
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 16: Recovery System

Tuesday, April 30, 13

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

Failure Classification
 Storage Structure
 Recovery and Atomicity
 Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

2
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Failure Classification

 Transaction failure :
 Logical errors: transaction cannot complete due to some internal

error condition
 System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)
 System crash: a power failure or other hardware or software failure

causes the system to crash.
 Fail-stop assumption: non-volatile storage contents are

assumed to not be corrupted by system crash
 Database systems have numerous integrity checks to prevent

corruption of disk data
 Disk failure: a head crash or similar disk failure destroys all or part of

disk storage
 Destruction is assumed to be detectable: disk drives use

checksums to detect failures

3
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Recovery Algorithms

 Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures
2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability

4
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification

Storage Structure
 Recovery and Atomicity
 Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

5
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Storage Structure

 Volatile storage:
 does not survive system crashes
 examples: main memory, cache memory

 Nonvolatile storage:
 survives system crashes
 examples: disk, tape, flash memory,

 non-volatile (battery backed up) RAM
 but may still fail, losing data

 Stable storage:
 a mythical form of storage that survives all failures
 approximated by maintaining multiple copies on distinct

nonvolatile media

6
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Stable-Storage Implementation
 Maintain multiple copies of each block on separate disks

 copies can be at remote sites to protect against disasters such as
fire or flooding.

 Protecting storage media from failure during data transfer (one
solution that assumes two copies of each block):

1. Write the information onto the first physical block.
2. When the first write successfully completes, write the same

information onto the second physical block.
3. The output is completed only after the second write

successfully completes.

7
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Stable-Storage Implementation (Cont.)

 To recover from failure (copies of a block may differ due to failure during
output operation):
1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.
2. Better solution (logging):

 Record in-progress disk writes on non-volatile storage (Non-
volatile RAM or special area of disk).

 Use this information during recovery to find blocks that may be
inconsistent, and only compare copies of these.

 Used in hardware RAID systems
2. If either copy of an inconsistent block is detected to have an error (bad

checksum), overwrite it by the other copy. If both have no error, but are
different, overwrite the second block by the first block.

8
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Access

X

Y
A
B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

disk

work area
of T1

work area
of T2

memory

x2

9

 Physical blocks are
those blocks residing on
the disk.

 Buffer blocks are the
blocks residing
temporarily in main
memory.

 Block movements
between disk and main
memory:
 input(B) transfers

the physical block B
to main memory.

 output(B) transfers
the buffer block B to
the disk, and
replaces the
appropriate physical
block there.

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Access (Cont.)
 Each transaction Ti has its private work-area in which local copies of

all data items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

 Transferring data items between system buffer blocks and its private
work-area done by:

 read(X) assigns the value of data item X to the local variable xi.

 write(X) assigns the value of local variable xi to data item {X} in
the buffer block.

 Note: output(BX) need not immediately follow write(X). System
can perform the output operation when it deems fit.

 Transactions
 Must perform read(X) before accessing X for the first time

(subsequent reads can be from local copy)
 write(X) can be executed at any time before the transaction

commits
10

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure

Recovery and Atomicity
 Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

11
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Recovery and Atomicity

 To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying the
database itself.

 We study log-based recovery mechanisms in detail
 We first present key concepts
 And then present the actual recovery algorithm

 Less used alternative: shadow-paging (brief details in book)

12
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Shadow Paging

 Shadow paging is an alternative to log-based recovery.
 Idea: maintain two page tables – the current page table, and the shadow

page table
 Store the shadow page table in nonvolatile storage, such that state of the

database prior to transaction execution may be recovered.
 Shadow page table is never modified during execution

 Both the page tables are initially identical. Only current page table is used
for data item accesses during execution of the transaction.

 Whenever any page is about to be written for the first time
 A copy of this page is made onto an unused page.
 The current page table is then made to point to the copy
 The update is performed on the copy

13
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Sample Page Table

14
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure
 Recovery and Atomicity

Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

15
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Log-Based Recovery

 A log is kept on stable storage.
 The log is a sequence of log records, and maintains a record of

update activities on the database.
 When transaction Ti starts, it registers itself by writing a

 <Ti start>log record
 Before Ti executes write(X), a log record

 <Ti, X, V1, V2>
is written, where V1 is the value of X before the write (the old value),
and V2 is the value to be written to X (the new value).

 When Ti finishes it last statement, the log record <Ti commit> is written
(indicating that Ti is committed).

16
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Transaction Commit

 A transaction is said to have been committed when its commit log
record is output to stable storage
 all previous log records of the transaction must have been output

already (may have been kept in memory for performance)
 Writes performed by a transaction may still be in the buffer when the

transaction commits, and may be output later

17
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Database Modification Example

Log Write Output

<T0 start>
<T0, A, 1000, 950>

<To, B, 2000, 2050>
 A = 950
 B = 2050
<T0 commit>

<T1 start>
<T1, C, 700, 600>
 C = 600
 BB , BC

<T1 commit>
 BA

 Note: BX denotes block containing X.

BC output before T1
commits

BA, BB output after
T0 commits

18
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Undo and Redo Operations

 Undo of a log record <Ti, X, V1, V2> writes the old value V1 to X

 Redo of a log record <Ti, X, V1, V2> writes the new value V2 to X
 Undo and Redo of Transactions

 undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti

 each time a data item X is restored to its old value V a special
log record <Ti , X, V> is written out

 when undo of a transaction is complete, a log record
<Ti abort> is written out.

 redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

 No logging is done in this case

19
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

DB Modification Recovery Example
 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

20
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

DB Modification Recovery Example
 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

20

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

DB Modification Recovery Example
 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

20

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored
to 700. Log records <T1, C, 700>, <T1, abort> are written out.

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

DB Modification Recovery Example
 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

20

(a) undo (T0): B is restored to 2000 and A to 1000, and log records
<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored
to 700. Log records <T1, C, 700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050, respectively.
Then C is set to 600

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Undo and Redo on Recovering from Failure

 When recovering after failure:
 Transaction Ti needs to be undone if the log

 contains the record <Ti start>,
 but does not contain either the record <Ti commit> or <Ti abort>.

 Transaction Ti needs to be redone if the log
 contains the records <Ti start>
 and contains the record <Ti commit> or <Ti abort>

21
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Checkpoints

 Redoing/undoing all transactions recorded in the log can be very slow
1. processing the entire log is time-consuming if the system has run

for a long time
2. we might unnecessarily redo transactions which have already

output their updates to the database.
 Streamline recovery procedure by periodically performing

checkpointing
1. Output all log records currently residing in main memory onto

stable storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint L> onto stable storage where L

is a list of all transactions active at the time of checkpoint.

22
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Checkpoints (Cont.)

 During recovery we need to do the following:
 Scan backwards from end of log to find the most recent

<checkpoint L> record
 Only transactions that are in L or started after the checkpoint

need to be redone or undone
 Transactions that committed or aborted before the checkpoint

already have all their updates output to stable storage.
 Some earlier part of the log may be needed for undo operations

 Continue scanning backwards till a record <Ti start> is found for
every transaction Ti in L.

 Parts of log prior to earliest <Ti start> record above are not
needed for recovery, and can be erased whenever desired.

23
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc Tf

T1
T2

T3

T4

checkpoint system failure

24
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example of Recovery

 Go over the steps of the recovery algorithm on the following log:
<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start> /* Scan at step 1 comes up to here */
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>
<T3 commit>

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example of Recovery

 Go over the steps of the recovery algorithm on the following log:
<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start> /* Scan at step 1 comes up to here */
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>
<T3 commit>

redo: T3
undo: T1, T2

Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Recovery Algorithm

 Logging (during normal operation):
 <Ti start> at transaction start
 <Ti, Xj, V1, V2> for each update, and
 <Ti commit> at transaction end

 Transaction rollback (during normal operation)
 Scan log backwards from the end, and for each log record of

Ti of the form <Ti, Xj, V1, V2>
perform the undo by writing V1 to Xj,
write a log record <Ti , Xj, V1>
– such log records are called compensation log

records
 Once the record <Ti start> is found stop the scan and write

the log record <Ti abort>

26
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

 Recovery from failure: Two phases
 Redo phase: replay updates of all transactions, whether they

committed, aborted, or are incomplete
 Undo phase: undo all incomplete transactions

 Redo phase:
1. Find last <checkpoint L> record, and set undo-list to L.
2. Scan forward from the above <checkpoint L> record

1. Whenever a record <Ti, Xj, V1, V2> is found, redo it by
writing V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list

3. Whenever a log record <Ti commit> or <Ti abort> is found,
remove Ti from undo-list

Recovery Algorithm (Cont.)

27
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Recovery Algorithm (Cont.)

 Undo phase:
1. Scan log backwards from end

1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in
undo-list perform same actions as for transaction rollback:
1. perform undo by writing V1 to Xj.
2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in
undo-list,
1. Write a log record <Ti abort>
2. Remove Ti from undo-list

3. Stop when undo-list is empty
 i.e. <Ti start> has been found for every transaction in

undo-list
 After undo phase completes, normal transaction processing can

commence

28
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Example of Recovery

29
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure
 Recovery and Atomicity
 Log-Based Recovery

Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

30
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Log Record Buffering

 Log record buffering: log records are buffered in main memory, instead
of of being output directly to stable storage.
 Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed.
 Log force is performed to commit a transaction by forcing all its log

records (including the commit record) to stable storage.
 Several log records can thus be output using a single output operation,

reducing the I/O cost.

31
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Database Buffering

 Database maintains an in-memory buffer of data blocks
 When a new block is needed, if buffer is full an existing block needs to

be removed from buffer
 If the block chosen for removal has been updated, it must be output to

disk
 The recovery algorithm supports the no-force policy (i.e., updated blocks

need not be written to disk when transaction commits)
 force policy: requires updated blocks to be written at commit (more

expensive)
 The recovery algorithm supports the steal policy (i.e., blocks containing

updates of uncommitted transactions can be written to disk, even before
the transaction commits)

32
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Database Buffering (Cont.)

 If a block with uncommitted updates is output to disk, log records for the
updates are output to the log on stable storage first
 (Write ahead logging)

 No updates should be in progress on a block when it is output to disk.
Can be ensured as follows.
 Before writing a data item, transaction acquires exclusive lock on

block containing the data item
 Lock can be released once the write is completed.

 Such locks held for short duration are called latches.
 To output a block to disk

1. First acquire an exclusive latch on the block (ensures no update can
be in progress on the block)

2. Then perform a log flush
3. Then output the block to disk
4. Finally release the latch on the block

33
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure
 Recovery and Atomicity
 Log-Based Recovery
 Buffer Management

Fuzzy Checkpointing
 Remote Backup Systems

34
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fuzzy Checkpointing

 To avoid long interruption of normal processing during
checkpointing, allow updates to happen during checkpointing

 Fuzzy checkpointing is done as follows:
1. Temporarily stop all updates by transactions
2. Write a <checkpoint L> log record and force log to stable

storage
3. Note list M of modified buffer blocks
4. Now permit transactions to proceed with their actions
5. Output to disk all modified buffer blocks in list M

 blocks should not be updated while being output
 Follow WAL: all log records pertaining to a block must be

output before the block is output
6. Store a pointer to the checkpoint record in a fixed position

last_checkpoint on disk

35
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fuzzy Checkpointing (Cont.)
 When recovering using a fuzzy checkpoint, start scan from the

checkpoint record pointed to by last_checkpoint
 Log records before last_checkpoint have their updates

reflected in database on disk, and need not be redone.
 Incomplete checkpoints, where system had crashed while

performing checkpoint, are handled safely

……
<checkpoint L>

…..
<checkpoint L>

…..

Log

last_checkpoint

36
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure
 Recovery and Atomicity
 Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing

Remote Backup Systems

37
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Remote Backup Systems

 Remote backup systems provide high availability by allowing transaction
processing to continue even if the primary site is destroyed.

38
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Remote Backup Systems (Cont.)
 Detection of failure: Backup site must detect when primary site has

failed
 to distinguish primary site failure from link failure maintain several

communication links between the primary and the remote backup.
 Heart-beat messages

 Transfer of control:
 To take over control, the backup site first performs recovery using its

copy of the database and all the log records it has received from the
primary.
 Thus, completed transactions are redone and incomplete

transactions are rolled back.
 When the backup site takes over processing it becomes the new

primary
 To transfer control back to old primary when it recovers, old primary

must receive redo logs from the old backup and apply all updates
locally.

39
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Remote Backup Systems (Cont.)

 Time to recover: To reduce delay in takeover, backup site periodically
processes the redo log records (in effect, performing recovery from
previous database state), performs a checkpoint, and can then delete
earlier parts of the log.

 Hot-Spare configuration permits very fast takeover:
 Backup continually processes redo log record as they arrive,

applying the updates locally.
 When failure of the primary is detected the backup rolls back

incomplete transactions, and is ready to process new transactions.

40
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Remote Backup Systems (Cont.)

 Ensure durability of updates by delaying transaction commit until update is
logged at backup; avoid this delay by permitting lower degrees of durability.

 One-safe: commit as soon as transaction’s commit log record is written at
primary
 Problem: updates may not arrive at backup before it takes over.

 Two-very-safe: commit when transaction’s commit log record is written at
primary and backup
 Reduces availability since transactions cannot commit if either site

fails.
 Two-safe: proceed as in two-very-safe if both primary and backup are

active. If only the primary is active, the transaction commits as soon as is
commit log record is written at the primary.
 Better availability than two-very-safe; avoids problem of lost

transactions in one-safe.

41
Tuesday, April 30, 13

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 16: Recovery System

 Failure Classification
 Storage Structure
 Recovery and Atomicity
 Log-Based Recovery
 Buffer Management
 Fuzzy Checkpointing
 Remote Backup Systems

42
Tuesday, April 30, 13

