
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 15 : Concurrency Control

Tuesday, April 23, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes

2
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Lock requests are made to concurrency-control manager.
 Transaction can proceed only after request is granted.

3
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

write(A)

read(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)

 Data items can be locked in two modes:
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions.

4

read(A)

read(A)

lock-S(A)

lock-S(A)

write(A)

read(A)

lock-X(A)

lock-S(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)
 Example of a transaction performing locking:
 T2: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
 Is the above safe?

5
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock-Based Protocols (Cont.)
 Example of a transaction performing locking:
 T2: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
 Is the above safe?

5

 Locking as above is not sufficient to guarantee serializability — if A or B
get updated in-between the read of A and B, the displayed sum would be
wrong.

 How then can we fix it? Use one of locking protocols (e.g., 2PL) that
ensure serializability.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols

 Consider the partial schedule. Is it Okay?

6
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols

 Consider the partial schedule. Is it Okay?

6

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to
wait for T4 to release its lock on A.

 Such a situation is called a deadlock.
 To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Pitfalls of Lock-Based Protocols (Cont.)

 Starvation is also possible if concurrency control manager is badly
designed. For example:
 A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

 The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.

7
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

The Two-Phase Locking Protocol
 This is a protocol which ensures conflict-

serializable schedules.
 Phase 1: Growing Phase

 transaction may obtain locks
 transaction may not release locks

 Phase 2: Shrinking Phase
 transaction may release locks
 transaction may not obtain locks

 The protocol assures serializability. It can
be proved that the transactions can be
serialized in the order of their lock
points (i.e., the point where a
transaction acquired its final lock).

 There can be conflict serializable
schedules that cannot be obtained if two-
phase locking is used.

8

lock-X(A)!

read(A)!
A !A-50!

write(A)!
lock-X(B)!

unlock(A)!

read(B)!
B !B + 50!

write(B)!

unlock(B)!

lock-S(A)!

read(A)!

lock-S(B)!
unlock(A)!

read(B)!
unlock(B)!

display(A+B)!

T1!

T2!G

S G

S

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

The Two-Phase Locking Protocol (Cont.)
 risk of deadlocks.
 may not be recoverable
 Cascading roll-back is possible. To avoid this, follow a modified

protocol called strict two-phase locking. Here a transaction must
hold all its exclusive locks till it commits/aborts.

9

T1! T2! T3!

lock-X(A)!

read(A)!

lock-S(B)!

read(B)!

write(A)!

unlock(A)!

<xaction fails>!

lock-X(A)!

read(A)!

write(A)!

unlock(A)!

lock-S(A)!

read(A)!

Strict 2PL!

will not !
allow that!

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests.

 The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock).

 The requesting transaction waits until its request is answered.
 The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests.

10
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Lock Table

 Blue rectangles indicate granted
locks, white ones indicate waiting
requests

 Lock table also records the type of
lock granted or requested

 New request is added to the end
of the queue of requests for the
data item, and granted if it is
compatible with all earlier locks

 Unlock requests result in the
request being deleted, and later
requests are checked to see if
they can now be granted

 If transaction aborts, all waiting or
granted requests of the transaction
are deleted11

 The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked.

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock

 Consider the following two transactions:
 T1: write (A) T2: write(B)

 write(B) write(A)
 Schedule with deadlock

12
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),
 V is a set of vertices (all the transactions in the system)
 E is a set of edges; each element is an ordered pair Ti →Tj.

 When Ti requests a data item currently being held by Tj, then the edge
Ti → Tj is inserted in the wait-for graph. This edge is removed only
when Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph has a
cycle.

13
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

14
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Prevention

 Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:
 Require that each transaction locks all its data items before it

begins execution (predeclaration).
 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

15
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

More Deadlock Prevention Strategies

 Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

 wait-die scheme — non-preemptive
 older transaction may wait for younger one to release data item.
 younger transactions never wait for older ones; they are rolled back

instead.
 a transaction may die several times before acquiring needed data

item (starvation)
 wound-wait scheme — preemptive

 younger transactions may wait for older ones.
 older transaction wounds (forces rollback of) younger transaction

instead of waiting for it.
 may be fewer rollbacks than wait-die scheme

16
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:
 a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
 thus deadlocks are not possible
 simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

17
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Deadlock Recovery

 When deadlock is detected:
 Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum
cost.

 Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 More effective to roll back transaction only as far as necessary

to break deadlock.
 Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid
starvation

18
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking.
 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data

items.
 If di → dj then any transaction accessing both di and dj must

access di before accessing dj.
 Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.
 The tree-protocol is a simple kind of graph protocol.

19
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Tree Protocol

1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item.

Subsequently, a data Q can be locked by Ti only if
the parent of Q is currently locked by Ti.

3. Data items may be unlocked at any time after the
relevant children are locked.

20

 Example: T1 and T2 both on A and D,
T1 goes first

T1
lock-X(A)
lock-X(B)
unlock(A)

lock-X(D)
unlock(B)

unlock(D)

T2

lock-X(A)

lock-X(B)
unlock(A)

lock-X(D)
unlock(B)
unlock(D)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Graph-Based Protocols (Cont.)

 ensures conflict serializability
 free from deadlock (no rollbacks).
 Unlocking may occur earlier in the tree-locking protocol than in the two-

phase locking protocol.
 shorter waiting times, and increase in concurrency

 Drawbacks
 Transactions may have to lock data items that they do not access.

 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under tree
protocol, and vice versa.

21
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes

22
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If
an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

 In order to assure such behavior, the protocol maintains for each
data Q two timestamp values:
 W-timestamp(Q) is the largest timestamp of any transaction

that executed write(Q) successfully.
 R-timestamp(Q) is the largest timestamp of any transaction that

executed read(Q) successfully.

23
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols (Cont.)

 The timestamp ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order.

 Suppose a transaction Ti issues a read(Q):

1. If TS(Ti)≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

2. If TS(Ti) < W-timestamp(Q), then the read operation is rejected,
and Ti is rolled back (late read).

24
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the write operation is rejected,
and Ti is rolled back (late write).

2. If TS(Ti) < W-timestamp(Q), then this write operation is rejected,
and Ti is rolled back (late write).

3. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

25
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

26
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph.
 Timestamp protocol ensures freedom from deadlock as no

transaction ever waits.
 But the schedule may not be cascade-free, and may not even be

recoverable.

27
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Thomasʼ Write Rule

 Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}.

 Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be safely ignored.

28

T1 T2
R(Q)
 W(Q)
W(Q)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols

 Validation-Based Protocols
 Multiversion Schemes

29
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Validation-Based Protocol

 Execution of transaction Ti is done in three phases.
 1. Read and execution phase: Transaction Ti writes only to
 temporary local variables
 2. Validation phase: Transaction Ti performs a ``validation test''
 to determine if local variables can be written without violating
 serializability.
 3. Write phase: If Ti is validated, the updates are applied to the
 database; otherwise, Ti is rolled back.
 Also called as optimistic concurrency control since transaction

executes fully in the hope that all will go well during validation

30
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols

 Multiversion Schemes

31
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Multiversion Schemes

 Multiversion schemes keep old versions of data item to increase
concurrency.
 Multiversion Timestamp Ordering
 Multiversion Two-Phase Locking

 Each successful write results in the creation of a new version of the
data item written.

 Use timestamps to label versions.
 When a read(Q) operation is issued, select an appropriate version of

Q based on the timestamp of the transaction, and return the value of
the selected version.

 reads never have to wait as an appropriate version is returned
immediately.

32

w(A)
 w(A)
r(A)

Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MVCC: Implementation Issues

 Creation of multiple versions increases storage overhead
 Extra tuples
 Extra space in each tuple for storing version information

 Versions can, however, be garbage collected
 E.g., if Q has two versions Q5 and Q9, and the oldest active

transaction has timestamp > 9, than Q5 will never be required
again

33
Tuesday, April 23, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 15: Concurrency Control

 Lock-Based Protocols
 2PL
 Graph-Based Protocols
 Deadlock Prevention/Detection/Recovery

 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiversion Schemes
 If you are really interested in concurrency control, consider reading this

free book:
 http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

34
Tuesday, April 23, 2013

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

