
NEDB Day 2012

State University of New York - Albany

G* 
A Parallel System for Efficiently Managing Large Graphs

Jeong-Hyon Hwang,  Sean Spillane,   Daniel Bokser, 

Daniel Kemp,   Jayadevan Vijayan,   Jeremy Birnbaum 

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

2

5:00 AM - 6:00 AM

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

2

9.1 mi, 20 mins

5:00 AM - 6:00 AM

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

3

9.1 mi, 20 mins

5:00 AM - 6:00 AM

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

3

9.1 mi, 20 mins

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM

15 mi, 25 mins

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

4

9.1 mi, 20 mins

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM

15 mi, 25 mins

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

• Transportation

4

9.1 mi, 20 mins

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM

15 mi, 25 mins

7:00 AM - 8:00 AM

20 mi, 30 mins

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

5

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM 7:00 AM - 8:00 AM

B

A

B

A

B

A

9.1 mi, 20 mins 15 mi, 25 mins 20 mi, 30 mins

• Transportation

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

5

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM 7:00 AM - 8:00 AM

B

A

B

A

B

A

A ! B:  STD(Driving Time) / AVG(Driving Time) = STD(20, 25, 30) / AVG(20, 25, 30) = 5/25 = 0.2

9.1 mi, 20 mins 15 mi, 25 mins 20 mi, 30 mins

• Transportation

Saturday, July 6, 2013



NEDB Day 2012

Graph Data Analytics

5

5:00 AM - 6:00 AM 6:00 AM - 7:00 AM 7:00 AM - 8:00 AM

• Social and Political Studies / Marketing / National Security

• Epidemic Simulations and Analysis

B

A

B

A

B

A

A ! B:  STD(Driving Time) / AVG(Driving Time) = STD(20, 25, 30) / AVG(20, 25, 30) = 5/25 = 0.2

9.1 mi, 20 mins 15 mi, 25 mins 20 mi, 30 mins

• Transportation

Saturday, July 6, 2013



NEDB Day 2012

Limitations of Existing Systems

6

inconvenient inefficient

RDBMSs
no SQL support for 

graphs

no built-in graph 

traversal capabilities

Graph 

Systems

coding for each type 

of computation

only one graph at a 

time 

Saturday, July 6, 2013



NEDB Day 2012

Limitations of Existing Systems

6

inconvenient inefficient

RDBMSs
no SQL support for 

graphs

no built-in graph 

traversal capabilities

Graph 

Systems

coding for each type 

of computation

only one graph at a 

time 

Saturday, July 6, 2013



NEDB Day 2012

Limitations of Existing Systems

6

inconvenient inefficient

RDBMSs
no SQL support for 

graphs

no built-in graph 

traversal capabilities

Graph 

Systems

coding for each type 

of computation

only one graph at a 

time 

Example:  shortest distance in Pregel

class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message
values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data buffered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the ∆-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering
Pregel has been used for several different versions of clus-

tering. One version, semi-clustering, arises in social graphs.
Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Cmax semi-clusters,
each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.
A semi-cluster c is assigned a score,

Sc =
Ic − fBBc

Vc(Vc − 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i.e., edges
connecting a vertex in the semi-cluster to one outside it),
Vc is the number of vertices in the semi-cluster, and fB , the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i.e., di-

141

class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message
values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data buffered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the ∆-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering
Pregel has been used for several different versions of clus-

tering. One version, semi-cluster i ng, arises in social graphs.
Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Cmax semi-clusters,
each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.
A semi-cluster c is assigned a score,

Sc =
Ic − fBBc

Vc(Vc − 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i .e., edges
connecting a vertex in the semi-cluster to one outside it),
Vc is the number of vertices in the semi-cluster, and fB , the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i .e., di-

141

Saturday, July 6, 2013



NEDB Day 2012

Limitations of Existing Systems

6

inconvenient inefficient

RDBMSs
no SQL support for 

graphs

no built-in graph 

traversal capabilities

Graph 

Systems

coding for each type 

of computation

only one graph at a 

time 

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

7

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

8

G1

a
c

b
d

a
c

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

9

G1

a
c

b
d

a
c

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

9

G2G1
e

a
c

b
d

a
c

b
d

a
c

e

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

10

G2G1
e

a
c

b
d

a
c

b
d

a
c

e

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

10

G2G1
e

a
c

b
d

a
c

b
d

G3

f

a
c

e

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

11

G2 G3

a
c

e
G1

b
d

f

a
c

e

b
d

a
c

b
d

Saturday, July 6, 2013



NEDB Day 2012

The G* Project

• Goal
- convenient and efficient queries on graphs using a server cluster

• Key Features
- succinct graph query language

- distributed, deduplicate storage of graphs

- parallel query processing that shares computations across graphs

11

G2 G3

a
c

e
G1

b
d

f

a
c

e

b
d

a
c

b
d

G1!G2!G3

a
c

b
d

......

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

12

G1

a
c

b
d

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

12

G1

a
c

b
d

......S3S1 S2

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

13

G1

a
c

b
d

......S3S1 S2

b
d

a
c

b

c

d

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

14

G1

a
c

b
d

b
d

G1

a
c

b

G1 G1

......S3S1 S2

c

d

c

d

a

b

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

15

G1

a
c

b
d

b
d

G1

a
c

b

G1 G1

......S3S1 S2

c

d

c

d

a

b

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

15

G1

a
c

b
d

b
d

G1

a
c

b

G1 G1

......S3S1 S2

c

d

G2
e

c

d

a

b

c
e

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

16

G1

a
c

b
d

b
d

G1!G2

a
c

b

G1!G2

......S3S1 S2

G2
e

c

d

a

b

c

G1-G2

c
e

G2-G1

d

G1!G2

c
e

d

a

b

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

17

G1

a
c

b
d

b
d

G1!G2

a
c

b

G1!G2

......S3S1 S2

G2
e

c

d

a

b

c

G1-G2

c
e

G2-G1

d

G1!G2

c
e

d

a

b

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

17

G1

a
c

b
d

b
d

G1!G2

a
c

b

G1!G2

......S3S1 S2

G2
e

c

d

a

b

c

G1-G2

c
e

G2-G1

d

G1!G2

G3

c
e

d

a

b

f
d

f

Saturday, July 6, 2013



NEDB Day 2012

Distribution of Graph Data

18

G1

a
c

b
d

b
d

G1!G2!G3

a
c

b

G1!G2!G3

......S3S1 S2

G2
e

c

d

a

b

c

G1-G2-G3

c
e

(G2!G3)-G1

d

(G1!G2)-G3

f

c
e

d

a

b

d
f

G3-G1-G2

G3

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

19

c

G1

d

Memory Disk

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

19

c

G1

d

Memory Disk

attributes of vertex c
[1]

attributes of vertex d
[2]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

19

c

G1

d

Memory Disk

d

[2]

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

20

c

G1-G2

c
e

G2-G1

d

G1!G2

Memory Disk

attributes of vertex c
[1]

attributes of vertex d
[2]

d

[2]

c

[1]

{G1}

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

20

c

G1-G2

c
e

G2-G1

d

G1!G2

Memory Disk

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

d

[2]

c

[1]

{G1}

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

20

c

G1-G2

c
e

G2-G1

d

G1!G2

Memory Disk

{G2}

c

[3]

e

[4]

d

[2]

{G1,G2}

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

21

c

G1-G2-G3

c
e

(G2!G3)-G1

d

(G1!G2)-G3

d
f

G3-G1-G2

Memory Disk

{G2,G3}

c

[3]

e

[4]

d

[2]

{G1,G2}

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

21

c

G1-G2-G3

c
e

(G2!G3)-G1

d

(G1!G2)-G3

d
f

G3-G1-G2

Memory Disk

{G2,G3}

c

[3]

e

[4]

d

[2]

{G1,G2}

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

!

attributes of edge to f

[5]

attributes of vertex f
[6]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

21

c

G1-G2-G3

c
e

(G2!G3)-G1

d

(G1!G2)-G3

d
f

G3-G1-G2

Memory Disk

d

[5]

f

[6]

{G3}{G2,G3}

c

[3]

e

[4]

d

[2]

{G1,G2}

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

!

attributes of edge to f

[5]

attributes of vertex f
[6]

Saturday, July 6, 2013



NEDB Day 2012

S3

Storage of Graphs (on server)

21

c

G1-G2-G3

c
e

(G2!G3)-G1

d

(G1!G2)-G3

d
f

G3-G1-G2

Memory Disk

d

[5]

f

[6]

{G3}{G2,G3}

c

[3]

e

[4]

d

[2]

{G1,G2}

c

[1]

{G1}

attributes of vertex c
[1]

attributes of vertex d
[2]

!

attributes of edge to e

[3]

attributes of vertex e
[4]

!

attributes of edge to f

[5]

attributes of vertex f
[6]

G1 G2 G3

Saturday, July 6, 2013



NEDB Day 2012

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

Saturday, July 6, 2013



NEDB Day 2012

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

Saturday, July 6, 2013



NEDB Day 2012

(a,♢,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

Saturday, July 6, 2013



NEDB Day 2012

(a,2,{G1,G2})

(a,♢,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

Saturday, July 6, 2013



NEDB Day 2012

(a,2,{G1,G2})

(a,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

Saturday, July 6, 2013



NEDB Day 2012

(a,2,{G1,G2})

(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

Saturday, July 6, 2013



NEDB Day 2012

(a,2,{G1,G2}) (b,1,{G1,G2})

(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(a,2,{G1,G2}) (b,1,{G1,G2})

(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertexvertex

degree

count, sum

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

vertex

degree

count, sum

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2}) (2,0,{G1}), (3,1,{G2}))

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), 

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), 

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), 

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

Saturday, July 6, 2013



NEDB Day 2012

(1,1,{G1,G2})

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), (a,2,{G1,G2}) (b,1,{G1,G2})

(c,♢,{G1}), (d,♢,{G1,G2}), (c,♢,{G2}), (e,♢,{G2})(a,♢,{G1,G2}) (b,♢,{G1,G2})

(1,2,{G1,G2})

(3/4,{G1}), (4/5,{G2})

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

(2,0,{G1}), (3,1,{G2}))

Graph Query Execution

22

c

b
d

{G1,G2,G3}

a
c

b

{G1,G2,G3} {G1}

d
f

c
e

{G2,G3} {G3}

......

d

{G1,G2}

Example: average degree of each graph in {G1,G2}

G2G1

a
c

e

b
d

a
c

b
d

S3S2S1

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

vertex

degree

count, sum

average

union

vertex

degree

count, sum

vertex

degree

count, sum

(c,0,{G1}), (d,0,{G1,G2}), (c,1,{G2}), (e,0,{G2}), 

(1,2,{G1,G2}), (1,1,{G1,G2}), (2,0,{G1}), (3,1,{G2})

Saturday, July 6, 2013



NEDB Day 2012

G* vs Phoebus

23

• Data

- 10 complete binary trees

- i’th tree = (i-1)’th tree 

• Query

- single-source shortest paths

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

q
u
er

y 
ti
m

e 
(s

ec
)

number of graphs

Phoebus (all graphs)
Phoebus (last graph)
G* (all graphs)
G* (last graph)

(an open-source version of Pregel)

+
new 25K vertices (and edges)          

Saturday, July 6, 2013



NEDB Day 2012

G* vs Phoebus

23

• Data

- 10 complete binary trees

- i’th tree = (i-1)’th tree 

• Query

- single-source shortest paths

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

q
u
er

y 
ti
m

e 
(s

ec
)

number of graphs

Phoebus (all graphs)
Phoebus (last graph)
G* (all graphs)
G* (last graph)

(an open-source version of Pregel)

+
new 25K vertices (and edges)          

Saturday, July 6, 2013



NEDB Day 2012

G* vs Phoebus

23

• Data

- 10 complete binary trees

- i’th tree = (i-1)’th tree 

• Query

- single-source shortest paths

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

q
u
er

y 
ti
m

e 
(s

ec
)

number of graphs

Phoebus (all graphs)
Phoebus (last graph)
G* (all graphs)
G* (last graph)

(an open-source version of Pregel)

+
new 25K vertices (and edges)          

Saturday, July 6, 2013



NEDB Day 2012

G* vs Phoebus

23

• Data

- 10 complete binary trees

- i’th tree = (i-1)’th tree 

• Query

- single-source shortest paths

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

q
u
er

y 
ti
m

e 
(s

ec
)

number of graphs

Phoebus (all graphs)
Phoebus (last graph)
G* (all graphs)
G* (last graph)

(an open-source version of Pregel)

+
new 25K vertices (and edges)          

Saturday, July 6, 2013



NEDB Day 2012

G* vs Phoebus

23

• Data

- 10 complete binary trees

- i’th tree = (i-1)’th tree 

• Query

- single-source shortest paths

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

q
u
er

y 
ti
m

e 
(s

ec
)

number of graphs

Phoebus (all graphs)
Phoebus (last graph)
G* (all graphs)
G* (last graph)

(an open-source version of Pregel)

+
new 25K vertices (and edges)          

Saturday, July 6, 2013



NEDB Day 2012

Scale-up Test

• Platform

- 64 core server cluster

• Data

- 1 complete binary tree

- 1 billion vertices (edges)

- 64 million vertices / server

• Queries 

- vertex degree

- single-source shortest paths

24

1 2 4 8 16 32 64
0

500

1000

1500

2000

q
u
er

y 
ti
m

e 
(s

ec
)

number of cores (relative data size)

degree SSSP

Saturday, July 6, 2013



NEDB Day 2012

Scale-up Test

• Platform

- 64 core server cluster

• Data

- 1 complete binary tree

- 1 billion vertices (edges)

- 64 million vertices / server

• Queries 

- vertex degree

- single-source shortest paths

24

1 2 4 8 16 32 64
0

500

1000

1500

2000

q
u
er

y 
ti
m

e 
(s

ec
)

number of cores (relative data size)

degree SSSP

Saturday, July 6, 2013



NEDB Day 2012

Scale-up Test

• Platform

- 64 core server cluster

• Data

- 1 complete binary tree

- 1 billion vertices (edges)

- 64 million vertices / server

• Queries 

- vertex degree

- single-source shortest paths

24

1 2 4 8 16 32 64
0

500

1000

1500

2000

q
u
er

y 
ti
m

e 
(s

ec
)

number of cores (relative data size)

degree SSSP

Saturday, July 6, 2013



NEDB Day 2012

Conclusion

• Convenient and efficient queries on graphs

- distributed, deduplicate storage of graphs

- parallel query processing that share computations across graphs

• Supported by NSF CAREER award IIS-1149372

• 30K lines of Java code

• 1st code release in August 2012

• Future work

- disk optimization / graph distribution / query 
optimization / high availability

25

Saturday, July 6, 2013



NEDB Day 2012

Thank you!

Saturday, July 6, 2013


