
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 15 : Concurrency Control

Tuesday, April 23, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes

2
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Lock requests are made to concurrency-control manager.
 Transaction can proceed only after request is granted.

3
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

write(A)

read(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

write(A)

read(A)

lock-X(A)

lock-S(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)
 Example of a transaction performing locking:
 T2: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
 Is the above safe?

5
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)
 Example of a transaction performing locking:
 T2: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
 Is the above safe?

5

 Locking as above is not sufficient to guarantee serializability — if A or B
get updated in-between the read of A and B, the displayed sum would be
wrong.

 How then can we fix it? Use one of locking protocols (e.g., 2PL) that
ensure serializability.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols

 Consider the partial schedule. Is it Okay?

6
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols

 Consider the partial schedule. Is it Okay?

6

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to
wait for T4 to release its lock on A.

 Such a situation is called a deadlock.
 To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols (Cont.)

 Starvation is also possible if concurrency control manager is badly
designed. For example:
 A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

 The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.

7
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

The Two-Phase Locking Protocol
 This is a protocol which ensures conflict-

serializable schedules.
 Phase 1: Growing Phase

 transaction may obtain locks
 transaction may not release locks

 Phase 2: Shrinking Phase
 transaction may release locks
 transaction may not obtain locks

 The protocol assures serializability. It can
be proved that the transactions can be
serialized in the order of their lock
points (i.e., the point where a
transaction acquired its final lock).

 There can be conflict serializable
schedules that cannot be obtained if two-
phase locking is used.

8

lock-X(A)!

read(A)!
A !A-50!

write(A)!
lock-X(B)!

unlock(A)!

read(B)!
B !B + 50!

write(B)!

unlock(B)!

lock-S(A)!

read(A)!

lock-S(B)!
unlock(A)!

read(B)!
unlock(B)!

display(A+B)!

T1!

T2!G

S G

S

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

The Two-Phase Locking Protocol (Cont.)
 risk of deadlocks.
 may not be recoverable
 Cascading roll-back is possible. To avoid this, follow a modified

protocol called strict two-phase locking. Here a transaction must
hold all its exclusive locks till it commits/aborts.

9

T1! T2! T3!

lock-X(A)!

read(A)!

lock-S(B)!

read(B)!

write(A)!

unlock(A)!

<xaction fails>!

lock-X(A)!

read(A)!

write(A)!

unlock(A)!

lock-S(A)!

read(A)!

Strict 2PL!

will not !
allow that!

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests.

 The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock).

 The requesting transaction waits until its request is answered.
 The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests.

10
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock Table

 Blue rectangles indicate granted
locks, white ones indicate waiting
requests

 Lock table also records the type of
lock granted or requested

 New request is added to the end
of the queue of requests for the
data item, and granted if it is
compatible with all earlier locks

 Unlock requests result in the
request being deleted, and later
requests are checked to see if
they can now be granted

 If transaction aborts, all waiting or
granted requests of the transaction
are deleted11

 The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock

 Consider the following two transactions:
 T1: write (A) T2: write(B)

 write(B) write(A)
 Schedule with deadlock

12
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),
 V is a set of vertices (all the transactions in the system)
 E is a set of edges; each element is an ordered pair Ti →Tj.

 When Ti requests a data item currently being held by Tj, then the edge
Ti → Tj is inserted in the wait-for graph. This edge is removed only
when Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph has a
cycle.

13
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

14
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Prevention

 Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:
 Require that each transaction locks all its data items before it

begins execution (predeclaration).
 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

15
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

More Deadlock Prevention Strategies

 Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

 wait-die scheme — non-preemptive
 older transaction may wait for younger one to release data item.
 younger transactions never wait for older ones; they are rolled back

instead.
 a transaction may die several times before acquiring needed data

item (starvation)
 wound-wait scheme — preemptive

 younger transactions may wait for older ones.
 older transaction wounds (forces rollback of) younger transaction

instead of waiting for it.
 may be fewer rollbacks than wait-die scheme

16
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:
 a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
 thus deadlocks are not possible
 simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

17
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Recovery

 When deadlock is detected:
 Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum
cost.

 Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 More effective to roll back transaction only as far as necessary

to break deadlock.
 Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid
starvation

18
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking.
 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data

items.
 If di → dj then any transaction accessing both di and dj must

access di before accessing dj.
 Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.
 The tree-protocol is a simple kind of graph protocol.

19
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Tree Protocol

1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item.

Subsequently, a data Q can be locked by Ti only if
the parent of Q is currently locked by Ti.

3. Data items may be unlocked at any time after the
relevant children are locked.

20

 Example: T1 and T2 both on A and D,
T1 goes first

T1
lock-X(A)
lock-X(B)
unlock(A)

lock-X(D)
unlock(B)

unlock(D)

T2

lock-X(A)

lock-X(B)
unlock(A)

lock-X(D)
unlock(B)
unlock(D)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Graph-Based Protocols (Cont.)

 ensures conflict serializability
 free from deadlock (no rollbacks).
 Unlocking may occur earlier in the tree-locking protocol than in the two-

phase locking protocol.
 shorter waiting times, and increase in concurrency

 Drawbacks
 Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under tree
protocol, and vice versa.

21
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes

22
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If
an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

 In order to assure such behavior, the protocol maintains for each
data Q two timestamp values:
 W-timestamp(Q) is the largest timestamp of any transaction

that executed write(Q) successfully.
 R-timestamp(Q) is the largest timestamp of any transaction that

executed read(Q) successfully.

23
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols (Cont.)

 The timestamp ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order.

 Suppose a transaction Ti issues a read(Q):

1. If TS(Ti)≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

2. If TS(Ti) < W-timestamp(Q), then the read operation is rejected,
and Ti is rolled back (late read).

24
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the write operation is rejected,
and Ti is rolled back (late write).

2. If TS(Ti) < W-timestamp(Q), then this write operation is rejected,
and Ti is rolled back (late write).

3. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

25
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

26
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph.
 Timestamp protocol ensures freedom from deadlock as no

transaction ever waits.
 But the schedule may not be cascade-free, and may not even be

recoverable.

27
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Thomasʼ Write Rule

 Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}.

 Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be safely ignored.

28

T1 T2
R(Q)
 W(Q)
W(Q)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols

 Validation-Based Protocols
 Multiversion Schemes

29
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Validation-Based Protocol

 Execution of transaction Ti is done in three phases.
 1. Read and execution phase: Transaction Ti writes only to
 temporary local variables
 2. Validation phase: Transaction Ti performs a ``validation test''
 to determine if local variables can be written without violating
 serializability.
 3. Write phase: If Ti is validated, the updates are applied to the

 database; otherwise, Ti is rolled back.
 Also called as optimistic concurrency control since transaction

executes fully in the hope that all will go well during validation

30
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols

 Multiversion Schemes

31
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Multiversion Schemes

 Multiversion schemes keep old versions of data item to increase
concurrency.
 Multiversion Timestamp Ordering
 Multiversion Two-Phase Locking

 Each successful write results in the creation of a new version of the
data item written.

 Use timestamps to label versions.
 When a read(Q) operation is issued, select an appropriate version of

Q based on the timestamp of the transaction, and return the value of
the selected version.

 reads never have to wait as an appropriate version is returned
immediately.

32

w(A)

 w(A)
r(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MVCC: Implementation Issues

 Creation of multiple versions increases storage overhead
 Extra tuples
 Extra space in each tuple for storing version information

 Versions can, however, be garbage collected
 E.g., if Q has two versions Q5 and Q9, and the oldest active

transaction has timestamp > 9, than Q5 will never be required
again

33
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes
 If you are really interested in concurrency control, consider reading this

free book:
 http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

34
Tuesday, April 23, 2013

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

