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Distributed Database System

 A distributed database system consists of loosely coupled sites that 
share no physical component

 Database systems that run on each site are independent of each 
other

 Transactions may access data at one or more sites
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Homogeneous Distributed Databases

 In a homogeneous distributed database
 All sites have identical software 
 Are aware of each other and agree to cooperate in processing 

user requests.
 Appears to user as a single system

 In a heterogeneous distributed database
 Different sites may use different schemas and software

 Difference in schema is a major problem for query processing
 Difference in software is a major problem for transaction 

processing
 Sites may not be aware of each other and may provide only 

limited facilities for cooperation in transaction processing
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Distributed Data Storage

 Assume relational data model
 Replication

 System maintains multiple copies of data, stored in different 
sites, for faster retrieval and fault tolerance.

 Fragmentation
 Relation is partitioned into several fragments stored in distinct 

sites
 Replication and fragmentation can be combined

 Relation is partitioned into several fragments: system maintains 
several identical replicas of each such fragment.
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Data Replication
 A relation or fragment of a relation is replicated if it is stored 

redundantly in two or more sites.
 Full replication of a relation is the case where the relation is stored 

at all sites.
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Data Replication (Cont.)

 Advantages of Replication
 Availability: failure of site containing relation r does not result in 

unavailability of r if replicas exist.
 Parallelism: queries on r may be processed by several nodes in 

parallel.
 Reduced data transfer: relation r is available locally at each 

site containing a replica of r.
 Disadvantages of Replication

 Increased cost of updates: each replica of relation r must be 
updated.

 Increased complexity of concurrency control: concurrent 
updates to distinct replicas may lead to inconsistent data unless 
special concurrency control mechanisms are implemented.
 One solution: choose one copy as primary copy and apply 

concurrency control operations on primary copy
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Data Fragmentation

 Division of relation r into fragments r1, r2, …, rn which contain 
sufficient information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r  is assigned to one 
or more fragments

 Vertical fragmentation: the schema for relation r  is split into 
several smaller schemas
 All schemas must contain a common candidate key (or 

superkey) to ensure lossless join property.
 A special attribute, the tuple-id attribute may be added to 

each schema to serve as a candidate key.
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Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account )

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account )
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Vertical Fragmentation of employee_info Relation
branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info )

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info )
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Advantages of Fragmentation

 Horizontal:
 allows parallel processing on fragments of a relation
 allows a relation to be split so that tuples are located where 

they are most frequently accessed
 Vertical: 

 allows tuples to be split so that each part of the tuple is 
stored where it is most frequently accessed

 tuple-id attribute allows efficient joining of vertical fragments
 allows parallel processing on a relation

 Vertical and horizontal fragmentation can be mixed.
 Fragments may be successively fragmented to an arbitrary 

depth.
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Data Transparency

 Data transparency: Degree to which system user may remain 
unaware of the details of how and where the data items are stored in 
a distributed system

 Consider transparency issues in relation to:
 Fragmentation transparency
 Replication transparency
 Location transparency
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Distributed Transactions

 Transaction may access data at several sites.
 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes
 Participating in coordinating the concurrent execution of the 

transactions executing at that site.
 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.
 Distributing subtransactions at appropriate sites for execution.
 Coordinating the termination of each transaction that originates 

at the site, which may result in the transaction being committed 
at all sites or aborted at all sites.
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Commit Protocols

 Commit protocols are used to ensure atomicity across sites
 a transaction which executes at multiple sites must either be 

committed at all the sites, or aborted at all the sites.
 not acceptable to have a transaction committed at one site and 

aborted at another
 The two-phase commit (2PC) protocol is widely used 
 The three-phase commit (3PC) protocol is more complicated and 

more expensive, but avoids some drawbacks of two-phase commit 
protocol.  This protocol is not used in practice.
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Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do 
not cause any other harm, such as sending incorrect messages to 
other sites.

 Execution of the protocol is initiated by the coordinator after the last 
step of the transaction has been reached.

 The protocol involves all the sites at which the transaction executed
 Let T be a transaction initiated at site Si, and let the transaction 

coordinator at Si be Ci
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Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction T.
 Ci adds the records <prepare T> to the log and forces log to 

stable storage
 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at each site 
determines if it can commit the transaction
 if not, add a record <no T> to the log and send abort T message 

to Ci

 if the transaction can be committed, then:
 add the record <ready T> to the log
 force all records for T to stable storage
 send ready T message to Ci
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Phase 2: Recording the Decision

 T can be committed of Ci received a ready T message from all the 
participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the 
log and forces record onto stable storage. 

 Coordinator sends a message to each participant informing it of the 
decision (commit or abort)

 Participants take appropriate action locally.
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Handling of Failures - Site Failure

When a site Sk recovers, it examines its log to determine the fate of

transactions active at the time of the failure.
 Log contain <commit T> record: site executes redo (T)
 Log contains <abort T> record: site executes undo (T)
 Log contains <ready T> record: site must consult Ci to determine the 

fate of T.
 If T committed, redo (T)
 If T aborted, undo (T)

 The log contains no control records concerning T (i.e., Sk failed before 
responding to the  prepare T message from Ci ) 
 since the failure of Sk  precludes the sending of such a 

response, C1 must abort T
 Sk must execute undo (T)
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Concurrency Control

 Modify concurrency control schemes for use in distributed environment.
 We assume that each site participates in the execution of a commit 

protocol to ensure global transaction automicity.
 We assume all replicas of any item are updated 

 Will see how to relax this in case of site failures later
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Single-Lock-Manager Approach

 System maintains a single lock manager that resides in a single 
chosen site, say Si 

 When a transaction needs to lock a data item, it sends a lock request 
to Si and lock manager determines whether the lock can be granted 
immediately
 If yes, lock manager sends a message to the site which initiated 

the request
 If no, request is delayed until it can be granted, at which time a 

message is sent to the initiating site
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Single-Lock-Manager Approach (Cont.)

 Advantages of scheme:
 Simple implementation
 Simple deadlock handling

 Disadvantages of scheme are:
 Bottleneck: lock manager site becomes a bottleneck
 Vulnerability: system is vulnerable to lock manager site failure.

25
Monday, October 7, 2013



©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Lock Manager

 In this approach, functionality of locking is implemented by lock 
managers at each site
 Lock managers control access to local data items

 But special protocols may be used for replicas
 Advantage: work is distributed and can be made robust to failures
 Disadvantage:  deadlock detection is more complicated

 Lock managers cooperate for deadlock detection
 More on this later

 Several variants of this approach
 Primary copy
 Majority protocol
 Biased protocol
 Quorum consensus
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Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost 
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
 The cost of a data transmission over the network.
 The potential gain in performance from having several sites 

process parts of the query in parallel.
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Query Transformation
 Translating algebraic queries on fragments.

 It must be possible to construct relation r from its fragments
 Replace relation r by the expression to construct relation r from its 

fragments
 Consider the horizontal fragmentation of the account relation into

account1 = σ branch_name = “Hillside” (account )

account2 = σ branch_name = “Valleyview” (account )

 The query σ branch_name = “Hillside” (account ) becomes

σ branch_name = “Hillside” (account1 ∪ account2)


 which is optimized into

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2)
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Simple Join Processing

 Consider the following relational algebra expression in which the three 
relations are neither replicated nor fragmented


 account     depositor
   branch

 account  is stored at site S1

 depositor at S2

 branch at S3

 For a query issued at site SI, the system needs to produce the result at 
site SI 
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Possible Query Processing Strategies

 Ship copies of all three relations to site SI  and choose a strategy for 
processing the entire locally at site SI.

 Ship a copy of the account relation to site S2 and compute temp1 = 
account 
 depositor at S2. Ship temp1 from S2 to S3, and compute 
temp2 = temp1  branch at S3. Ship the result temp2 to SI.

 Devise similar strategies, exchanging the roles S1, S2, S3

 Must consider following factors:
 amount of data being shipped 
 cost of transmitting a data block between sites
 relative processing speed at each site 
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Heterogeneous Distributed Databases

 Many database applications require data from a variety of preexisting 
databases located in a heterogeneous collection of hardware and 
software platforms

 Data models may differ (hierarchical, relational, etc.)
 Transaction commit protocols may be incompatible
 Concurrency control may be based on different techniques
 System-level details almost certainly are totally incompatible.
 A multidatabase system is a software layer on top of existing 

database systems, which is designed to manipulate information in 
heterogeneous databases
 Creates an illusion of logical database integration without any 

physical database integration
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Advantages

 Preservation of investment in existing
 hardware
 system software
 Applications


 Local autonomy and administrative control 
 Allows use of special-purpose DBMSs
 Step towards a unified homogeneous DBMS

 Full integration into a homogeneous DBMS faces
 Technical difficulties and cost of conversion
 Organizational/political difficulties
– Organizations do not want to give up control on their data
– Local databases wish to retain a great deal of autonomy
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Query Processing

 Several issues in query processing in a heterogeneous database
 Schema translation

 Write a wrapper for each data source to translate data to a 
global schema

 Wrappers must also translate updates on global schema to 
updates on local schema

 Limited query capabilities
 Some data sources allow only restricted forms of selections

 E.g., web forms, flat file data sources
 Queries have to be broken up and processed partly at the 

source and partly at a different site
 Removal of duplicate information when sites have overlapping 

information
 Decide which sites to execute query

 Global query optimization
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