
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 19: Distributed Databases

Monday, October 7, 2013

http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Distributed Query Processing
 Heterogeneous Distributed Databases

2
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Database System

 A distributed database system consists of loosely coupled sites that
share no physical component

 Database systems that run on each site are independent of each
other

 Transactions may access data at one or more sites

3
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Homogeneous Distributed Databases

 In a homogeneous distributed database
 All sites have identical software
 Are aware of each other and agree to cooperate in processing

user requests.
 Appears to user as a single system

 In a heterogeneous distributed database
 Different sites may use different schemas and software

 Difference in schema is a major problem for query processing
 Difference in software is a major problem for transaction

processing
 Sites may not be aware of each other and may provide only

limited facilities for cooperation in transaction processing

4
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases

 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Distributed Query Processing
 Heterogeneous Distributed Databases

5
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Data Storage

 Assume relational data model
 Replication

 System maintains multiple copies of data, stored in different
sites, for faster retrieval and fault tolerance.

 Fragmentation
 Relation is partitioned into several fragments stored in distinct

sites
 Replication and fragmentation can be combined

 Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

6
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Replication
 A relation or fragment of a relation is replicated if it is stored

redundantly in two or more sites.
 Full replication of a relation is the case where the relation is stored

at all sites.

7
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Replication (Cont.)

 Advantages of Replication
 Availability: failure of site containing relation r does not result in

unavailability of r if replicas exist.
 Parallelism: queries on r may be processed by several nodes in

parallel.
 Reduced data transfer: relation r is available locally at each

site containing a replica of r.
 Disadvantages of Replication

 Increased cost of updates: each replica of relation r must be
updated.

 Increased complexity of concurrency control: concurrent
updates to distinct replicas may lead to inconsistent data unless
special concurrency control mechanisms are implemented.
 One solution: choose one copy as primary copy and apply

concurrency control operations on primary copy

8
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Fragmentation

 Division of relation r into fragments r1, r2, …, rn which contain
sufficient information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

 Vertical fragmentation: the schema for relation r is split into
several smaller schemas
 All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.
 A special attribute, the tuple-id attribute may be added to

each schema to serve as a candidate key.

9
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account)

10
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Vertical Fragmentation of employee_info Relation
branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)
11

Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Advantages of Fragmentation

 Horizontal:
 allows parallel processing on fragments of a relation
 allows a relation to be split so that tuples are located where

they are most frequently accessed
 Vertical:

 allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

 tuple-id attribute allows efficient joining of vertical fragments
 allows parallel processing on a relation

 Vertical and horizontal fragmentation can be mixed.
 Fragments may be successively fragmented to an arbitrary

depth.

12
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Data Transparency

 Data transparency: Degree to which system user may remain
unaware of the details of how and where the data items are stored in
a distributed system

 Consider transparency issues in relation to:
 Fragmentation transparency
 Replication transparency
 Location transparency

13
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage

 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Distributed Query Processing
 Heterogeneous Distributed Databases

14
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Transactions

 Transaction may access data at several sites.
 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes
 Participating in coordinating the concurrent execution of the

transactions executing at that site.
 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.
 Distributing subtransactions at appropriate sites for execution.
 Coordinating the termination of each transaction that originates

at the site, which may result in the transaction being committed
at all sites or aborted at all sites.

15
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Distributed Query Processing
 Heterogeneous Distributed Databases

16
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Commit Protocols

 Commit protocols are used to ensure atomicity across sites
 a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.
 not acceptable to have a transaction committed at one site and

aborted at another
 The two-phase commit (2PC) protocol is widely used
 The three-phase commit (3PC) protocol is more complicated and

more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

17
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

 Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

 The protocol involves all the sites at which the transaction executed
 Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

18
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction T.
 Ci adds the records <prepare T> to the log and forces log to

stable storage
 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at each site
determines if it can commit the transaction
 if not, add a record <no T> to the log and send abort T message

to Ci

 if the transaction can be committed, then:
 add the record <ready T> to the log
 force all records for T to stable storage
 send ready T message to Ci

19
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Phase 2: Recording the Decision

 T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage.

 Coordinator sends a message to each participant informing it of the
decision (commit or abort)

 Participants take appropriate action locally.

20
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Handling of Failures - Site Failure

When a site Sk recovers, it examines its log to determine the fate of

transactions active at the time of the failure.
 Log contain <commit T> record: site executes redo (T)
 Log contains <abort T> record: site executes undo (T)
 Log contains <ready T> record: site must consult Ci to determine the

fate of T.
 If T committed, redo (T)
 If T aborted, undo (T)

 The log contains no control records concerning T (i.e., Sk failed before
responding to the prepare T message from Ci)
 since the failure of Sk precludes the sending of such a

response, C1 must abort T
 Sk must execute undo (T)

21
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Distributed Query Processing
 Heterogeneous Distributed Databases

22
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Concurrency Control

 Modify concurrency control schemes for use in distributed environment.
 We assume that each site participates in the execution of a commit

protocol to ensure global transaction automicity.
 We assume all replicas of any item are updated

 Will see how to relax this in case of site failures later

23
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Single-Lock-Manager Approach

 System maintains a single lock manager that resides in a single
chosen site, say Si

 When a transaction needs to lock a data item, it sends a lock request
to Si and lock manager determines whether the lock can be granted
immediately
 If yes, lock manager sends a message to the site which initiated

the request
 If no, request is delayed until it can be granted, at which time a

message is sent to the initiating site

24
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Single-Lock-Manager Approach (Cont.)

 Advantages of scheme:
 Simple implementation
 Simple deadlock handling

 Disadvantages of scheme are:
 Bottleneck: lock manager site becomes a bottleneck
 Vulnerability: system is vulnerable to lock manager site failure.

25
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Lock Manager

 In this approach, functionality of locking is implemented by lock
managers at each site
 Lock managers control access to local data items

 But special protocols may be used for replicas
 Advantage: work is distributed and can be made robust to failures
 Disadvantage: deadlock detection is more complicated

 Lock managers cooperate for deadlock detection
 More on this later

 Several variants of this approach
 Primary copy
 Majority protocol
 Biased protocol
 Quorum consensus

26
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
 The cost of a data transmission over the network.
 The potential gain in performance from having several sites

process parts of the query in parallel.

27
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Query Transformation
 Translating algebraic queries on fragments.

 It must be possible to construct relation r from its fragments
 Replace relation r by the expression to construct relation r from its

fragments
 Consider the horizontal fragmentation of the account relation into

account1 = σ branch_name = “Hillside” (account)

account2 = σ branch_name = “Valleyview” (account)

 The query σ branch_name = “Hillside” (account) becomes

σ branch_name = “Hillside” (account1 ∪ account2)

 which is optimized into

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2)

28
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Simple Join Processing

 Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented

 account depositor
 branch

 account is stored at site S1

 depositor at S2

 branch at S3

 For a query issued at site SI, the system needs to produce the result at
site SI

29
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Possible Query Processing Strategies

 Ship copies of all three relations to site SI and choose a strategy for
processing the entire locally at site SI.

 Ship a copy of the account relation to site S2 and compute temp1 =
account
 depositor at S2. Ship temp1 from S2 to S3, and compute
temp2 = temp1 branch at S3. Ship the result temp2 to SI.

 Devise similar strategies, exchanging the roles S1, S2, S3

 Must consider following factors:
 amount of data being shipped
 cost of transmitting a data block between sites
 relative processing speed at each site

30
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Heterogeneous Distributed Databases

 Many database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and
software platforms

 Data models may differ (hierarchical, relational, etc.)
 Transaction commit protocols may be incompatible
 Concurrency control may be based on different techniques
 System-level details almost certainly are totally incompatible.
 A multidatabase system is a software layer on top of existing

database systems, which is designed to manipulate information in
heterogeneous databases
 Creates an illusion of logical database integration without any

physical database integration

31
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Advantages

 Preservation of investment in existing
 hardware
 system software
 Applications

 Local autonomy and administrative control
 Allows use of special-purpose DBMSs
 Step towards a unified homogeneous DBMS

 Full integration into a homogeneous DBMS faces
 Technical difficulties and cost of conversion
 Organizational/political difficulties
– Organizations do not want to give up control on their data
– Local databases wish to retain a great deal of autonomy

32
Monday, October 7, 2013

©Silberschatz, Korth and SudarshanDatabase System Concepts - 29th Edition

Query Processing

 Several issues in query processing in a heterogeneous database
 Schema translation

 Write a wrapper for each data source to translate data to a
global schema

 Wrappers must also translate updates on global schema to
updates on local schema

 Limited query capabilities
 Some data sources allow only restricted forms of selections

 E.g., web forms, flat file data sources
 Queries have to be broken up and processed partly at the

source and partly at a different site
 Removal of duplicate information when sites have overlapping

information
 Decide which sites to execute query

 Global query optimization

33
Monday, October 7, 2013

