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Introduction
 Alternative ways of evaluating a given query

 Equivalent expressions
 Different algorithms for each operation
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Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated.
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Introduction (Cont.)

 Cost difference between evaluation plans for a query can be enormous
 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost
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Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if 
the two expressions generate the same set of tuples on every 
legal database instance
 Note: order of tuples is irrelevant

 An equivalence rule says that expressions of two forms are 
equivalent
 Can replace expression of first form by second, or vice versa
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Equivalence Rules

1.
 Conjunctive selection operations can be deconstructed into a 
sequence of individual selections.

2.
 Selection operations are commutative.

3.
 Only the last in a sequence of projection operations is 
needed, the others can be omitted.

4. Selections can be combined with Cartesian products and 
theta joins.
a. σθ(E1 X E2) =  E1     θ E2 

b. σθ1(E1     θ2 E2) =  E1     θ1∧ θ2 E2 
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Equivalence Rules (Cont.)

5.
 Theta-join operations (and natural joins) are commutative.

 E1      θ  E2 = E2     θ  E1

6.
 (a) Natural join operations are associative:

 
  (E1      E2)    E3 = E1      (E2     E3)

(b) Theta joins are associative in the following manner:


  (E1       θ1 E2)     θ2∧ θ3 E3 = E1        θ1∧ θ3 (E2     θ2 E3)
     
     where θ2 involves attributes from only E2 and E3.

E1 = (A, B), E2 = (C, D), E3 = (F, G) 
(E1 ⧓ A = C E2) ⧓ B = F ⋀ D = G E3   =   E1 ⧓ A = C ⋀ B = F (E2 ⧓ D = G E3)
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Pictorial Depiction of Equivalence Rules

Tuesday, April 16, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 6th Edition

Equivalence Rules (Cont.)

7.
 The selection operation distributes over the theta join operation 
under the following two conditions:
(a)  When all the attributes in θ0  involve only the attributes of one 
       of the expressions (E1) being joined.

                σθ0(E1     θ E2) = (σθ0(E1))    θ E2 


 (b) When θ 1 involves only the attributes of E1 and θ2  involves  
      only the attributes of E2.


                   σθ1∧θ2 (E1    θ E2) =  (σθ1(E1))    θ (σθ2 (E2))

E1 (A, B), E2 (C, D)
σA<B(E1 ⧓B=C E2) = σA<B(E1) ⧓B=C E2

σA<D(E1 ⧓B=C E2)?
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Equivalence Rules (Cont.)
8.
 The projection operation distributes over the theta join operation 

as follows:

 (a) if θ involves only attributes from L1 ∪ L2:




 (b) Consider a join E1      θ E2. 

  Let L1 and L2 be sets of attributes from E1 and E2, 
respectively.  

 Let L3 be attributes of E1 that are involved in join condition θ, 
but are not in L1 ∪ L2, and

  let L4 be attributes of E2 that are involved in join condition θ, 
but are not in L1 ∪ L2.

))(())(()( 2121 2121
EEEE LLLL

∏∏=∏
∪ θθ

)))(())((()(
2121

42312121 EEEE LLLLLLLL ∪∪∪∪ ∏∏∏=∏ θθ

E1 (A, B, Z), E2 (C, D)
∏A(E1 ⧓B=C E2) = ∏A(∏       (E1) ⧓B=C ∏   (E2))
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Equivalence Rules (Cont.)
8.
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Equivalence Rules (Cont.)
9. The set operations union and intersection are commutative 


 E1 ∪ E2  = E2 ∪ E1 

 E1 ∩ E2  = E2 ∩ E1 
 (set difference is not commutative).

10. Set union and intersection are associative.

                  (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

              (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)
11. The selection operation distributes over ∪, ∩ and –. 

                  σθ (E1  –  E2) = σθ (E1) –  σθ(E2)
                     and similarly for ∪ and ∩ in place of  –
Also:           σθ (E1  –  E2) = σθ(E1) –  E2

                          and similarly for ∩ in place of  –, but not for ∪
12.
The projection operation distributes over union
                       ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2)) 
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Join Ordering Example

 For all relations r1, r2, and r3,

 
 (r1    r2)    r3  = r1    (r2    r3 )

 (Join Associativity)
 If r2    r3  is quite large and r1    r2 is small, we choose


  (r1    r2)    r3 


 so that we compute and store a smaller temporary relation.
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Cost-Based Optimization

 Consider finding the best join-order for r1    r2      . . . rn.
 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 
than 176 billion!

 No need to generate all the join orders.  Using dynamic programming, 
the least-cost join order for any subset of 
{r1, r2, . . . rn} is computed only once and stored for future use. 

(((E1 ⧓ E2 ⧓ E3) ⧓ E4 ) ⧓ E5)= (E1 ⧓ E2 ⧓ E3) ⧓ (E4 ⧓ E5)
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Dynamic Programming in Optimization

 To find best join tree for a set of n relations:
 To find best plan for a set S of n relations, consider all possible 

plans of the form:  S1     (S – S1) where S1 is any non-empty 
subset of S.

 Recursively compute costs for joining subsets of S to find the cost 
of each plan.  Choose the cheapest.

 When plan for any subset is computed, store it and reuse it when 
it is required again, instead of recomputing it
 Dynamic programming
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Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

 return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)
         set bestplan[S].plan and bestplan[S].cost based on the best way 
         of accessing S  /* Using selections on S and indices on S */

     else for each non-empty subset S1 of S such that S1 ≠ S

 P1= findbestplan(S1)

 P2= findbestplan(S - S1)

 A = best algorithm for joining results of P1 and P2

 cost = P1.cost + P2.cost + cost of A

 if cost < bestplan[S].cost 
 
 
 bestplan[S].cost = cost

 
 bestplan[S].plan = “execute P1.plan; execute P2.plan;

 
 
 
      join results of P1 and P2 using A”
return bestplan[S]
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Left Deep Join Trees

 In left-deep join trees, the right-hand-side input for each join is 
a relation, not the result of an intermediate join.
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Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming.
 Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion.
 Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance:
 Perform selection early (reduces the number of tuples)
 Perform projection early (reduces the number of attributes)
 Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations.
 Some systems use only heuristics, others combine heuristics with 

partial cost-based optimization.
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Structure of Query Optimizers

 Many optimizers considers only left-deep join orders.
 Plus heuristics to push selections and projections down the query 

tree
 Reduces optimization complexity and generates plans amenable to 

pipelined evaluation.
 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next 
 Starting from each of n starting points.  Pick best among these

 Intricacies of SQL complicate query optimization
 E.g. nested subqueries

 Optimization cost budget to stop optimization early (if cost of plan is less 
than cost of optimization)

 Plan caching to reuse previously computed plan if query is resubmitted
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