
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 18: Parallel Databases

Monday, October 7, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

2
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Introduction

 Parallel machines are becoming quite common and affordable
 Prices of microprocessors, memory and disks have dropped

sharply
 Recent desktop computers feature multiple processors and this

trend is projected to accelerate
 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later
analysis.

 multimedia objects like images are increasingly stored in
databases

 Large-scale parallel database systems increasingly used for:
 storing large volumes of data
 processing time-consuming decision-support queries
 providing high throughput for transaction processing

3
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.
 Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel
 data can be partitioned and each processor can work

independently on its own partition.
 Queries are expressed in high level language (SQL, translated to

relational algebra)
 makes parallelization easier.

 Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

4
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

5
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning
 Each relation on multiple disks.
 Horizontal partitioning – tuples of a relation are divided among many

disks such that each tuple resides on one disk.
 Partitioning techniques (number of disks = n):

Round-robin:
Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:
 Choose one or more attributes as the partitioning attributes.
 Choose hash function h with range 0…n - 1
 Let i denote result of hash function h applied to the partitioning

attribute value of a tuple. Send tuple to disk i.

6
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

I/O Parallelism (Cont.)

 Partitioning techniques (cont.):
 Range partitioning:

 Choose an attribute as the partitioning attribute.
 A partitioning vector [vo, v1, ..., vn-2] is chosen.
 Let v be the partitioning attribute value of a tuple. Tuples such that

vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples
with v ≥ vn-2 go to disk n-1.

 E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.

7
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Comparison of Partitioning Techniques (Cont.)

Round robin:
 Advantages

 Best suited for scan of entire relation on each query.
 All disks have almost an equal number of tuples; retrieval work is

thus well balanced between disks.
 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

8
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Hash partitioning:
 Good for scan

 Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.
 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering
other queries.

 Index on partitioning attribute can be local to disk, making lookup
and update more efficient

 No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)

9
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Comparison of Partitioning Techniques (Cont.)

Range partitioning:
 Provides data clustering by partitioning attribute value.
 Good for sequential access
 Good for point queries on partitioning attribute: only one disk needs to

be accessed.
 For range queries on partitioning attribute, one to a few disks may need

to be accessed
 Remaining disks are available for other queries.
 Good if result tuples are from one to a few blocks.
 If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted
 Example of execution skew.

10
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

 Types of skew:
 Attribute-value skew.

 Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.
 Partition skew.

 With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

 Less likely with hash-partitioning if a good hash-function is
chosen.

11
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

12
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Interquery Parallelism

 Queries/transactions execute in parallel with one another.
 Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of
transactions per second.

13
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

14
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism:
 Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.
 Interoperation Parallelism – execute the different operations in

a query expression in parallel.
 the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more
than the number of operations in a query.

15
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:
 read-only queries
 shared-nothing architecture
 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is

associated with processor Pi.
 If a processor has multiple disks they can simply simulate a single disk

Di.

16
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Sort

Range-Partitioning Sort
 Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
 Create range-partition vector with m entries, on the sorting attributes
 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.
 This step requires I/O and communication overhead.

 Each processor Pi sorts its partition of the relation locally.
 Each processors executes same operation (sort) in parallel with other

processors, without any interaction with the others (data parallelism).
 Final merge operation is trivial: range-partitioning ensures that, for 1 j

m, the key values in processor Pi are all less than the key values in
Pj.

17
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Parallel Join

 The join operation requires pairs of tuples to be tested to see if they
satisfy the join condition, and if they do, the pair is added to the join
output.

 Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the join
locally.

 In a final step, the results from each processor can be collected
together to produce the final result.

18
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

 Let r and s be the input relations, and we want to compute r r.A=s.B s.
 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and

s0, s1, ..., sn-1.
 Can use either range partitioning or hash partitioning on the join

attributes r.A and s.B.
 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the
standard join methods can be used.

19
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fragment-and-Replicate Join
 Partitioning not possible for some join conditions

 E.g., non-equijoin conditions, such as r.A > s.B.

20
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Fragment-and-Replicate Join
 Partitioning not possible for some join conditions

 E.g., non-equijoin conditions, such as r.A > s.B.

20

E.g., assume 16 nodes

1. if R:1GB, S:1GB
(a) R 1 time, S 16 times (17GB)
(b) R 4 times, S 4 times (8GB)

2. if R:1GB, S:1MB
(a) R 1 time, S 16 times (1,016MB)
(b) R 4 times, S 4 times (4,004MB)

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Other Relational Operations

Selection σθ(r)

 If θ is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single
processor.

 If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the
relation has been range-partitioned on ai
 Selection is performed at each processor whose partition overlaps

with the specified range of values.
 In all other cases: the selection is performed in parallel at all the

processors.

21
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Grouping/Aggregation

 Partition the relation on the grouping attributes and then compute the
aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those

tuples stored on disk Di

 results in tuples with partial sums at each processor.
 Result of the local aggregation is partitioned on the grouping

attributes, and the aggregation performed again at each processor
Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.

22
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Interoperator Parallelism

 Pipelined parallelism
 Consider a join of four relations

 r1 r2 r3 r4
 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of
 temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1 r3
 And P3 be assigned the computation of temp2 r4

 Each of these operations can run in parallel, keeping sending
result tuples to the next operation
 Provided a pipelineable join evaluation algorithm (e.g., indexed

nested loops join) is used

23
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Query Optimization

 Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:
 How to parallelize each operation and how many processors to

use for it.
 What operations to pipeline, what operations to execute

independently in parallel, and what operations to execute
sequentially, one after the other.

 Determining the amount of resources to allocate for each operation is
a problem.
 E.g., allocating more processors than optimal can result in high

communication overhead.
 Long pipelines should be avoided as the final operation may wait a lot

for inputs, while holding precious resources

24
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

25
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Design of Parallel Systems

Some issues in the design of parallel systems:
 Parallel loading of data from external sources is needed in order to

handle large volumes of incoming data.
 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel
system.

 Operation (perhaps with degraded performance) should be
possible in spite of failure.

 Redundancy achieved by storing extra copy of every data item at
another processor.

26
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be
supported.
 For example, index construction on terabyte databases can take

hours or days even on a parallel system.
 Need to allow other processing (insertions/deletions/updates)

to be performed on relation even as index is being constructed.
 Basic idea: index construction tracks changes and “catches up” on

changes at the end.
 Also need support for on-line repartitioning and schema changes

(executed concurrently with other processing).

27
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 18: Parallel Databases

 Introduction
 I/O Parallelism
 Interquery Parallelism
 Intraquery Parallelism

 Intraoperation Parallelism
 Interoperation Parallelism

 Design of Parallel Systems
 MapReduce

28
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MapReduce Overview

 Large-scale parallel programming
framework
 express what to compute
 donʼt worry about parallelism, fault-

tolerance, data distribution, and load
balancing

 Applications
 grep, sort, word count, data mining, etc.
 @Google, Yahoo!, Amazon, Facebook,

IBM, ...
 History

 2003: Google implements MapReduce.
 2004: MapReduce supports 1000

services at Google.
 2006: Hadoop started.
 2008: Yahoo! generates search index

on Hadoop.

29

!"#$%&'(%)*%('+,-./01%21,%3

)45/6'2,(78/9"::/;<<= !">>,1%:?/@"2"::%:/A"+"/B.":?>,>/3,+7/!"#$%&'(% CD

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Programming in MapReduce

30

!"#$%"&'(!"#$%"&'()*$&+*)*$&+*

,-./0+23/4566/7889 :;<5==1>*6?/@5#566*6/A5(5/B'56?=1=/C1(2/<5D)*$&+*

!"#$%"&'(!"#$%"&'()*&'+,-#)*&'+,-#

./012+,415*6617889 :9;*<<3=-6>1?*#*66-61@*(*1A'*6><3<1B3(,1;*CD-$&+-

!"#$%"&'(!"#$%"&'()*++,#)*++,#

-./01𹐊*770899: ;<)*==2>,7?0@*#*77,70A*(*0B'*7?=2=0C2(40)*+D,$&3,

• WordCount example

- Map: given a text file, for each word, output the word
and count of 1:

• “to be or not to be” -> (to, 1), (be, 1), (or, 1), (not, 1),
(to, 1), (be, 1)

- Reduce: For each word & the associated set of counts,
output the word and the sum:

• (to, [1, 1]) -> (to, 2)

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

MapReduce: A major step backwards

 By Michael Stonebraker and David Dewitt

 http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

31
Monday, October 7, 2013

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

