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Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation
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Query Optimization

 Amongst all equivalent evaluation plans choose the one with 
lowest cost (Chap 14). 

 In this chapter we study

 How to measure query costs

 Algorithms for evaluating relational algebra operations
 How to combine algorithms for individual operations in 

order to evaluate a complete expression
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Measures of Query Cost

 Cost is generally measured as total elapsed time for answering 
query
 Many factors contribute to time cost

disk accesses, CPU, or even network communication
 Typically disk access is the predominant cost, and is also 

relatively easy to estimate.   Measured by taking into account
 Number of seeks             * average-seek-cost
 Number of blocks read     * average-block-read-cost
 Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block 
– data is read back after being written to ensure that the 

write was successful
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Measures of Query Cost (Cont.)

 For simplicity we just use the number of block transfers from disk 
and the number of seeks as the cost measures
 tT – time to transfer one block
 tS – time for one seek
 Cost for b block transfers plus S seeks

        b * tT + S * tS 
 We ignore CPU costs for simplicity

 Real systems do take CPU cost into account
 We do not include cost to writing output to disk in our cost formulae 

(why?)
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Selection Operation
 File scan 
 Algorithm A1 (linear search).  Scan each file block and test all 

records to see whether they satisfy the selection condition.
 Cost estimate = br block transfers + 1 seek

br  denotes number of blocks containing records from relation r

 If selection is on a key attribute, can stop on finding record
cost = (br /2) block transfers + 1 seek

 Linear search can be applied regardless of 
 selection condition or
 ordering of records in the file, or 
 availability of indices
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Selections Using Indices
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Selections Using Indices

 Index scan – search algorithms that use an index
 selection condition must be on search-key of index.

 A2 (primary index, equality on key).  Retrieve a single record 
that satisfies the corresponding equality condition  
 Cost = (hi + 1) * (tT + tS)

 A3 (primary index, equality on nonkey) Retrieve multiple 
records. 
 Records will be on consecutive blocks

Let b = number of blocks containing matching records
 Cost = hi * (tT + tS) + tS + tT * b
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Selections Using Indices
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Selections Using Indices

 A4 (secondary index, equality on nonkey).
 Retrieve a single record if the search-key is a candidate key

Cost = (hi + 1) * (tT + tS)
 Retrieve multiple records if search-key is not a candidate key

each of n matching records may be on a different block  
Cost =  (hi + n) * (tT + tS) 

– Can be very expensive!
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Selections Involving Comparisons
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Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:
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Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r)  use index to find first tuple ≥ v  and scan relation 

sequentially  from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not 

use index
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Selections Involving Comparisons
 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

  a linear file scan,
  or by using indices in the following ways:

 A5 (primary index, comparison). (Relation is sorted on A)
For σA ≥ V(r)  use index to find first tuple ≥ v  and scan relation 

sequentially  from there
For σA≤V (r) just scan relation sequentially till first tuple > v; do not 

use index
 A6 (secondary index, comparison). 

For σA ≥ V(r)  use index to find first index entry ≥ v and scan index 
sequentially  from there, to find pointers to records.

For σA≤V (r) just scan leaf pages of index finding pointers to 
records, till first entry > v
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Implementation of Complex Selections
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
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Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).  

 Use appropriate composite (multiple-key) index if available.

13
Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Implementation of Complex Selections
 Conjunction:  σθ1∧ θ2∧. . . θn(r)  
 A7 (conjunctive selection using one index).  

 Select a combination of θi and algorithms A1 through A7 that 
results in the least cost for σθi (r).

  Test other conditions on tuple after fetching it into memory buffer.
 A8 (conjunctive selection using composite index).  

 Use appropriate composite (multiple-key) index if available.
 A9 (conjunctive selection by intersection of identifiers). 

 Requires indices with record pointers. 
 Use corresponding index for each condition, and take intersection 

of all the obtained sets of record pointers. 
 Then fetch records from file
 If some conditions do not have appropriate indices, apply test in 

memory.
13
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Algorithms for Complex Selections
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Algorithms for Complex Selections

 Disjunction:σθ1∨ θ2 ∨. . . θn (r). 
 A10 (disjunctive selection by union of identifiers). 

 Applicable if all  conditions have available indices.  
Otherwise use linear scan.

 Use corresponding index for each condition, and take union 
of all the obtained sets of record pointers. 

 Then fetch records from file
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Sorting

 We may build an index on the relation, and then use the index 
to read the relation in sorted order.  May lead to one disk block 
access for each tuple.

 For relations that fit in memory, techniques like quicksort can 
be used.  For relations that donʼt fit in memory, external 
sort-merge is a good choice. 
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External Sort-Merge

1. Create sorted runs.  Let i be 0 initially. 
 Repeatedly do the following till the end of the relation:
     (a)  Read M blocks of relation into memory
     (b)  Sort the in-memory blocks
     (c)  Write sorted data to run Ri; increment i.
Let the final value of i be N

2. Merge the runs (next slide)…..

Let M denote memory size (in pages). 
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Example: External Sorting Using Sort-Merge
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Join Operation

 Several different algorithms to implement joins
 Nested-loop join
 Block nested-loop join
 Indexed nested-loop join
 Merge-join
 Hash-join

 Choice based on cost estimate
 Examples use the following information

 Number of records of student:  5,000     takes: 10,000
 Number of blocks of   student:     100     takes:      400
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Nested-Loop Join

 To compute the theta join        r      θ s
for each tuple tr in r do begin
 for each tuple ts  in s do begin
  test pair (tr,ts) to see if they satisfy the join condition θ 
  if they do, add tr • ts to the result.
 end
end

 r  is called the outer relation and s the inner relation of the join.
 Requires no indices and can be used with any kind of join 

condition (not necessarily equi-join).
 Expensive since it examines every pair of tuples in the two 

relations. 
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

4 5

Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 
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                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:
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 5000 + 100 = 5100 seeks 
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 Assuming worst case memory availability cost estimate is
 with student as outer relation:
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 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.

22

r [x x] [x x] [x x]

s [x x] [x x]

1

2 3

6

1

2

4 5
7 8

3

Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 
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estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Nested-Loop Join (Cont.)
 In the worst case, the estimated cost is 

                nr ∗ bs + br   block transfers, plus
                nr + br          seeks

 If the smaller relation fits entirely in memory, use that as the 
inner relation.
  Reduces cost to br  + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is
 with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,
 5000 + 100 = 5100 seeks 

 with takes  as the outer relation 
 10000 ∗ 100 + 400 = 1,000,400 block transfers and 

10,400 seeks
 If smaller relation (student) fits entirely in memory, the cost 

estimate will be 500 block transfers.
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Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner 
relation is paired with every block of outer relation.

 for each block Br of r do begin
 for each block Bs of s do begin
  for each tuple tr in Br  do begin
   for each tuple ts in Bs do begin
    Check if (tr,ts) satisfy the join condition 
    if they do, add tr • ts to the result.
   end
  end
 end
end
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
+ 2 * br  seeks
 Each block in the inner relation s is read once 

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.

24
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
+ 2 * br  seeks
 Each block in the inner relation s is read once 

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
+ 2 * br  seeks
 Each block in the inner relation s is read once 

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
+ 2 * br  seeks
 Each block in the inner relation s is read once 
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 Best case: br + bs block transfers + 2 seeks.
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)
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Block Nested-Loop Join (Cont.)

 Worst case estimate:  br ∗ bs + br  block transfers 
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 Each block in the inner relation s is read once 

for each block in the outer relation
 Best case: br + bs block transfers + 2 seeks.
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Indexed Nested-Loop Join

 Index lookups can replace file scans if
 join is an equi-join or natural join and
 an index is available on the inner relationʼs join attribute

 Can construct an index just to compute a join.
 For each tuple tr in the outer relation r, use the index to look up 

tuples in s that satisfy the join condition with tuple tr.
 Worst case:  buffer has space for only one page of r, and, for each 

tuple in r, we perform an index lookup on s.
 Cost of the join:  br (tT + tS) + nr ∗ c

 Where c is the cost of traversing index and fetching all matching s 
tuples for one tuple or r

 c can be estimated as cost of a single selection on s using the join 
condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.
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Merge-Join
1. Sort both relations on their join attribute (if not already sorted on 

the join attributes).
2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge 
algorithm.  

2. Main difference is handling of duplicate values in join 
attribute — every pair with same value on join attribute must 
be matched

3. Detailed algorithm in book

26
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Merge-Join (Cont.)

 Can be used for equi-joins and natural joins
 Each block needs to be read only once (assuming all tuples for any 

given value of the join attributes fit in memory
 Thus the cost of merge join is: 

         br + bs  block transfers  + br / bb + bs / bb  seeks
 + the cost of sorting if relations are unsorted.
  bb: # of buffer blocks allocated for each relation (how many 

blocks we read each time)

27
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Hash-Join

 Applicable for equi-joins and natural joins.
 A hash function h is used to partition tuples of both relations 
 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the 

common attributes of r and s used in the natural join. 

 r0, r1, . . ., rn denote partitions of r tuples

Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).

 r0,, r1. . ., rn denotes partitions of s tuples

Each tuple ts ∈s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book,  ri   is denoted as Hri, si is denoted as Hsi  and

 n is denoted as nh. 
28

r={1, 2, 3, 4, 5, 6, 7}
s={2, 4, 6, 8}

r1={1, 2, 3, 4}, r2={5, 6, 7}
s1={2, 4}, s2={6, 8}
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Hash-Join (Cont.)
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Hash-Join (Cont.)

 r  tuples in ri need only to be compared with s tuples in si 
Need not be compared with s tuples in any other partition, 
since:
 an r tuple and an s tuple that satisfy the join condition 

will have the same value for the join attributes.
 If that value is hashed to some value i, the r tuple has 

to be in ri and the s tuple in si.

30
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Hash-Join Algorithm

1. Partition the relation s using hashing function h.  When 
partitioning a relation, one block of memory is reserved as 
the output buffer for each partition.

2. Partition r similarly.
3. For each i:

(a) Load si into memory and build an in-memory 
hash index on it using the join attribute.  

(b) Read the tuples in ri from the disk one by one.  
For each tuple tr locate each matching tuple ts in si using 
the in-memory hash index.  Output the concatenation of 
their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and  r  is called the probe input.

31
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Hash-Join algorithm (Cont.)

 The value n and the hash function h is chosen such that each 
si should fit in memory.

 Typically n is chosen as bs/M * f  where f is a “fudge 
factor”, typically around 1.2

 The probe relation partitions si need not fit in memory

  bs: # of disk blocks for relation S.

 M: # of memory pages

32
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Cost of Hash-Join

 Cost of hash join:
          3(br + bs) +4 ∗ nh  block transfers
         2( br / bb + bs / bb) + 2 ∗ nh seeks
 partitioning

 read: b_r + b_s blocks
 write: b_r + b_s blocks + 2 nh blocks (last block of each partition)

 matching
 build: b_s + nh blocks

 probe: b_r + nh blocks

 If the entire build input can be kept in main memory no partitioning is 
required
 Cost estimate goes down to br + bs.
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Chapter 12:  Query Processing

 Overview 
 Measures of Query Cost
 Selection Operation  
 Sorting 
 Join Operation 

Other Operations
 duplicate elimination / projection
 aggregation / set operations
 outer join

 Evaluation of Expressions
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Other Operations

 Duplicate elimination can be implemented via hashing or 
sorting.
 On sorting duplicates will come adjacent to each other, and all 

but one set of duplicates can be deleted.  
 Optimization: duplicates can be deleted during run generation 

as well as at intermediate merge steps in external sort-merge.
 Hashing is similar – duplicates will come into the same 

bucket.
 Projection:

 perform projection on each tuple 
 followed by duplicate elimination. 
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Other Operations : Aggregation
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
 Sorting or hashing can be used to bring tuples in the same 

group together, and then the aggregate functions can be 
applied on each group. 
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group together, and then the aggregate functions can be 
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Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
 Sorting or hashing can be used to bring tuples in the same 

group together, and then the aggregate functions can be 
applied on each group. 

 Optimization: combine tuples in the same group during run 
generation and intermediate merges, by computing partial 
aggregate values
For count, min, max, sum: keep aggregate values on tuples 

found so far in the group.  
– When combining partial aggregate for count, add up the 

aggregates

36
Tuesday, April 2, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate 
elimination.
 Sorting or hashing can be used to bring tuples in the same 

group together, and then the aggregate functions can be 
applied on each group. 

 Optimization: combine tuples in the same group during run 
generation and intermediate merges, by computing partial 
aggregate values
For count, min, max, sum: keep aggregate values on tuples 

found so far in the group.  
– When combining partial aggregate for count, add up the 

aggregates
For avg, keep sum and count, and divide sum by count at 

the end
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Other Operations : Set Operations

 Set operations (∪, ∩ and ):  can either use variant of merge-join 
after sorting, or variant of hash-join.

 E.g., Set operations using hashing:
1. Partition both relations using the same hash function
2. Process each partition i as follows.  

1. Using a different hashing function, build an in-memory hash 
index on ri.

2. Process si as follows
 r ∪ s:  

1. Add tuples in si to the hash index if they are not 
already in it.  

2. At end of si add the tuples in the hash index to the 
result.

37
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Other Operations : Set Operations

 E.g., Set operations using hashing:
1. as before partition r and s, 
2. as before, process each partition i as follows

1. build a hash index on ri
2. Process si as follows
 r ∩ s: 

1. output tuples in si to the result if they are already 
there in the hash index

  r – s: 
1. for each tuple in si, if it is there in the hash index, 

delete it from the index. 
2.  At end of si add remaining tuples in the hash 

index to the result. 
38
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Chapter 12:  Query Processing

 Overview 
 Measures of Query Cost
 Selection Operation  
 Sorting 
 Join Operation 
 Other Operations
Evaluation of Expressions

 materialization
 pipelining

pull-based (demand-driven; lazy)
push-based (produce-driven; eager)
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Evaluation of Expressions

 So far: we have seen algorithms for individual operations
 Alternatives for evaluating an entire expression tree

 Materialization:  generate results of an expression whose 
inputs are relations or are already computed, materialize 
(store) it on disk.  Repeat.

 Pipelining:  pass on tuples to parent operations even as an 
operation is being executed

 We study above alternatives in more detail

40
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Materialization

 Materialized evaluation:  evaluate one operation at a time, 
starting at the lowest-level.  Use intermediate results materialized 
into temporary relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute 
the projection on name. 
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Materialization (Cont.)

 Materialized evaluation is always applicable
 Cost of writing results to disk and reading them back can be 

quite high
 Double buffering: use two output buffers for each operation, 

when one is full write it to disk while the other is getting filled
 Allows overlap of disk writes with computation and reduces 

execution time
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Pipelining

 Pipelined evaluation :  evaluate several operations 
simultaneously, passing the results of one operation on to the next.

 E.g., in previous expression tree, donʼt store result of

 
 instead, pass tuples directly to the join..  Similarly, donʼt store 

result of join, pass tuples directly to projection. 
 Much cheaper than materialization: no need to store a temporary 

relation to disk.
 Pipelining may not always be possible – e.g., sort, hash-join. 
 For pipelining to be effective, use evaluation algorithms that 

generate output tuples even as tuples are received for inputs to the 
operation. 

 Pipelines can be executed in two ways:  demand driven and 
producer driven 
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Pipelining (Cont.)

 In demand driven  (or lazy or pull-based) evaluation
 system repeatedly requests next tuple  from top level operation
 Each operation requests  next tuple from children operations as 

required, in order to output its next tuple
 In producer-driven (or eager or push-based) pipelining

 Operators produce tuples eagerly and pass them up to their parents
 Buffer maintained between operators, child puts tuples in buffer, 

parent removes tuples from buffer
 if buffer is full, child waits till there is space in the buffer, and then 

generates more tuples
 System schedules operations that have space in output buffer and can 

process more input tuples
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Pipelining (Cont.)

 Implementation of demand-driven pipelining
 Each operation is implemented as an iterator implementing the 

following operations
open()

– E.g. file scan: initialize file scan
»  state: pointer to beginning of file

– E.g.merge join: sort relations;
»  state: pointers to beginning of sorted relations

  next()
– E.g. for file scan: Output next tuple, and advance and store 

file pointer
– E.g. for merge join:  continue with merge from earlier state 

till 
next output tuple is found.  Save pointers as iterator state.

close()
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Chapter 12:  Query Processing
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