Chapter 18: Parallel Databases

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Monday, October 7, 2013

http://www.db-book.com/
http://www.db-book.com/

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 2 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

y. = Introduction

B Parallel machines are becoming quite common and affordable

Prices of microprocessors, memory and disks have dropped
sharply

Recent desktop computers feature multiple processors and this
trend is projected to accelerate

B Databases are growing increasingly large

large volumes of transaction data are collected and stored for later
analysis.

multimedia objects like images are increasingly stored in
databases

B |arge-scale parallel database systems increasingly used for:
storing large volumes of data
processing time-consuming decision-support queries
providing high throughput for transaction processing

Database System Concepts - 29th Edition 3 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

7.5 Parallelism in Databases

B Data can be partitioned across multiple disks for parallel 1/0.

B Individual relational operations (e.g., sort, join, aggregation) can be
executed in parallel

data can be partitioned and each processor can work
independently on its own partition.

B Queries are expressed in high level language (SQL, translated to
relational algebra)

makes parallelization easier.

M Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

B Thus, databases naturally lend themselves to parallelism.

Database System Concepts - 29th Edition 4 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 5 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

o I/0 Parallelism

B Reduce the time required to retrieve relations from disk by partitioning
B Each relation on multiple disks.

B Horizontal partitioning — tuples of a relation are divided among many
disks such that each tuple resides on one disk.

B Partitioning techniques (number of disks = n):
Round-robin:
Send the /th tuple inserted in the relation to disk i mod n.
Hash partitioning:
Choose one or more attributes as the partitioning attributes.
Choose hash function A with range 0...n - 1

Let / denote result of hash function h applied to the partitioning
attribute value of a tuple. Send tuple to disk i.

Database System Concepts - 29th Edition 6 ©Silberschatz, Korth and Sudarshan
Monday, October 7, 2013

o /O Parallelism (Cont.)

B Partitioning techniques (cont.):

B Range partitioning:
Choose an attribute as the partitioning attribute.
A partitioning vector [v,, v,, ..., V,.,] is chosen.

Let v be the partitioning attribute value of a tuple. Tuples such that
V, < V., go to disk / + 1. Tuples with v < v, go to disk 0 and tuples

with v = v,_, go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.

Database System Concepts - 29th Edition 7 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

& Comparison of Partitioning Techniques (Cont.)

* —

Round robin:
B Advantages
Best suited for scan of entire relation on each query.

All disks have almost an equal number of tuples; retrieval work is
thus well balanced between disks.

B Range queries are difficult to process
No clustering -- tuples are scattered across all disks

Database System Concepts - 29th Edition 8 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

o Comparison of Partitioning Techniques (Cont.)

-_—

Hash partitioning:
B Good for scan

Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

Retrieval work is then well balanced between disks.
B Good for point queries on partitioning attribute

Can lookup single disk, leaving others available for answering
other queries.

Index on partitioning attribute can be local to disk, making lookup
and update more efficient

B No clustering, so difficult to answer range queries

Database System Concepts - 29th Edition 9 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

& Comparison of Partitioning Techniques (Cont.)

Range partitioning:
B Provides data clustering by partitioning attribute value.
B Good for sequential access

B Good for point queries on partitioning attribute: only one disk needs to
be accessed.

B For range queries on partitioning attribute, one to a few disks may need
to be accessed

Remaining disks are available for other queries.
Good if result tuples are from one to a few blocks.

If many blocks are to be fetched, they are still fetched from one to a
few disks, and potential parallelism in disk access is wasted

» Example of execution skew.

Database System Concepts - 29th Edition 10 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

y.= Handling of Skew

B The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

B Types of skew:
Attribute-value skew.

» Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

» Can occur with range-partitioning and hash-partitioning.
Partition skew.

» With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to

others.
» Less likely with hash-partitioning if a good hash-function is
chosen.
Database System Concepts - 29th Edition 11 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 12 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

s Interquery Parallelism

B Queries/transactions execute in parallel with one another.

B [Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

Database System Concepts - 29th Edition 13 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 14 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

7= Intraquery Parallelism

B Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

B Two complementary forms of intraquery parallelism:

Intraoperation Parallelism — parallelize the execution of each
individual operation in the query.

Interoperation Parallelism — execute the different operations in
a query expression in parallel.

the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically more
than the number of operations in a query.

Database System Concepts - 29th Edition 15 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

_ ,. Parallel Processing of Relational Operations

T —

B OQur discussion of parallel algorithms assumes:

read-only queries
shared-nothing architecture

n processors, P,, ..., Py, and ndisks D,, ..., D,_.;, where disk D, is
associated with processor P.

M [f a processor has multiple disks they can simply simulate a single disk

Database System Concepts - 29th Edition 16 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

& Parallel Sort

Range-Partitioning Sort
B Choose processors P, ..., P, where m < n -1 to do sorting.
B Create range-partition vector with m entries, on the sorting attributes
B Redistribute the relation using range partitioning
all tuples that lie in the ith range are sent to processor P,

P;stores the tuples it received temporarily on disk D..

This step requires I/0O and communication overhead.
B Each processor P, sorts its partition of the relation locally.

B Each processors executes same operation (sort) in parallel with other
processors, without any interaction with the others (data parallelism).

B Final merge operation is trivial: range-partitioning ensures that, for 1 j
m, the key values in processor P are all less than the key values in

P..

Database System Concepts - 29th Edition 17 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

¥ = Parallel Join

B The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join
output.

B Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join
locally.

B |n afinal step, the results from each processor can be collected
together to produce the final result.

Database System Concepts - 29th Edition 18
Monday, October 7, 2013

©Silberschatz, Korth and Sudarshan

Partitioned Join

For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

Let rand s be the input relations, and we want to compute r X, ,_. 5 S.
rand s each are partitioned into n partitions, denoted r, r;, ..., r,,.; and
Sy Sty s S

n-1-

Can use either range partitioning or hash partitioning on the join
attributes r.A and s.B.

Partitions r; and s, are sent to processor P,

Each processor P, locally computes r; <] ; a=sig Si- Any of the
standard join methods can be used.

Database System Concepts - 29th Edition 19 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

i Fragment-and-Replicate Join

B Partitioning not possible for some join conditions
E.g., non-equijoin conditions, such as r.A > s.B.

S

[so s J[2][ss |- [5ma]
N [reeoaar-
DD —

11T
5

T P n-1,m-1
(a) Asymmetric (b) Fragment and replicate
fragment and replicate
Database System Concepts - 29th Edition 20 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

-

B Partitioning not possible for some join conditions

E.g., non-equijoin conditions, such as r.A > s.B.

S

ERERIEEEEnET
] P /” DN
To— o/\ o -—i\P 0,0 \ Py, 1/'—4\ \P 3/}—
r,—!’,}— f1—+P10¥—ﬁ’11HP12 —
" _/ . - M

— p fo b Pyp)}~ Pa1) - —
r & 2/H r |T2p— _2,5)> \‘FU—
— ~ —
73 _'I\P'i/ - ?’3

- . - - - '/’ B -_\
__/'

g Pn-l,m-]
(a) Asymmetric (b) Fragment and replicate
fragment and replicate
Database System Concepts - 29th Edition 20

Fragment-and-Replicate Join

E.g., assume 16 nodes

1.if R:1GB, S:1GB
(@) R 1time, S 16 times (17GB)
(b) R 4 times, S 4 times (8GB)

2.if R:1GB, S:1MB

(a) R 1 time, S 16 times (1,016MB)
(b) R 4 times, S 4 times (4,004MB)

©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

5 = Other Relational Operations

Selection oy(r)
W If 0 is of the form a, = v, where a; is an attribute and v a value.

If r is partitioned on a; the selection is performed at a single
processor.

W If0is of the form | <=a,<=u (i.e., 0 is a range selection) and the

relation has been range-partitioned on a;
Selection is performed at each processor whose partition overlaps
with the specified range of values.

M In all other cases: the selection is performed in parallel at all the
processors.

Database System Concepts - 29th Edition 21 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

o Grouping/Aggregation

B Partition the relation on the grouping attributes and then compute the
aggregate values locally at each processor.

B Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

B Consider the sum aggregation operation:
Perform aggregation operation at each processor P, on those
tuples stored on disk D,

» results in tuples with partial sums at each processor.

Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor

P, to get the final result.

B Fewer tuples need to be sent to other processors during partitioning.

Database System Concepts - 29th Edition 22 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

.= Interoperator Parallelism

B Pipelined parallelism
Consider a join of four relations

rry Mo Nr?)Nr4

Set up a pipeline that computes the three joins in parallel
» Let P1 be assigned the computation of
temp1 = riXiro

» And P2 be assigned the computation of temp2 = temp1 <,

» And P3 be assigned the computation of temp2 [X] r,

Each of these operations can run in parallel, keeping sending
result tuples to the next operation

» Provided a pipelineable join evaluation algorithm (e.g., indexed
nested loops join) is used

Database System Concepts - 29th Edition 23 ©Silberschatz, Korth and Sudarshan
Monday, October 7, 2013

Query Optimization

Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

When scheduling execution tree in parallel system, must decide:

How to parallelize each operation and how many processors to
use for it.

What operations to pipeline, what operations to execute
independently in parallel, and what operations to execute
sequentially, one after the other.

Determining the amount of resources to allocate for each operation is
a problem.

E.g., allocating more processors than optimal can result in high
communication overhead.

Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources

Database System Concepts - 29th Edition 24 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 25 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

.= Design of Parallel Systems

Some issues in the design of parallel systems:

B Parallel loading of data from external sources is needed in order to
handle large volumes of incoming data.

B Resilience to failure of some processors or disks.

Probability of some disk or processor failing is higher in a parallel
system.

Operation (perhaps with degraded performance) should be
possible in spite of failure.

Redundancy achieved by storing extra copy of every data item at
another processor.

Database System Concepts - 29th Edition 26 ©Silberschatz, Korth and Sudarshan
Monday, October 7, 2013

7 Design of Parallel Systems (Cont.)

B On-line reorganization of data and schema changes must be
supported.

For example, index construction on terabyte databases can take
hours or days even on a parallel system.

» Need to allow other processing (insertions/deletions/updates)
to be performed on relation even as index is being constructed.

Basic idea: index construction tracks changes and “catches up” on
changes at the end.

B Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).

Database System Concepts - 29th Edition 27 ©Silberschatz, Korth and Sudarshan
Monday, October 7, 2013

- Chapter 18: Parallel Databases

Introduction
I/0O Parallelism
Interquery Parallelism

Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism

Design of Parallel Systems
B MapReduce

Database System Concepts - 29th Edition 28 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

. MapReduce Overview
B |arge-scale parallel programming
framework

express what to compute Progtam
don’t worry about parallelism, fault- () fork 0, (1 fork
tolerance, data distribution, and load ’
balancing |

B Applications - ,Z‘J |
grep, sort, word count, data mining, etc. '
@Google, Yahoo!, Amazon, Facebook, i \ i i N
IBM, ... split 1 ':‘/‘5/_3 @ file 0

3) read (4] local write
W History split 2

. split 3
2003: Google implements MapReduce. SE"H cutp
2004: MapReduce supports 1000
services at Google.
2006: Hadoop started. e P S O
2008: Yahoo! generates search index
on Hadoop.
Database System Concepts - 29th Edition 29 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

L

Programming in MapReduce

® WordCount example

- Map: given a text file, for each word, output the word
and count of I:

® “to be or not to be” -> (to, |), (be, 1), (or,), (not, 1),
(to, 1), (be, 1)

- Reduce: For each word & the associated set of counts,
output the word and the sum:

e (to[l,1]) -> (to,2)

public class WCMap extends MapReduceBase implements Mapper {
private static final IntWritable ONE = new IntWritable(l);

public void map(WritableComparable key, Writable value,
OQutputCollector output,
Reporter reporter) throws IOException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
output.collect(new Text(itr.next()), ONE):

'
}

}

public static void main(String[] args) throws IOException {
JobConf conf = new JobConf(WordCount.class):
conf.setJobName ("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class):

conf.setMapperClass(WCMap.class):
conf.setCombinerClass (WCReduce.class);
conf.setReducerClass (WCReduce.class)

conf.setlnputPath(new Path(args[0])):
conf.setOutputPath(new Path(args[1]));

JobClient.runJob(conf);

public class WCReduce extends MapReduceBase implements Reducer ({

public veoid reduce(WritableComparable key. Iterator values,
OutputCollector output.
Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {
sum += ((IntWritable) values.next()).get();

h
output.collect(key, new IntWritable(sum));

Database System Concepts - 29th Edition

30 ©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

B By Michael Stonebraker and David Dewitt

= MapReduce: A major step backwards

B hitp://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

Database System Concepts - 29th Edition 31

©Silberschatz, Korth and Sudarshan

Monday, October 7, 2013

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

