
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 13: Query Optimization

Tuesday, April 16, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions
 Cost-based optimization
 Dynamic Programming for Choosing Evaluation

Plans
 Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Introduction
 Alternative ways of evaluating a given query

 Equivalent expressions
 Different algorithms for each operation

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Introduction (Cont.)

 Cost difference between evaluation plans for a query can be enormous
 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction

 Transformation of Relational Expressions
 Cost-based optimization
 Dynamic Programming for Choosing Evaluation Plans
 Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if
the two expressions generate the same set of tuples on every
legal database instance
 Note: order of tuples is irrelevant

 An equivalence rule says that expressions of two forms are
equivalent
 Can replace expression of first form by second, or vice versa

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules

1.
 Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

2.
 Selection operations are commutative.

3.
 Only the last in a sequence of projection operations is
needed, the others can be omitted.

4. Selections can be combined with Cartesian products and
theta joins.
a. σθ(E1 X E2) = E1 θ E2

b. σθ1(E1 θ2 E2) = E1 θ1∧ θ2 E2

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)

5.
 Theta-join operations (and natural joins) are commutative.

 E1 θ E2 = E2 θ E1

6.
 (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 θ1 E2) θ2∧ θ3 E3 = E1 θ1∧ θ3 (E2 θ2 E3)

 where θ2 involves attributes from only E2 and E3.

E1 = (A, B), E2 = (C, D), E3 = (F, G)
(E1 ⧓ A = C E2) ⧓ B = F ⋀ D = G E3 = E1 ⧓ A = C ⋀ B = F (E2 ⧓ D = G E3)

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)

7.
 The selection operation distributes over the theta join operation
under the following two conditions:
(a) When all the attributes in θ0 involve only the attributes of one
 of the expressions (E1) being joined.

 σθ0(E1 θ E2) = (σθ0(E1)) θ E2

 (b) When θ 1 involves only the attributes of E1 and θ2 involves
 only the attributes of E2.

 σθ1∧θ2 (E1 θ E2) = (σθ1(E1)) θ (σθ2 (E2))

E1 (A, B), E2 (C, D)
σA<B(E1 ⧓B=C E2) = σA<B(E1) ⧓B=C E2

σA<D(E1 ⧓B=C E2)?

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)
8.
 The projection operation distributes over the theta join operation

as follows:

 (a) if θ involves only attributes from L1 ∪ L2:

 (b) Consider a join E1 θ E2.

 Let L1 and L2 be sets of attributes from E1 and E2,
respectively.

 Let L3 be attributes of E1 that are involved in join condition θ,
but are not in L1 ∪ L2, and

 let L4 be attributes of E2 that are involved in join condition θ,
but are not in L1 ∪ L2.

))(())(()(2121 2121
EEEE LLLL

∏∏=∏
∪ θθ

)))(())((()(
2121

42312121 EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

E1 (A, B, Z), E2 (C, D)
∏A(E1 ⧓B=C E2) = ∏A(∏ (E1) ⧓B=C ∏ (E2))

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)
8.
 The projection operation distributes over the theta join operation

as follows:

 (a) if θ involves only attributes from L1 ∪ L2:

 (b) Consider a join E1 θ E2.

 Let L1 and L2 be sets of attributes from E1 and E2,
respectively.

 Let L3 be attributes of E1 that are involved in join condition θ,
but are not in L1 ∪ L2, and

 let L4 be attributes of E2 that are involved in join condition θ,
but are not in L1 ∪ L2.

))(())(()(2121 2121
EEEE LLLL

∏∏=∏
∪ θθ

)))(())((()(
2121

42312121 EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

E1 (A, B, Z), E2 (C, D)
∏A(E1 ⧓B=C E2) = ∏A(∏ (E1) ⧓B=C ∏ (E2))A,B

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)
8.
 The projection operation distributes over the theta join operation

as follows:

 (a) if θ involves only attributes from L1 ∪ L2:

 (b) Consider a join E1 θ E2.

 Let L1 and L2 be sets of attributes from E1 and E2,
respectively.

 Let L3 be attributes of E1 that are involved in join condition θ,
but are not in L1 ∪ L2, and

 let L4 be attributes of E2 that are involved in join condition θ,
but are not in L1 ∪ L2.

))(())(()(2121 2121
EEEE LLLL

∏∏=∏
∪ θθ

)))(())((()(
2121

42312121 EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

E1 (A, B, Z), E2 (C, D)
∏A(E1 ⧓B=C E2) = ∏A(∏ (E1) ⧓B=C ∏ (E2))A,B C

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)
9. The set operations union and intersection are commutative

 E1 ∪ E2 = E2 ∪ E1

 E1 ∩ E2 = E2 ∩ E1
 (set difference is not commutative).

10. Set union and intersection are associative.

 (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

 (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)
11. The selection operation distributes over ∪, ∩ and –.

 σθ (E1 – E2) = σθ (E1) – σθ(E2)
 and similarly for ∪ and ∩ in place of –
Also: σθ (E1 – E2) = σθ(E1) – E2

 and similarly for ∩ in place of –, but not for ∪
12.
The projection operation distributes over union
 ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Join Ordering Example

 For all relations r1, r2, and r3,

 (r1 r2) r3 = r1 (r2 r3)

 (Join Associativity)
 If r2 r3 is quite large and r1 r2 is small, we choose

 (r1 r2) r3

 so that we compute and store a smaller temporary relation.

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions

Cost-based optimization
 Dynamic Programming for Choosing Evaluation

Plans
 Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Cost-Based Optimization

 Consider finding the best join-order for r1 r2 . . . rn.
 There are (2(n – 1))!/(n – 1)! different join orders for above expression.

With n = 7, the number is 665280, with n = 10, the number is greater
than 176 billion!

 No need to generate all the join orders. Using dynamic programming,
the least-cost join order for any subset of
{r1, r2, . . . rn} is computed only once and stored for future use.

(((E1 ⧓ E2 ⧓ E3) ⧓ E4) ⧓ E5)= (E1 ⧓ E2 ⧓ E3) ⧓ (E4 ⧓ E5)

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions
 Cost-based optimization

Dynamic Programming for Choosing
Evaluation Plans

 Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Dynamic Programming in Optimization

 To find best join tree for a set of n relations:
 To find best plan for a set S of n relations, consider all possible

plans of the form: S1 (S – S1) where S1 is any non-empty
subset of S.

 Recursively compute costs for joining subsets of S to find the cost
of each plan. Choose the cheapest.

 When plan for any subset is computed, store it and reuse it when
it is required again, instead of recomputing it
 Dynamic programming

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

 return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)
 set bestplan[S].plan and bestplan[S].cost based on the best way
 of accessing S /* Using selections on S and indices on S */

 else for each non-empty subset S1 of S such that S1 ≠ S

 P1= findbestplan(S1)

 P2= findbestplan(S - S1)

 A = best algorithm for joining results of P1 and P2

 cost = P1.cost + P2.cost + cost of A

 if cost < bestplan[S].cost

 bestplan[S].cost = cost

 bestplan[S].plan = “execute P1.plan; execute P2.plan;

 join results of P1 and P2 using A”
return bestplan[S]

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Left Deep Join Trees

 In left-deep join trees, the right-hand-side input for each join is
a relation, not the result of an intermediate join.

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions
 Cost-based optimization
 Dynamic Programming for Choosing Evaluation

Plans

Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming.
 Systems may use heuristics to reduce the number of choices that must

be made in a cost-based fashion.
 Heuristic optimization transforms the query-tree by using a set of rules

that typically (but not in all cases) improve execution performance:
 Perform selection early (reduces the number of tuples)
 Perform projection early (reduces the number of attributes)
 Perform most restrictive selection and join operations (i.e. with

smallest result size) before other similar operations.
 Some systems use only heuristics, others combine heuristics with

partial cost-based optimization.

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions
 Cost-based optimization
 Dynamic Programming for Choosing Evaluation

Plans
 Heuristic Optimization

 Structure of Query Optimizers

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Structure of Query Optimizers

 Many optimizers considers only left-deep join orders.
 Plus heuristics to push selections and projections down the query

tree
 Reduces optimization complexity and generates plans amenable to

pipelined evaluation.
 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next
 Starting from each of n starting points. Pick best among these

 Intricacies of SQL complicate query optimization
 E.g. nested subqueries

 Optimization cost budget to stop optimization early (if cost of plan is less
than cost of optimization)

 Plan caching to reuse previously computed plan if query is resubmitted

Tuesday, April 16, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction
 Transformation of Relational Expressions
 Cost-based optimization
 Dynamic Programming for Choosing Evaluation

Plans
 Heuristic Optimization
 Structure of Query Optimizers

Tuesday, April 16, 2013

