attributes.
 If that value is hashed to some value i, the r tuple has

to be in ri and the s tuple in si.

30
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Hash-Join Algorithm

1.
 Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2.
 Partition r similarly.
3.
 For each i:

(a)
 Load si into memory and build an in-memory
hash index on it using the join attribute.

(b)
 Read the tuples in ri from the disk one by one.
For each tuple tr locate each matching tuple ts in si using
the in-memory hash index. Output the concatenation of
their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and r is called the probe input.

31
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Hash-Join algorithm (Cont.)

 The value n and the hash function h is chosen such that each
si should fit in memory.

 Typically n is chosen as bs/M * f where f is a “fudge
factor”, typically around 1.2

 The probe relation partitions si need not fit in memory

 bs: # of disk blocks for relation S.

 M: # of memory pages

32
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Cost of Hash-Join

 Cost of hash join:
 3(br + bs) +4 ∗ nh block transfers
 2(br / bb + bs / bb) + 2 ∗ nh seeks
 partitioning

 read: b_r + b_s blocks
 write: b_r + b_s blocks + 2 nh blocks (last block of each partition)

 matching
 build: b_s + nh blocks

 probe: b_r + nh blocks

 If the entire build input can be kept in main memory no partitioning is
required
 Cost estimate goes down to br + bs.

33
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview
 Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation

Other Operations
 duplicate elimination / projection
 aggregation / set operations
 outer join

 Evaluation of Expressions

34
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations

 Duplicate elimination can be implemented via hashing or
sorting.
 On sorting duplicates will come adjacent to each other, and all

but one set of duplicates can be deleted.
 Optimization: duplicates can be deleted during run generation

as well as at intermediate merge steps in external sort-merge.
 Hashing is similar – duplicates will come into the same

bucket.
 Projection:

 perform projection on each tuple
 followed by duplicate elimination.

35
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.
 Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group.

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.
 Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group.

 Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.
 Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group.

 Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values
For count, min, max, sum: keep aggregate values on tuples

found so far in the group.

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.
 Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group.

 Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values
For count, min, max, sum: keep aggregate values on tuples

found so far in the group.
– When combining partial aggregate for count, add up the

aggregates

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.
 Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be
applied on each group.

 Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values
For count, min, max, sum: keep aggregate values on tuples

found so far in the group.
– When combining partial aggregate for count, add up the

aggregates
For avg, keep sum and count, and divide sum by count at

the end

36
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Set Operations

 Set operations (∪, ∩ and ): can either use variant of merge-join
after sorting, or variant of hash-join.

 E.g., Set operations using hashing:
1. Partition both relations using the same hash function
2. Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash
index on ri.

2. Process si as follows
 r ∪ s:

1. Add tuples in si to the hash index if they are not
already in it.

2. At end of si add the tuples in the hash index to the
result.

37
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Set Operations

 E.g., Set operations using hashing:
1. as before partition r and s,
2. as before, process each partition i as follows

1. build a hash index on ri
2. Process si as follows
 r ∩ s:

1. output tuples in si to the result if they are already
there in the hash index

 r – s:
1. for each tuple in si, if it is there in the hash index,

delete it from the index.
2. At end of si add remaining tuples in the hash

index to the result.
38

Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

 Overview
 Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation
 Other Operations
Evaluation of Expressions

 materialization
 pipelining

pull-based (demand-driven; lazy)
push-based (produce-driven; eager)

39
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Evaluation of Expressions

 So far: we have seen algorithms for individual operations
 Alternatives for evaluating an entire expression tree

 Materialization: generate results of an expression whose
inputs are relations or are already computed, materialize
(store) it on disk. Repeat.

 Pipelining: pass on tuples to parent operations even as an
operation is being executed

 We study above alternatives in more detail

40
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Materialization

 Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results materialized
into temporary relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute
the projection on name.

41
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Materialization (Cont.)

 Materialized evaluation is always applicable
 Cost of writing results to disk and reading them back can be

quite high
 Double buffering: use two output buffers for each operation,

when one is full write it to disk while the other is getting filled
 Allows overlap of disk writes with computation and reduces

execution time

42
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Pipelining

 Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the next.

 E.g., in previous expression tree, donʼt store result of

 instead, pass tuples directly to the join.. Similarly, donʼt store

result of join, pass tuples directly to projection.
 Much cheaper than materialization: no need to store a temporary

relation to disk.
 Pipelining may not always be possible – e.g., sort, hash-join.
 For pipelining to be effective, use evaluation algorithms that

generate output tuples even as tuples are received for inputs to the
operation.

 Pipelines can be executed in two ways: demand driven and
producer driven

43
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Pipelining (Cont.)

 In demand driven (or lazy or pull-based) evaluation
 system repeatedly requests next tuple from top level operation
 Each operation requests next tuple from children operations as

required, in order to output its next tuple
 In producer-driven (or eager or push-based) pipelining

 Operators produce tuples eagerly and pass them up to their parents
 Buffer maintained between operators, child puts tuples in buffer,

parent removes tuples from buffer
 if buffer is full, child waits till there is space in the buffer, and then

generates more tuples
 System schedules operations that have space in output buffer and can

process more input tuples

44
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Pipelining (Cont.)

 Implementation of demand-driven pipelining
 Each operation is implemented as an iterator implementing the

following operations
open()

– E.g. file scan: initialize file scan
» state: pointer to beginning of file

– E.g.merge join: sort relations;
» state: pointers to beginning of sorted relations

 next()
– E.g. for file scan: Output next tuple, and advance and store

file pointer
– E.g. for merge join: continue with merge from earlier state

till
next output tuple is found. Save pointers as iterator state.

close()

45
Tuesday, April 2, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 12: Query Processing

46

 Overview
 Measures of Query Cost
 Selection Operation
 Sorting
 Join Operation

 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Other Operations
 duplicate elimination / projection
 aggregation / set operations
 outer join

 Evaluation of Expressions
 materialization
 pipelining

 pull-based (demand-driven; lazy)
 push-based (produce-driven; eager)

Tuesday, April 2, 2013

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

47

Tuesday, April 2, 2013

