

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Tuesday, April 16, 2013

Introduction

- Transformation of Relational Expressions
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
- Structure of Query Optimizers

Introduction

Alternative ways of evaluating a given query

- Equivalent expressions
- Different algorithms for each operation

Introduction (Cont.)

An **evaluation plan** defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

Introduction (Cont.)

- Cost difference between evaluation plans for a query can be enormous
 - E.g. seconds vs. days in some cases
- Steps in cost-based query optimization
 - 1. Generate logically equivalent expressions using equivalence rules
 - 2. Annotate resultant expressions to get alternative query plans
 - 3. Choose the cheapest plan based on estimated cost

- Introduction
- Transformation of Relational Expressions
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
- Structure of Query Optimizers

Transformation of Relational Expressions

- Two relational algebra expressions are said to be **equivalent** if the two expressions generate the same set of tuples on every *legal* database instance
 - Note: order of tuples is irrelevant
- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selection operations are commutative.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(\dots(\Pi_{Ln}(E))\dots)) = \Pi_{L_1}(E)$$

4. Selections can be combined with Cartesian products and theta joins.

a.
$$\sigma_{\theta}(\mathsf{E}_1 \mathsf{X} \mathsf{E}_2) = \mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2$$

b.
$$\sigma_{\theta 1}(\mathsf{E}_1 \Join_{\theta 2} \mathsf{E}_2) = \mathsf{E}_1 \Join_{\theta 1 \land \theta 2} \mathsf{E}_2$$

Database System Concepts - 6th Edition

5. Theta-join operations (and natural joins) are commutative. $E_1 \Join_{\theta} E_2 = E_2 \Join_{\theta} E_1$

6. (a) Natural join operations are associative:

 $(E_1 \boxtimes E_2) \boxtimes E_3 = E_1 \boxtimes (E_2 \boxtimes E_3)$

(b) Theta joins are associative in the following manner:

$$(E_1 \boxtimes_{\theta_1} E_2) \boxtimes_{\theta_2 \land \theta_3} E_3 = E_1 \boxtimes_{\theta_1 \land \theta_3} (E_2 \boxtimes_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

$$E_1 = (A, B), E_2 = (C, D), E_3 = (F, G)$$

(E_1 $\bowtie_{A=C} E_2$) $\bowtie_{B=F \land D=G} E_3 = E_1 \bowtie_{A=C \land B=F} (E_2 \bowtie_{D=G} E_3)$

Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \boxtimes_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \boxtimes_{\theta} \mathsf{E}_2$$

(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1^{\bigotimes}_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1}(\mathsf{E}_1))^{\bigotimes}_{\theta} (\sigma_{\theta_2}(\mathsf{E}_2))$$

$$E_1 (A, B), E_2 (C, D)$$

$$\sigma_{A < B}(E_1 \Join_{B=C} E_2) = \sigma_{A < B}(E_1) \Join_{B=C} E_2$$

$$\sigma_{A < D}(E_1 \Join_{B=C} E_2)?$$

Database System Concepts - 6th Edition

8. The projection operation distributes over the theta join operation as follows:

(a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1\cup L_2} (E_1 \boxtimes_{\theta} E_2) = (\prod_{L_1} (E_1)) \boxtimes_{\theta} (\prod_{L_2} (E_2))$$

(b) Consider a join $E_{1 | M^{\theta}} E_{2}$.

- Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
- Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
- let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$. $\prod_{L_1 \cup L_2} (E_1 \boxtimes_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \boxtimes_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$ $E_1 (A, B, Z), E_2 (C, D)$ $\prod_{A} (E_1 \bowtie_{B=C} E_2) = \prod_{A} (\prod_{L_1 \cup L_2} (E_1) \bowtie_{B=C} \prod_{L_2 \cup L_3} (E_2))$

8. The projection operation distributes over the theta join operation as follows:

(a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1\cup L_2} (E_1 \boxtimes_{\theta} E_2) = (\prod_{L_1} (E_1)) \boxtimes_{\theta} (\prod_{L_2} (E_2))$$

(b) Consider a join $E_{1 | M^{\theta}} E_{2}$.

- Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
- Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
- let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$. $\prod_{L_1 \cup L_2} (E_1 \Join_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \Join_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$ $E_1 (A, B, Z), E_2 (C, D)$ $\prod_{A} (E_1 \Join_{B=C} E_2) = \prod_{A} (\prod_{A,B} (E_1) \Join_{B=C} \prod (E_2))$

8. The projection operation distributes over the theta join operation as follows:

(a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1\cup L_2} (E_1 \boxtimes_{\theta} E_2) = (\prod_{L_1} (E_1)) \boxtimes_{\theta} (\prod_{L_2} (E_2))$$

(b) Consider a join $E_{1 | M^{\theta}} E_{2}$.

- Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
- Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
- let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$. $\prod_{L_1 \cup L_2} (E_1 \boxtimes_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \boxtimes_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$ $E_1 (A, B, Z), E_2 (C, D)$ $\prod_{A} (E_1 \Join_{B=C} E_2) = \prod_{A} (\prod_{A,B} (E_1) \Join_{B=C} \prod_{C} (E_2))$

9. The set operations union and intersection are commutative $E_1 \cup E_2 = E_2 \cup E_1$ $E_1 \cap E_2 = E_2 \cap E_1$

(set difference is not commutative).

10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3) (E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$$

11. The selection operation distributes over \cup , \cap and -.

$$\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta} (E_1) - \sigma_{\theta} (E_2)$$

and similarly for \cup and \cap in place of -

Also:
$$\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$$

and similarly for \cap in place of $\ -,$ but not for \cup

12. The projection operation distributes over union

$$\Pi_{L}(E_{1} \cup E_{2}) = (\Pi_{L}(E_{1})) \cup (\Pi_{L}(E_{2}))$$

Database System Concepts - 6th Edition

Join Ordering Example

For all relations r_1, r_2 , and r_3 , $(r_1 \boxtimes r_2) \boxtimes r_3 = r_1 \boxtimes (r_2 \boxtimes r_3)$ (Join Associativity)

If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

 $(r_1 \boxtimes r_2) \boxtimes r_3$

so that we compute and store a smaller temporary relation.

Introduction

Transformation of Relational Expressions

Cost-based optimization

- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
- Structure of Query Optimizers

Cost-Based Optimization

- Consider finding the best join-order for $r_1 \boxtimes r_2 \boxtimes \ldots r_n$.
- There are (2(n-1))!/(n-1)! different join orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of $\{r_1, r_2, \ldots, r_n\}$ is computed only once and stored for future use.

$(((E_1 \bowtie E_2 \bowtie E_3) \bowtie E_4) \bowtie E_5) = (E_1 \bowtie E_2 \bowtie E_3) \bowtie (E_4 \bowtie E_5)$

- Introduction
- Transformation of Relational Expressions
- Cost-based optimization

Dynamic Programming for Choosing Evaluation Plans

- Heuristic Optimization
- Structure of Query Optimizers

Dynamic Programming in Optimization

- To find best join tree for a set of *n* relations:
 - To find best plan for a set *S* of *n* relations, consider all possible plans of the form: $S_1 \Join (S S_1)$ where S_1 is any non-empty subset of *S*.
 - Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest.
 - When plan for any subset is computed, store it and reuse it when it is required again, instead of recomputing it
 - Dynamic programming

Join Order Optimization Algorithm

procedure findbestplan(S) if $(bestplan[S].cost \neq \infty)$ **return** *bestplan*[*S*] // else *bestplan*[S] has not been computed earlier, compute it now if (S contains only 1 relation) set *bestplan*[S].*plan* and *bestplan*[S].*cost* based on the best way of accessing S /* Using selections on S and indices on S */ else for each non-empty subset S1 of S such that $S1 \neq S$ P1 = findbestplan(S1)P2= findbestplan(S - S1) A = best algorithm for joining results of P1 and P2cost = P1.cost + P2.cost + cost of Aif cost < bestplan[S].cost *bestplan*[*S*].*cost* = cost *bestplan*[*S*].*plan* = "execute *P*1.*plan*; execute *P*2.*plan*; join results of *P*1 and *P*2 using *A*" **return** *bestplan*[*S*]

Left Deep Join Trees

In **left-deep join trees**, the right-hand-side input for each join is a relation, not the result of an intermediate join.

(a) Left-deep join tree

(b) Non-left-deep join tree

- Introduction
- Transformation of Relational Expressions
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
 - Structure of Query Optimizers

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use *heuristics* to reduce the number of choices that must be made in a cost-based fashion.
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations.
 - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.

- Introduction
- Transformation of Relational Expressions
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
- Structure of Query Optimizers

Structure of Query Optimizers

- Many optimizers considers only left-deep join orders.
 - Plus heuristics to push selections and projections down the query tree
 - Reduces optimization complexity and generates plans amenable to pipelined evaluation.
- Heuristic optimization used in some versions of Oracle:
 - Repeatedly pick "best" relation to join next
 - Starting from each of n starting points. Pick best among these
- Intricacies of SQL complicate query optimization
 - E.g. nested subqueries
- Optimization cost budget to stop optimization early (if cost of plan is less than cost of optimization)
- Plan caching to reuse previously computed plan if query is resubmitted

- Introduction
- Transformation of Relational Expressions
- Cost-based optimization
- Dynamic Programming for Choosing Evaluation Plans
- Heuristic Optimization
- Structure of Query Optimizers