
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 18: Parallel Databases

Monday, October 7, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

2
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Introduction

 Parallel machines are becoming quite common and affordable
 Prices of microprocessors, memory and disks have dropped

sharply
 Recent desktop computers feature multiple processors and this

trend is projected to accelerate
 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later
analysis.

 multimedia objects like images are increasingly stored in
databases

 Large-scale parallel database systems increasingly used for:
 storing large volumes of data
 processing time-consuming decision-support queries
 providing high throughput for transaction processing

3
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.
 Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel
 data can be partitioned and each processor can work

independently on its own partition.
 Queries are expressed in high level language (SQL, translated to

relational algebra)
 makes parallelization easier.

 Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

4
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

5
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning
 Each relation on multiple disks.
 Horizontal partitioning – tuples of a relation are divided among many

disks such that each tuple resides on one disk.
 Partitioning techniques (number of disks = n):

Round-robin:
Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:
 Choose one or more attributes as the partitioning attributes.
 Choose hash function h with range 0…n - 1
 Let i denote result of hash function h applied to the partitioning

attribute value of a tuple. Send tuple to disk i.

6
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

I/O Parallelism (Cont.)

 Partitioning techniques (cont.):
 Range partitioning:

 Choose an attribute as the partitioning attribute.
 A partitioning vector [vo, v1, ..., vn-2] is chosen.
 Let v be the partitioning attribute value of a tuple. Tuples such that

vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples
with v ≥ vn-2 go to disk n-1.

 E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.

7
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Comparison of Partitioning Techniques (Cont.)

Round robin:
 Advantages

 Best suited for scan of entire relation on each query.
 All disks have almost an equal number of tuples; retrieval work is

thus well balanced between disks.
 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

8
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Hash partitioning:
 Good for scan

 Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.
 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering
other queries.

 Index on partitioning attribute can be local to disk, making lookup
and update more efficient

 No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)

9
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Comparison of Partitioning Techniques (Cont.)

Range partitioning:
 Provides data clustering by partitioning attribute value.
 Good for sequential access
 Good for point queries on partitioning attribute: only one disk needs to

be accessed.
 For range queries on partitioning attribute, one to a few disks may need

to be accessed
 Remaining disks are available for other queries.
 Good if result tuples are from one to a few blocks.
 If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted
 Example of execution skew.

10
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

 Types of skew:
 Attribute-value skew.

 Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.
 Partition skew.

 With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

 Less likely with hash-partitioning if a good hash-function is
chosen.

11
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

12
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Interquery Parallelism

 Queries/transactions execute in parallel with one another.
 Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of
transactions per second.

13
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

14
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism:
 Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.
 Interoperation Parallelism – execute the different operations in

a query expression in parallel.
 the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more
than the number of operations in a query.

15
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:
 read-only queries
 shared-nothing architecture
 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is

associated with processor Pi.
 If a processor has multiple disks they can simply simulate a single disk

Di.

16
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Sort

Range-Partitioning Sort
 Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
 Create range-partition vector with m entries, on the sorting attributes
 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.
 This step requires I/O and communication overhead.

 Each processor Pi sorts its partition of the relation locally.
 Each processors executes same operation (sort) in parallel with other

processors, without any interaction with the others (data parallelism).
 Final merge operation is trivial: range-partitioning ensures that, for 1 j

m, the key values in processor Pi are all less than the key values in
Pj.

17
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Join

 The join operation requires pairs of tuples to be tested to see if they
satisfy the join condition, and if they do, the pair is added to the join
output.

 Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the join
locally.

 In a final step, the results from each processor can be collected
together to produce the final result.

18
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

 Let r and s be the input relations, and we want to compute r r.A=s.B s.
 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and

s0, s1, ..., sn-1.
 Can use either range partitioning or hash partitioning on the join

attributes r.A and s.B.
 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the
standard join methods can be used.

19
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fragment-and-Replicate Join
 Partitioning not possible for some join conditions

 E.g., non-equijoin conditions, such as r.A > s.B.

20
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fragment-and-Replicate Join
 Partitioning not possible for some join conditions

 E.g., non-equijoin conditions, such as r.A > s.B.

20

E.g., assume 16 nodes

1. if R:1GB, S:1GB
(a) R 1 time, S 16 times (17GB)
(b) R 4 times, S 4 times (8GB)

2. if R:1GB, S:1MB
(a) R 1 time, S 16 times (1,016MB)
(b) R 4 times, S 4 times (4,004MB)

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Other Relational Operations

Selection σθ(r)

 If θ is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single
processor.

 If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the
relation has been range-partitioned on ai
 Selection is performed at each processor whose partition overlaps

with the specified range of values.
 In all other cases: the selection is performed in parallel at all the

processors.

21
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Grouping/Aggregation

 Partition the relation on the grouping attributes and then compute the
aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those

tuples stored on disk Di

 results in tuples with partial sums at each processor.
 Result of the local aggregation is partitioned on the grouping

attributes, and the aggregation performed again at each processor
Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.

22
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Interoperator Parallelism

 Pipelined parallelism
 Consider a join of four relations

 r1 r2 r3 r4
 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of

 temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1 r3
 And P3 be assigned the computation of temp2 r4

 Each of these operations can run in parallel, keeping sending
result tuples to the next operation
 Provided a pipelineable join evaluation algorithm (e.g., indexed

nested loops join) is used

23
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Query Optimization

 Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:
 How to parallelize each operation and how many processors to

use for it.
 What operations to pipeline, what operations to execute

independently in parallel, and what operations to execute
sequentially, one after the other.

 Determining the amount of resources to allocate for each operation is
a problem.
 E.g., allocating more processors than optimal can result in high

communication overhead.
 Long pipelines should be avoided as the final operation may wait a lot

for inputs, while holding precious resources

24
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

25
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Design of Parallel Systems

Some issues in the design of parallel systems:
 Parallel loading of data from external sources is needed in order to

handle large volumes of incoming data.
 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel
system.

 Operation (perhaps with degraded performance) should be
possible in spite of failure.

 Redundancy achieved by storing extra copy of every data item at
another processor.

26
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be
supported.
 For example, index construction on terabyte databases can take

hours or days even on a parallel system.
 Need to allow other processing (insertions/deletions/updates)

to be performed on relation even as index is being constructed.
 Basic idea: index construction tracks changes and “catches up” on

changes at the end.
 Also need support for on-line repartitioning and schema changes

(executed concurrently with other processing).

27
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

28
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MapReduce Overview

 Large-scale parallel programming
framework
 express what to compute
 donʼt worry about parallelism, fault-

tolerance, data distribution, and load
balancing

 Applications
 grep, sort, word count, data mining, etc.
 @Google, Yahoo!, Amazon, Facebook,

IBM, ...
 History

 2003: Google implements MapReduce.
 2004: MapReduce supports 1000

services at Google.
 2006: Hadoop started.
 2008: Yahoo! generates search index

on Hadoop.

29

!"#$%&'(%)*%('+,-./01%21,%3

)45/6'2,(78/9"::/;<<= !">>,1%:?/@"2"::%:/A"+"/B.":?>,>/3,+7/!"#$%&'(% CD

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Programming in MapReduce

30

!"#$%"&'(!"#$%"&'()*$&+*)*$&+*

,-./0+23/4566/7889 :;<5==1>*6?/@5#566*6/A5(5/B'56?=1=/C1(2/<5D)*$&+*

!"#$%"&'(!"#$%"&'()*&'+,-#)*&'+,-#

./012+,415*6617889 :9;*<<3=-6>1?*#*66-61@*(*1A'*6><3<1B3(,1;*CD-$&+-

!"#$%"&'(!"#$%"&'()*++,#)*++,#

-./01𹐊*770899: ;<)*==2>,7?0@*#*77,70A*(*0B'*7?=2=0C2(40)*+D,$&3,

• WordCount example

- Map: given a text file, for each word, output the word
and count of 1:

• “to be or not to be” -> (to, 1), (be, 1), (or, 1), (not, 1),
(to, 1), (be, 1)

- Reduce: For each word & the associated set of counts,
output the word and the sum:

• (to, [1, 1]) -> (to, 2)

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MapReduce: A major step backwards

 By Michael Stonebraker and David Dewitt

 http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

31
Monday, October 7, 2013

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

