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Abstract

The clustering problem is a difficult problem
for the data stream domain. This is because
the large volumes of data arriving in a stream
renders most traditional algorithms too inef-
ficient. In recent years, a few one-pass clus-
tering algorithms have been developed for the
data stream problem. Although such methods
address the scalability issues of the clustering
problem, they are generally blind to the evo-
lution of the data and do not address the fol-
lowing issues: (1) The quality of the clusters is
poor when the data evolves considerably over
time. (2) A data stream clustering algorithm
requires much greater functionality in discov-
ering and exploring clusters over different por-
tions of the stream.
The widely used practice of viewing data
stream clustering algorithms as a class of one-
pass clustering algorithms is not very use-
ful from an application point of view. For
example, a simple one-pass clustering algo-
rithm over an entire data stream of a few
years is dominated by the outdated history
of the stream. The exploration of the stream
over different time windows can provide the
users with a much deeper understanding of the
evolving behavior of the clusters. At the same
time, it is not possible to simultaneously per-
form dynamic clustering over all possible time
horizons for a data stream of even moderately
large volume.
This paper discusses a fundamentally dif-
ferent philosophy for data stream clustering
which is guided by application-centered re-
quirements. The idea is divide the clustering
process into an online component which pe-
riodically stores detailed summary statistics
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and an offline component which uses only this
summary statistics. The offline component is
utilized by the analyst who can use a wide va-
riety of inputs (such as time horizon or num-
ber of clusters) in order to provide a quick un-
derstanding of the broad clusters in the data
stream. The problems of efficient choice, stor-
age, and use of this statistical data for a fast
data stream turns out to be quite tricky. For
this purpose, we use the concepts of a pyrami-
dal time frame in conjunction with a micro-
clustering approach. Our performance ex-
periments over a number of real and synthetic
data sets illustrate the effectiveness, efficiency,
and insights provided by our approach.

1 Introduction

In recent years, advances in hardware technology have
allowed us to automatically record transactions of ev-
eryday life at a rapid rate. Such processes lead to
large amounts of data which grow at an unlimited
rate. These data processes are referred to as data
streams. The data stream problem has been exten-
sively researched in recent years because of the large
number of relevant applications [2, 5, 7, 12].

In this paper, we will study the clustering problem
for data stream applications. The clustering problem
is defined as follows: for a given set of data points,
we wish to partition them into one or more groups
of similar objects. The similarity of the objects with
one another is typically defined with the use of some
distance measure or objective function. The clustering
problem has been widely researched in the database,
data mining and statistics communities [3, 8, 11, 9, 10,
13] because of its use in a wide range of applications.
Recently, the clustering problem has also been studied
in the context of the data stream environment [7, 12].

Previous algorithms on clustering data streams such
as those discussed in [12] assume that the clusters are
to be computed over the entire data stream. Such
methods simply view the data stream clustering prob-
lem as a variant of one-pass clustering algorithms.
While such a task may be useful in many applications,
a clustering problem needs to be defined carefully in
the context of a data stream. This is because a data
stream should be viewed as an infinite process consist-
ing of data which continuously evolves with time. As
a result, the underlying clusters may also change con-



siderably with time. The nature of the clusters may
vary with both the moment at which they are com-
puted as well as the time horizon over which they are
measured. For example, a user may wish to exam-
ine clusters occurring in the last month, last year, or
last decade. Such clusters may be considerably dif-
ferent. Therefore, a data stream clustering algorithm
must provide the flexibility to compute clusters over
user-defined time periods in online time.

We note that since stream data naturally imposes
a one-pass constraint on the design of the algorithms,
it becomes more difficult to provide such a flexibility
in computing clusters over different kinds of time hori-
zons using conventional algorithms. For example, a di-
rect extension of the stream based k-means algorithm
in [12] to such a case would require a simultaneous
maintenance of the intermediate results of clustering
algorithms over all possible time horizons. Such a com-
putational burden increases with progression of the
data stream and can rapidly become a bottleneck for
online implementation. Furthermore, in many cases,
an analyst may wish to determine the clusters at a pre-
vious moment in time, and compare them to the cur-
rent clusters. This requires even greater book-keeping
and can rapidly become unwieldy for fast data streams.

Since a data stream cannot be revisited over the
course of the computation, the clustering algorithm
needs to maintain a substantial amount of informa-
tion so that important details are not lost. For ex-
ample, the algorithm in [12] is implemented as a con-
tinuous version of k-means algorithm which continues
to maintain a number of cluster centers which change
or merge as necessary throughout the execution of the
algorithm. Such an approach is especially risky when
the characteristics of the stream evolve over time. This
is because the k-means approach is highly sensitive to
the order of arrival of the data points. For example,
once two cluster centers are merged, there is no way to
informatively split the clusters when required by the
evolution of the stream at a later stage.

Therefore a natural design to stream clustering
would be separate out the process into an online micro-
clustering component and an offline macro-clustering
component. The online micro-clustering component
requires a very efficient process for storage of appropri-
ate summary statistics in a fast data stream. The of-
fline component uses these summary statistics in con-
junction with other user input in order to provide the
user with a quick understanding of the clusters when-
ever required. Since the offline component requires
only the summary statistics as input, it turns out to
be very efficient in practice. This two-phased approach
also provides the user the flexibility to explore the na-
ture of the evolution of the clusters over different time
periods. This provides considerable insights to users
in real applications.

This paper is organized as follows. In section 2, we
will discuss the basic concepts underlying the stream
clustering framework. In section 3, we will discuss
how the micro-clusters are maintained throughout the
stream generation process. In section 4, we discuss

how the micro-clusters may be used by an offline
macro-clustering component to create clusters of dif-
ferent spatial and temporal granularity. Since the algo-
rithm is used for clustering of evolving data streams,
it can also be used to determine the nature of clus-
ter evolution. This process is described in section 5.
Section 6 reports our performance study on real and
synthetic data sets. Section 7 discusses the implication
of the method and concludes our study.

2 The Stream Clustering Framework

In this section, we will discuss the framework of our
stream clustering approach. We will refer to it as the
CluStream framework. The separation of the stream
clustering approach into online and offline components
raises several important questions:

• What is the nature of the summary information
which can be stored efficiently in a continuous data
stream? The summary statistics should provide suf-
ficient temporal and spatial information for a horizon
specific offline clustering process, while being prone to
an efficient (online) update process.

• At what moments in time should the summary
information be stored away on disk? How can an ef-
fective trade-off be achieved between the storage re-
quirements of such a periodic process and the ability
to cluster for a specific time horizon to within a desired
level of approximation?

• How can the periodic summary statistics be used
to provide clustering and evolution insights over user-
specified time horizons?

In order to address these issues, we utilize two con-
cepts which are useful for efficient data collection in a
fast stream:

• Micro-clusters: We maintain statistical infor-
mation about the data locality in terms of micro-
clusters. These micro-clusters are defined as a tem-
poral extension of the cluster feature vector [13]. The
additivity property of the micro-clusters makes them
a natural choice for the data stream problem.

• Pyramidal Time Frame: The micro-clusters
are stored at snapshots in time which follow a pyrami-
dal pattern. This pattern provides an effective trade-
off between the storage requirements and the ability to
recall summary statistics from different time horizons.

This summary information in the micro-clusters is
used by an offline component which is dependent upon
a wide variety of user inputs such as the time horizon
or the granularity of clustering. We will now discuss a
number of notations and definitions in order to intro-
duce the above concepts.

It is assumed that the data stream consists of a
set of multi-dimensional records X1 . . . Xk . . . arriv-
ing at time stamps T1 . . . Tk . . .. Each Xi is a multi-
dimensional record containing d dimensions which are
denoted by Xi = (x1

i . . . xd
i ).

We will first begin by defining the concept of micro-
clusters and pyramidal time frame more precisely.

Definition 1 A micro-cluster for a set of d-
dimensional points Xi1 . . . Xin with time stamps



Ti1 . . . Tin is defined as the (2 · d + 3) tuple
(CF2x, CF1x, CF2t, CF1t, n), wherein CF2x and
CF1x each correspond to a vector of d entries. The
definition of each of these entries is as follows:

• For each dimension, the sum of the squares of
the data values is maintained in CF2x. Thus, CF2x

contains d values. The p-th entry of CF2x is equal to
∑n

j=1(x
p
ij

)2.
• For each dimension, the sum of the data values is

maintained in CF1x. Thus, CF1x contains d values.
The p-th entry of CF1x is equal to

∑n
j=1 xp

ij
.

• The sum of the squares of the time stamps
Ti1 . . . Tin is maintained in CF2t.

• The sum of the time stamps Ti1 . . . Tin is main-
tained in CF1t.

• The number of data points is maintained in n.

We note that the above definition of micro-clusters is
a temporal extension of the cluster feature vector in
[13]. We will refer to the micro-cluster for a set of
points C by CFT (C). As in [13], this summary infor-
mation can be expressed in an additive way over the
different data points. This makes it a natural choice
for use in data stream algorithms. At a given moment
in time, the statistical information about the dominant
micro-clusters in the data stream is maintained by the
algorithm. As we shall see at a later stage, the nature
of the maintenance process ensures that a very large
number of micro-clusters can be efficiently maintained
as compared to the method discussed in [12]. The high
granularity of the online updating process ensures that
it is able to provide clusters of much better quality in
an evolving data stream.

The micro-clusters are also stored at particular mo-
ments in the stream which are referred to as snapshots.
The offline macro-clustering algorithm discussed at a
later stage in this paper will use these finer level micro-
clusters in order to create higher level clusters over
specific time horizons. Consider the case when the
current clock time is tc and the user wishes to find
clusters in the stream based on a history of length h.
The macro-clustering algorithm discussed in this pa-
per will use some of the subtractive properties1 of the
micro-clusters stored at snapshots tc and (tc−h) in or-
der to find the higher level clusters in a history or time
horizon of length h. The subtractive property is a very
important characteristic of the micro-clustering repre-
sentation which makes it feasible to generate higher
level clusters over different time horizons. Of course,
since it is not possible to store the snapshots at each
and every moment in time, it is important to choose
particular instants of time at which the micro-clusters
are stored. The aim of choosing these particular in-
stants is to ensure that clusters in any user specified
time horizon (tc − h, tc) can be approximated.

In order to achieve this, we will introduce the con-
cept of a pyramidal time frame. In this technique, the
snapshots are stored at differing levels of granularity

1This property will be discussed in greater detail in a later
section.

depending upon the recency. Snapshots are classified
into different orders which can vary from 1 to log(T ),
where T is the clock time elapsed since the beginning
of the stream. The order of a particular class of snap-
shots defines the level of granularity in time at which
the snapshots are maintained. The snapshots of dif-
ferent order are maintained as follows:

• Snapshots of the i-th order occur at time intervals
of αi, where α is an integer and α ≥ 1. Specifically,
each snapshot of the i-th order is taken at a moment
in time when the clock value2 from the beginning of
the stream is exactly divisible by αi.

• At any given moment in time, only the last α+ 1
snapshots of order i are stored.

We note that the above definition allows for con-
siderable redundancy in storage of snapshots. For ex-
ample, the clock time of 8 is divisible by 20, 21, 22,
and 23 (where α = 2). Therefore, the state of the
micro-clusters at a clock time of 8 simultaneously cor-
responds to order 0, order 1, order 2 and order 3 snap-
shots. From an implementation point of view, a snap-
shot needs to be maintained only once. We make the
following observations:

• For a data stream, the maximum order of any
snapshot stored at T time units since the beginning of
the stream mining process is logα(T ).

• For a data stream the maximum number of snap-
shots maintained at T time units since the beginning
of the stream mining process is (α + 1) · logα(T ).

• For any user specified time window of h, at least
one stored snapshot can be found within 2 · h units of
the current time.

While the first two results are quite easy to verify,
the last one needs to be proven formally.

Lemma 1 Let h be a user specified time window, tc be
the current time, and ts be the time of the last stored
snapshot of any order just before the time tc−h. Then
tc − ts ≤ 2 · h.

Proof: Let r be the smallest integer such that αr ≥ h.
Therefore, we know that αr−1 < h. Since we know
that there are α+1 snapshots of order (r−1), at least
one snapshot of order r − 1 must always exist before
tc − h. Let ts be the snapshot of order r − 1 which
occurs just before tc − h. Then (tc − h) − ts ≤ αr−1.
Therefore, we have tc − ts ≤ h + αr−1 < 2 · h.
Thus, in this case, it is possible to find a snapshot
within a factor of 2 of any user-specified time win-
dow. Furthermore, the total number of snapshots
which need to be maintained is relatively modest. For
example, for a data stream running3 for 100 years with
a clock time granularity of 1 second, the total number
of snapshots which need to be maintained is given by

2Without loss of generality, we can assume that one unit of
clock time is the smallest level of granularity. Thus, the 0-th
order snapshots measure the time intervals at the smallest level
of granularity.

3The purpose of this rather extreme example is only to illus-
trate the efficiency of the pyramidal storage process in the most
demanding case. In most real applications, the data stream is
likely to be much shorter.



Order of
Snapshots

Clock Times (Last 5 Snapshots)

0 55 —54 53 —52 51
1 54 —52 50 —48 46
2 52 —48 44 —40 36
3 —48 40 —32 24 —16
4 48 —32 16
5 32

Table 1: An example of snapshots stored for α = 2
and l = 2

(2+1) · log2(100∗365∗24∗60∗60) ≈ 95. This is quite
a modest storage requirement.

It is possible to improve the accuracy of time hori-
zon approximation at a modest additional cost. In
order to achieve this, we save the αl + 1 snapshots of
order r for l > 1. In this case, the storage require-
ment of the technique corresponds to (αl +1) · logα(T )
snapshots. On the other hand, the accuracy of time
horizon approximation also increases substantially. In
this case, any time horizon can be approximated to a
factor of (1 + 1/αl−1). We summarize this result as
follows:

Lemma 2 Let h be a user specified time horizon, tc be
the current time, and ts be the time of the last stored
snapshot of any order just before the time tc−h. Then
tc − ts ≤ (1 + 1/αl−1) · h.

Proof: Similar to previous case.
For larger values of l, the time horizon can be approx-
imated as closely as desired. Consider the example
(discussed above) of a data stream running for 100
years. By choosing l = 10,α = 2, it is possible to ap-
proximate any time horizon within 0.2%, while a total
of only (210 + 1) · log2(100 ∗ 365 ∗ 24 ∗ 60 ∗ 60) ≈ 32343
snapshots are required for 100 years. Since histori-
cal snapshots can be stored on disk and only the cur-
rent snapshot needs to be maintained in main mem-
ory, this requirement is quite feasible from a practical
point of view. It is also possible to specify the pyrami-
dal time window in accordance with user preferences
corresponding to particular moments in time such as
beginning of calendar years, months, and days. While
the storage requirements and horizon estimation possi-
bilities of such a scheme are different, all the algorith-
mic descriptions of this paper are directly applicable.

In order to clarify the way in which snapshots are
stored, let us consider the case when the stream has
been running starting at a clock-time of 1, and a use
of α = 2 and l = 2. Therefore 22 + 1 = 5 snapshots
of each order are stored. Then, at a clock time of 55,
snapshots at the clock times illustrated in Table 1 are
stored.

We note that a large number of snapshots are com-
mon among different orders. From an implementation
point of view, the states of the micro-clusters at times
of 16, 24, 32, 36, 40, 44, 46, 48, 50, 51, 52, 53, 54, and
55 are stored. It is easy to see that for more recent

clock times, there is less distance between successive
snapshots (better granularity). We also note that the
storage requirements estimated in this section do not
take this redundancy into account. Therefore, the re-
quirements which have been presented so far are actu-
ally worst-case requirements.

An important question is to find a systematic rule
which will eliminate the redundancy in the snapshots
at different times. We note that in the example illus-
trated in Table 1, all the snapshots of order 0 occur-
ring at odd moments (nondivisible by 2) need to be
retained, since these are non-redundant. Once these
snapshots have been retained and others discarded, all
the snapshots of order 1 which occur at times that are
not divisible by 4 are non-redundant. In general, all
the snapshots of order l which are not divisible by 2l+1

are non-redundant. A redundant (hence not be gener-
ated) snapshot is marked by a crossbar on the number,
such as —54, in Table 1. This snapshot generation rule
also applies to the general case, when α is different
from 2. We also note that whenever a new snapshot
of a particular order is stored, the oldest snapshot of
that order needs to be deleted.

3 Online Micro-cluster Maintenance

The micro-clustering phase is the online statistical
data collection portion of the algorithm. This pro-
cess is not dependent on any user input such as the
time horizon or the required granularity of the clus-
tering process. The aim is to maintain statistics at a
sufficiently high level of (temporal and spatial) gran-
ularity so that it can be effectively used by the offline
components such as horizon-specific macro-clustering
as well as evolution analysis.

It is assumed that a total of q micro-clusters are
maintained at any moment by the algorithm. We will
denote these micro-clusters by M1 . . .Mq. Associated
with each micro-cluster i, we create a unique id when-
ever it is first created. If two micro-clusters are merged
(as will become evident from the details of our main-
tenance algorithm), a list of ids is created in order to
identify the constituent micro-clusters. The value of q
is determined by the amount of main memory available
in order to store the micro-clusters. Therefore, typi-
cal values of q are significantly larger than the natural
number of clusters in the data but are also significantly
smaller than the number of data points arriving in a
long period of time for a massive data stream. These
micro-clusters represent the current snapshot of clus-
ters which change over the course of the stream as
new points arrive. Their status is stored away on disk
whenever the clock time is divisible by αi for any in-
teger i. At the same time any micro-clusters of order
r which were stored at a time in the past more remote
than αl+r units are deleted by the algorithm.

We first need to create the initial q micro-clusters.
This is done using an offline process at the very be-
ginning of the data stream computation process. At
the very beginning of the data stream, we store the
first InitNumber points on disk and use a standard



k-means clustering algorithm in order to create the q
initial micro-clusters. The value of InitNumber is cho-
sen to be as large as permitted by the computational
complexity of a k-means algorithm creating q clusters.

Once these initial micro-clusters have been estab-
lished, the online process of updating the micro-
clusters is initiated. Whenever a new data point Xik

arrives, the micro-clusters are updated in order to re-
flect the changes. Each data point either needs to be
absorbed by a micro-cluster, or it needs to be put in
a cluster of its own. The first preference is to absorb
the data point into a currently existing micro-cluster.
We first find the distance of each data point to the
micro-cluster centroids M1 . . .Mq. Let us denote this
distance value of the data point Xik to the centroid
of the micro-cluster Mj by dist(Mj ,Xik). Since the
centroid of the micro-cluster is available in the cluster
feature vector, this value can be computed relatively
easily.

We find the closest cluster Mp to the data point
Xik . We note that in many cases, the point Xik does
not naturally belong to the cluster Mp. These cases
are as follows:

• The data point Xik corresponds to an outlier.
• The data point Xik corresponds to the begin-

ning of a new cluster because of evolution of the data
stream.

While the two cases above cannot be distinguished
until more data points arrive, the data point Xik needs
to be assigned a (new) micro-cluster of its own with
a unique id. How do we decide whether a completely
new cluster should be created? In order to make this
decision, we use the cluster feature vector of Mp to
decide if this data point falls within the maximum
boundary of the micro-cluster Mp. If so, then the data
point Xik is added to the micro-cluster Mp using the
CF additivity property. The maximum boundary of
the micro-cluster Mp is defined as a factor of t of the
RMS deviation of the data points in Mp from the cen-
troid. We define this as the maximal boundary factor.
We note that the RMS deviation can only be defined
for a cluster with more than 1 point. For a cluster
with only 1 previous point, the maximum boundary is
defined in a heuristic way. Specifically, we choose it to
be r times that of the next closest cluster.

If the data point does not lie within the maxi-
mum boundary of the nearest micro-cluster, then a
new micro-cluster must be created containing the data
point Xik . This newly created micro-cluster is assigned
a new id which can identify it uniquely at any future
stage of the data steam process. However, in order
to create this new micro-cluster, the number of other
clusters must be reduced by one in order to create
memory space. This can be achieved by either deleting
an old cluster or joining two of the old clusters. Our
maintenance algorithm first determines if it is safe to
delete any of the current micro-clusters as outliers. If
not, then a merge of two micro-clusters is initiated.

The first step is to identify if any of the old
micro-clusters are possibly outliers which can be safely

deleted by the algorithm. While it might be tempting
to simply pick the micro-cluster with the fewest num-
ber of points as the micro-cluster to be deleted, this
may often lead to misleading results. In many cases,
a given micro-cluster might correspond to a point of
considerable cluster presence in the past history of the
stream, but may no longer be an active cluster in the
recent stream activity. Such a micro-cluster can be
considered an outlier from the current point of view.
An ideal goal would be to estimate the average time-
stamp of the last m arrivals in each micro-cluster 4,
and delete the micro-cluster with the least recent time-
stamp. While the above estimation can be achieved by
simply storing the last m points in each micro-cluster,
this increases the memory requirements of a micro-
cluster by a factor of m. Such a requirement reduces
the number of micro-clusters that can be stored by the
available memory and therefore reduces the effective-
ness of the algorithm.

We will find a way to approximate the average time-
stamp of the last m data points of the cluster M. This
will be achieved by using the data about the time-
stamps stored in the micro-cluster M. We note that
the time-stamp data allows us to calculate the mean
and standard deviation5 of the arrival times of points
in a given micro-cluster M. Let these values be de-
noted by µM and σM respectively. Then, we find
the time of arrival of the m/(2 · n)-th percentile of
the points in M assuming that the time-stamps are
normally distributed. This time-stamp is used as the
approximate value of the recency. We shall call this
value as the relevance stamp of cluster M. When the
least relevance stamp of any micro-cluster is below a
user-defined threshold δ, it can be eliminated and a
new micro-cluster can be created with a unique id cor-
responding to the newly arrived data point Xik .

In some cases, none of the micro-clusters can be
readily eliminated. This happens when all relevance
stamps are sufficiently recent and lie above the user-
defined threshold δ. In such a case, two of the micro-
clusters need to be merged. We merge the two micro-
clusters which are closest to one another. The new
micro-cluster no longer corresponds to one id. Instead,
an idlist is created which is a union of the the ids in
the individual micro-clusters. Thus, any micro-cluster
which is result of one or more merging operations can
be identified in terms of the individual micro-clusters
merged into it.

While the above process of updating is executed at
the arrival of each data point, an additional process
is executed at each clock time which is divisible by αi

for any integer i. At each such time, we store away
the current set of micro-clusters (possibly on disk) to-
gether with their id list, and indexed by their time of
storage. We also delete the least recent snapshot of or-
der i, if αl+1 snapshots of such order had already been

4If the micro-cluster contains fewer than 2 ·m points, then we
simply find the average time-stamp of all points in the cluster.

5The mean is equal to CF1t/n. The standard deviation is

equal to
√

CF2t/n − (CF1t/n)2.



stored on disk, and if the clock time for this snapshot
is not divisible by αi+1.

4 Macro-Cluster Creation

This section discusses one of the offline components,
in which a user has the flexibility to explore stream
clusters over different horizons. The micro-clusters
generated by the algorithm serve as an intermediate
statistical representation which can be maintained in
an efficient way even for a data stream of large volume.
On the other hand, the macro-clustering process does
not use the (voluminous) data stream, but the com-
pactly stored summary statistics of the micro-clusters.
Therefore, it is not constrained by one-pass require-
ments.

It is assumed, that as input to the algorithm, the
user supplies the time-horizon h, and the number of
higher level clusters k which he wishes to determine.
We note that the choice of the time horizon h deter-
mines the amount of history which is used in order to
create higher level clusters. The choice of the number
of clusters k determines whether more detailed clusters
are found, or whether more rough clusters are mined.

We note that the set of micro-clusters at each stage
of the algorithm is based on the entire history of stream
processing since the very beginning of the stream gen-
eration process. When the user specifies a particular
time horizon of length h over which he would like to
find the clusters, then we need to find micro-clusters
which are specific to that time-horizon. How do we
achieve this goal? For this purpose, we find the addi-
tive property of the cluster feature vector very useful.
This additive property is as follows:

Property 1 Let C1 and C2 be two sets of points. Then
the cluster feature vector CFT (C1 ∪ C2) is given by the
sum of CFT (C1) and CFT (C2)

Note that this property for the temporal version of
the cluster feature vector directly extends from that
discussed in [13]. The following subtractive property
is also true for exactly the same reason.

Property 2 Let C1 and C2 be two sets of points
such that C1 ⊇ C2. Then, the cluster feature vector
CFT (C1 − C2) is given by CFT (C1) − CFT (C2)

The subtractive property helps considerably in de-
termination of the micro-clusters over a pre-specified
time horizon. This is because by using two snapshots
at pre-defined intervals, it is possible to determine
the approximate micro-clusters for a pre-specified time
horizon. Note that the micro-cluster maintenance al-
gorithm always creates a unique id whenever a new
micro-cluster is created. When two micro-clusters are
merged, then the micro-clustering algorithm creates
an idlist which is a list of all the original ids in that
micro-cluster.

Consider the situation at a clock time of tc, when
the user wishes to find clusters over a past time hori-
zon of h. In this case, we find the stored snapshot

which occurs just before the time tc − h. (The use of
a pyramidal time frame ensures that it is always pos-
sible to find a snapshot at tc − h′ where h′ is within a
pre-specified tolerance of the user-specified time hori-
zon h.) Let us denote the set of micro-clusters at time
tc − h by S(tc − h′) and the set of micro-clusters at
time tc by S(tc). For each micro-cluster in the current
set S(tc), we find the list of ids in each micro-cluster.
For each of the list of ids, we find the corresponding
micro-clusters in S(tc − h′), and subtract the CF vec-
tors for the corresponding micro-clusters in S(tc −h′).
This ensures that the micro-clusters created before the
user-specified time horizon do not dominate the results
of the clustering process. We will denote this final set
of micro-clusters created from the subtraction process
by N (tc, h′). These micro-clusters are then subjected
to the higher level clustering process to create a smaller
number of micro-clusters which can be more easily un-
derstood by the user.

The clusters are determined by using a modification
of a k-means algorithm. In this technique, the micro-
clusters in N (tc, h′) are treated as pseudo-points which
are re-clustered in order to determine higher level clus-
ters. The k-means algorithm [9] picks k points as ran-
dom seeds and then iteratively assigns database points
to each of these seeds in order to create the new par-
titioning of clusters. In each iteration, the old set of
seeds are replaced by the centroid of each partition.
When the micro-clusters are used as pseudo-points,
the k-means algorithm needs to be modified in a few
ways:

• At the initialization stage, the seeds are no longer
picked randomly, but are sampled with probability
proportional to the number of points in a given micro-
cluster. The corresponding seed is the centroid of that
micro-cluster.

• At the partitioning stage, the distance of a seed
from a given pseudo-point (or micro-cluster) is equal
to the distance of the seed from the centroid of the
corresponding micro-cluster.

• At the seed adjustment stage, the new seed for a
given partition is defined as the weighted centroid of
the micro-clusters in that partition.

It is important to note that a given execution of the
macro-clustering process only needs to use two (care-
fully chosen) snapshots from the pyramidal time win-
dow of the micro-clustering process. The compactness
of this input thus allows the user considerable flexibil-
ities for querying the stored micro-clusters with differ-
ent levels of granularity and time horizons.

5 Evolution Analysis of Clusters

In many cases, the clusters can change significantly
over time. Often, in many real applications, a user
may wish to know the nature of the changes which
have occurred over time in the clusters. For example,
an analyst may wish to know how the clusters have
changed over the last quarter, the last year, the last
decade and so on. For this purpose, the user needs to
input a few parameters to the algorithm:



• The two clock times t1 and t2 over which the clus-
ters need to be compared. It is assumed that t2 > t1.
In many practical scenarios, t2 is the current clock
time.

• The time horizon h over which the clusters are
computed. This means that the clusters created by
the data arriving between (t2 − h, t2) are compared to
those created by the data arriving between (t1−h, t1).

Another important issue is that of deciding how to
present the changes in the clusters to a user, so as to
make the results appealing from an intuitive point of
view. We present the changes occurring in the clusters
in terms of the following broad objectives:

• Are there new clusters in the data at time t2 which
were not present at time t1?

• Have some of the original clusters been lost be-
cause of changes in the behavior of the stream?

• Have some of the original clusters at time t1
shifted in position and nature because of changes in
the data?

We note that the micro-cluster maintenance algo-
rithm maintains the idlists which are useful for track-
ing cluster information. The first step is to com-
pute N (t1, h) and N (t2, h) as discussed in the pre-
vious section. Therefore, we divide the micro-clusters
in N (t1, h) ∪N (t2, h) into three categories:

• Micro-clusters in N (t2, h) for which none of the
ids on the corresponding idlist are present in N (t1, h).
These are new micro-clusters which were created at
some time in the interval (t1, t2). We will denote this
set of micro-clusters by Madded(t1, t2).

• Micro-clusters in N (t1, h) for which none of the
corresponding ids are present in N (t2, h). Thus,
these micro-clusters were deleted in the interval
(t1, t2). We will denote this set of micro-clusters by
Mdeleted(t1, t2).

• Micro-clusters in N (t2, h) for which some or all
of the ids on the corresponding idlist are present
in the idlists corresponding to the micro-clusters in
N (t1, h). Such micro-clusters were at least partially
created before time t1, but have been modified since
then. We will denote this set of micro-clusters by
Mretained(t1, t2).

The macro-cluster creation algorithm is then
separately applied to each of this set of micro-
clusters to create a new set of higher level clusters.
The macro-clusters created from Madded(t1, t2) and
Mdeleted(t1, t2) have clear significance in terms of clus-
ters added to or removed from the data stream. The
micro-clusters in Mretained(t1, t2) correspond to those
portions of the stream which have not changed very
significantly in this period. When a very large frac-
tion of the data belongs to Mretained(t1, t2), this is
a sign that the stream is quite stable over that time
period.

6 Empirical Results

A thorough experimental study has been conducted
for the evaluation of the CluStream algorithm on

its accuracy, reliability, efficiency, scalability, and ap-
plicability. The performance results are presented
in this section. The study validates the following
claims: (1) CluStream derives higher quality clusters
than traditional stream clustering algorithms, espe-
cially when the cluster distribution contains dramatic
changes. It can answer many kinds of queries through
its micro-cluster maintenance, macro-cluster creation,
and change analysis over evolved data streams; (2) The
pyramidal time frame and micro-clustering concepts
adopted here assures that CluStream has much better
clustering accuracy while maintaining high efficiency;
and (3) CluStream has very good scalability in terms
of stream size, dimensionality, and the number of clus-
ters.

6.1 Test Environment and Data Sets

All of our experiments are conducted on a PC with
Intel Pentium III processor and 512 MB memory,
which runs Windows XP professional operating sys-
tem. For testing the accuracy and efficiency of the
CluStream algorithm, we compare CluStream with the
STREAM algorithm [7, 12], the best algorithm re-
ported so far for clustering data streams. CluStream
is implemented according to the description in this
paper, and the STREAM K-means is done strictly
according to [12], which shows better accuracy than
BIRCH [13]. To make the comparison fair, both CluS-
tream and STREAM K-means use the same amount
of memory. Specifically, they use the same stream in-
coming speed, the same amount of memory to store
intermediate clusters (called Micro-clusters in CluS-
tream), and the same amount of memory to store the
final clusters (called Macro-clusters in CluStream).

Because the synthetic datasets can be generated by
controlling the number of data points, the dimension-
ality, and the number of clusters, with different dis-
tribution or evolution characteristics, they are used
to evaluate the scalability in our experiments. How-
ever, since synthetic datasets are usually rather differ-
ent from real ones, we will mainly use real datasets to
test accuracy, cluster evolution, and outlier detection.
Real datasets. First, we need to find some real
datasets that evolve significantly over time in order to
test the effectiveness of CluStream. A good candidate
for such testing is the KDD-CUP’99 Network Intru-
sion Detection stream data set which has been used
earlier [12] to evaluate STREAM accuracy with re-
spect to BIRCH. This data set corresponds to the im-
portant problem of automatic and real-time detection
of cyber attacks. This is also a challenging problem
for dynamic stream clustering in its own right. The
offline clustering algorithms cannot detect such intru-
sions in real time. Even the recently proposed stream
clustering algorithms such as BIRCH and STREAM
cannot be very effective because the clusters reported
by these algorithms are all generated from the entire
history of data stream, whereas the current cases may
have evolved significantly.

The Network Intrusion Detection dataset consists



of a series of TCP connection records from two weeks
of LAN network traffic managed by MIT Lincoln Labs.
Each n record can either correspond to a normal con-
nection, or an intrusion or attack. The attacks fall
into four main categories: DOS (i.e., denial-of-service),
R2L (i.e., unauthorized access from a remote ma-
chine), U2R (i.e., unauthorized access to local supe-
ruser privileges), and PROBING (i.e., surveillance and
other probing). As a result, the data contains a total
of five clusters including the class for “normal connec-
tions”. The attack-types are further classified into one
of 24 types, such as buffer-overflow, guess-passwd, nep-
tune, portsweep, rootkit, smurf, warezclient, spy, and
so on. It is evident that each specific attack type can
be treated as a sub-cluster. Most of the connections in
this dataset are normal, but occasionally there could
be a burst of attacks at certain times. Also, each con-
nection record in this dataset contains 42 attributes,
such as duration of the connection, the number of data
bytes transmitted from source to destination (and vice
versa), percentile of connections that have “SYN” er-
rors, the number of “root” accesses, etc. As in [12],
all 34 continuous attributes will be used for clustering
and one outlier point has been removed.

Second, besides testing on the rapidly evolving net-
work intrusion data stream, we also test our method
over relatively stable streams. Since previously re-
ported stream clustering algorithms work on the entire
history of stream data, we believe that they should
perform effectively for some datasets with stable dis-
tribution over time. An example of such a data set is
the KDD-CUP’98 Charitable Donation data set. We
will show that even for such datasets, the CluStream
can consistently outperform the STREAM algorithm.

The KDD-CUP’98 Charitable Donation data set
has also been used in evaluating several one-scan clus-
tering algorithms, such as [6]. This dataset contains
95412 records of information about people who have
made charitable donations in response to direct mail-
ing requests, and clustering can be used to group
donors showing similar donation behavior. As in [6],
we will only use 56 fields which can be extracted from
the total 481 fields of each record. This data set is
converted into a data stream by taking the data in-
put order as the order of streaming and assuming that
they flow-in with a uniform speed.
Synthetic datasets. To test the scalability of CluS-
tream, we generate some synthetic datasets by varying
base size from 100K to 1000K points, the number of
clusters from 4 to 64, and the dimensionality in the
range of 10 to 100. Because we know the true clus-
ter distribution a priori, we can compare the clusters
found with the true clusters. The data points of each
synthetic dataset will follow a series of Gaussion dis-
tributions, and to reflect the evolution of the stream
data over time, we change the mean and variance of
the current Gaussion distribution every 10K points in
the synthetic data generation.

The quality of clustering on the real data sets was
measured using the sum of square distance (SSQ), de-
fined as follows. Assume that there are a total of N
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Figure 1: Quality comparison (Network Intrusion
dataset, horizon=1, stream speed=2000)
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Figure 2: Quality comparison (Network Intrusion
dataset, horizon=256, stream speed=200)

points in the past horizon at current time Tc. For
each point pi, we find the centroid Cpi of its clos-
est macro-cluster, and compute d(pi, Cpi), the dis-
tance between pi and Cpi . Then the SSQ at time
Tc with horizon H (denoted as SSQ(Tc,H)) is equal
to the sum of d2(pi, Cpi) for all the N points within
the previous horizon H. Unless otherwise mentioned,
the algorithm parameters were set at α = 2, l = 10,
InitNumber = 2000, and t = 2.

6.2 Clustering Evaluation

One novel feature of CluStream is that it can create a
set of macro-clusters for any user-specified horizon at
any time upon demand. Furthermore, we expect CluS-
tream to be more effective than current algorithms at
clustering rapidly evolving data streams. We will first
show the effectiveness and high quality of CluStream
in detecting network intrusions.

We compare the clustering quality of CluStream
with that of STREAM for different horizons at dif-
ferent times using the Network Intrusion dataset. For
each algorithm, we determine 5 clusters. All experi-



0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

50 150 250 350 450
Stream (in time units)

Av
er

ag
e 

SS
Q

CluStream STREAM

Figure 3: Quality comparison (Charitable Donation
dataset, horizon=4, stream speed=200)
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Figure 4: Quality comparison (Charitable Donation
dataset, horizon=16, stream speed=200)
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Figure 5: Stream Processing Rate (Charitable Dona-
tion dataset, stream speed=2000)
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Figure 6: Stream Processing Rate (Network Intrusion
dataset, stream speed=2000)
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Figure 7: Scalability with Data Dimensionality
(stream speed=2000)
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ments for this dataset have shown that CluStream has
substantially higher quality than STREAM. Figures 1
and 2 show some of our results, where stream speed
= 2000 means that the stream in-flow speed is 2000
points per time unit. We note that the Y -axis is drawn
on a logarithmic scale, and therefore the improvements
correspond to orders of magnitude. We run each algo-
rithm 5 times and compute their average SSQs. From
Figure 1 we know that CluStream is almost always
better than STREAM by several orders of magnitude.
For example, at time 160, the average SSQ of CluS-
tream is almost 5 orders of magnitude smaller than
that of STREAM. At a larger horizon like 256, Fig-
ure 2 shows that CluStream can also get much higher
clustering quality than STREAM. The average SSQ
values at different times consistently continue to be or-
der(s) of magnitude smaller than those of STREAM.
For example, at time 1250, CluStream’s average SSQ
is more than 5 orders of magnitude smaller than that
of STREAM.

The surprisingly high clustering quality of CluS-
tream benefits from its good design. On the one hand,
the pyramidal time frame enables CluStream to ap-
proximate any time horizon as closely as desired. On
the other hand, the STREAM clustering algorithm can
only be based on the entire history of the data stream.
Furthermore, the large number of micro-clusters main-
tain a sufficient amount of summary information in
order to contribute to the high accuracy. In addition,
our experiments demonstrated CluStream is more re-
liable than STREAM algorithm. In most cases, no
matter how many times we run CluStream, it always
returns the same (or very similar) results. More in-
terestingly, the fine granularity of the micro-cluster
maintenance algorithm helps CluStream in detecting
the real attacks. For example, at time 320, all the
connections belong to the neptune attack type for any
horizon less than 16. The micro-cluster maintenance
algorithm always absorbs all data points in the same
micro-cluster. As a result, CluStream will successfully
cluster all these points into one macro-cluster. This
means that it can detect a distinct cluster correspond-
ing to the network attack correctly. On the other hand,
the STREAM algorithm always mixes up these nep-
tune attack connections with the normal connections
or some other attacks. Similarly, CluStream can find
one cluster (neptune attack type in underlying data
set) at time 640, two clusters (neptune and smurf) at
time 650, and one cluster (smurf attack type) at time
1280. These clusters correspond to true occurrences
of important changes in the stream behavior, and are
therefore intuitively appealing from the point of view
of a user.

Now we examine the performance of stream clus-
tering with the Charitable Donation dataset. Since
the Charitable Donation dataset does not evolve much
over time, STREAM should be able to cluster this data
set fairly well. Figures 3 and 4 show the comparison
results between CluStream and STREAM. The results
show that CluStream outperforms STREAM even in
this case, which indicates that CluStream is effective

for both evolving and stable streams.

6.3 Scalability Results

The key to the success of the clustering framework is
high scalability of the micro-clustering algorithm. This
is because this process is exposed to a potentially large
volume of incoming data and needs to be implemented
in an efficient and online fashion. On the other hand,
the (offline) macro-clustering part of the process re-
quired only a (relatively) negligible amount of time.
This is because of its use of the compact micro-cluster
representation as input.

The most time-consuming and frequent operation
during micro-cluster maintenance is that of finding
the closest micro-cluster for each newly arrived data
point. It is clear that the complexity of this operation
increases linearly with the number of micro-clusters.
It is also evident that the number of micro-clusters
maintained should be sufficiently larger than the num-
ber of input clusters in the data in order to obtain a
high quality clustering. While the number of input
clusters cannot be known a priori, it is instructive to
examine the scalability behavior when the number of
micro-clusters was fixed at a constant large factor of
the number of input clusters. Therefore, for all the
experiments in this section, we will fix the number of
micro-clusters to 10 times the number of input clusters.
We tested the efficiency of CluStream micro-cluster
maintenance algorithm with respect to STREAM on
the real data sets.

Figures 5 and 6 show the stream processing rate (
the number of points processed per second) with pro-
gression of the data stream. Since CluStream requires
some time to compute the initial set of micro-clusters,
its precessing rate is lower than STREAM at the very
beginning. However, once steady state is reached,
CluStream becomes faster than STREAM in spite of
the fact that it needs to store the snapshots to disk
periodically. This is because STREAM takes a few it-
erations to make k-means clustering converge, whereas
CluStream just needs to judge whether a set of points
will be absorbed by the existing micro-clusters and
insert into them appropriately. We make the observa-
tion that while CluStream maintains 10 times higher
granularity of the clustering information compared to
STREAM, the processing rate is also much higher.

We will present the scalability behavior of the CluS-
tream algorithm with data dimensionality, and the
number of natural clusters. The scalability results re-
port the total processing time of the micro-clustering
process over the entire data stream. The first series
of data sets were generated by varying the dimension-
ality from 10 to 80, while fixing the number of points
and input clusters. The first data set series B100C5
indicates that it contains 100K points and 5 clusters.
The same notational convention is used for the second
data set series B200C10 and the third one B400C20.
Figure 7 shows the experimental results, from which
one can see that CluStream has linear scalability with
data dimensionality. For example, for dataset series
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B400C20, when the dimensionality increases from 10
to 80, the running time increases less than 8 times from
55 seconds to 396 seconds.

Another three series of datasets were generated to
test the scalability against the number of clusters by
varying the number of input clusters from 5 to 40,
while fixing the stream size and dimensionality. For
example, the first data set series B100D10 indicates it
contains 100K points and 10 dimensions. The same
convention is used for the other data sets. Figure
8 demonstrates that CluStream has linear scalability
with the number of input clusters.

6.4 Sensitivity Analysis

In section 3, we indicated that the number of micro-
clusters should be larger than the number of natural
clusters in order to obtain a clustering of good quality.
However, a very large number of micro-clusters is inef-
ficient in terms of running time and storage. We define
micro-ratio as the number of micro-clusters divided by
the number of natural clusters. It is desirable that a
high quality clustering can be reached by a reason-
ably small micro-ratio. We will determine the typical
micro-ratios used by the Clustream algorithm in this
section.

We fix the stream speed at 200 points (per time
unit), and horizon at 16 time units. We use the two
real datasets to test the clustering quality by varying
the number of micro-clusters. For each dataset, we
determine the macro-clusters over the corresponding
time horizon, and measure the clustering quality using
the sum of square distance (SSQ).

Figure 9 shows our experimental results related to
the accuracy impact of micro-ratio, where we fix Tc at
200 for Charitable Donation dataset and at 1000 for
Network Intrusion dataset. We can see that if we use
the same number of micro-clusters as the natural clus-
ters, the clustering quality is quite poor. This is be-
cause the use of a very small number of micro-clusters
defeats the purpose of a micro-cluster approach. When
the micro-ratio increases, the average SSQ reduces.

The average SSQ for each real dataset becomes sta-
ble when the micro-ratio is about 10. This indicates
that to achieve high-quality clustering, the micro-ratio
does not need to be too large as compared to the nat-
ural clusters in the data. Since the number of micro-
clusters is limited by the available memory, this result
brings good news: for most real applications, the use
of a very modest amount of memory is sufficient for
the micro-clustering process.

Factor t 1 2 4 6 8
Net. Int. 14.85 1.62 0.176 0.0144 0.0085

Cha. Don. 11.18 0.12 0.0074 0.0021 0.0021

Table 2: Exception percent vs. Max. Boundary Factor
t

Another important parameter which may signifi-
cantly impact the clustering quality is the maximal
boundary of a micro-cluster. As discussed earlier, this
was defined as a factor t of the RMS deviation of the
data points from the corresponding cluster centroid.
The value of t should be chosen small enough, so that it
can successfully detect most of the points representing
new clusters or outliers. At the same time, it should
not generate too many unpromising new micro-clusters
or outliers. By varying the factor t from 1 to 8, we ran
the CluStream algorithm for both the real datasets and
recorded all the exception points which fall outside of
the maximal boundary of its closest micro-cluster. Ta-
ble 2 shows the percentage of the total number of data
points in each real dataset that are judged belonging
to exception points at different values of the factor t.
Table 2 shows that if factor t is less than 1, there will
be too many exception points. Typically, a choice of
t = 2 resulted in an exception percentile which did not
reduce very much on increasing t further. We also note
that if the distances of the data points to the centroid
had followed a Gaussion distribution, the value t = 2
results in more than 95% of the data points within the
corresponding cluster boundary. Therefore, the value
of the factor t was set at 2 for all experiments in this
paper.

6.5 Evolution analysis

Our experiments also show that CluStream facilitates
cluster evolution analysis. Taking the Network Intru-
sion dataset as an example, we show how such an anal-
ysis is performed. In our experiments, we assume that
the network connection speed is 200 connections per
time unit.

First, by comparing the data distribution for t1 =
29, t2 = 30, h = 1 CluStream found 3 micro-clusters
(8 points) in Madded(t1, t2), 1 micro-cluster (1 point)
in Mdeleted(t1, t2), and 22 micro-clusters (192 points)
in Mretained(t1, t2). This shows that only 0.5% of
all the connections in (28, 29) disappeared and only
4% were added in (29, 30). By checking the origi-
nal dataset, we find that all points in Madded(t1, t2)
and Mdeleted(t1, t2) are normal connections, but are



outliers because of some particular feature such as
the number of bytes of data transmitted. The fact
that almost all the points in this case belong to
Mretained(t1, t2) indicates that the data distributions
in these two windows are very similar. This happens
because there are no attacks in this time period.

More interestingly, the data points falling into
Madded(t1, t2) or Mdeleted(t1, t2) are those which have
evolved significantly. These usually correspond to
newly arrived or faded attacks respectively. Here
are two examples: (1) During the period (34, 35), all
data points correspond to normal connections, whereas
during (39, 40) all data points belong to smurf at-
tacks. By applying our change analysis procedure
for t1 = 35, t2 = 40, h = 1, it shows that 99%
of the smurf connections (i.e., 198 connections) fall
into two Madded(t1, t2) micro-clusters, and 99% of
the normal connections fall into 21 Mdeleted(t1, t2)
micro-clusters. This means these normal connec-
tions are non-existent during (39, 40); (2) By apply-
ing the change analysis procedure for t1 = 640, t2 =
1280, h = 16, we found that all the data points dur-
ing (1264, 1280) belong to one Madded(t1, t2) micro-
cluster, and all the data points in (624, 640) belong
to one Mdeleted(t1, t2) micro-cluster. By checking the
original labeled data set, we found that all the connec-
tions during (1264, 1280) are smurf attacks and all the
connections during (624, 640) are neptune attacks.

7 Discussion and Conclusions

In this paper, we have developed an effective and ef-
ficient method, called CluStream, for clustering large
evolving data streams. The method has clear advan-
tages over recent techniques which try to cluster the
whole stream at one time rather than viewing the
stream as a changing process over time. The CluS-
tream model provides a wide variety of functionality in
characterizing data stream clusters over different time
horizons in an evolving environment. This is achieved
through a careful division of labor between the online
statistical data collection component and an offline an-
alytical component. Thus, the process provides con-
siderable flexibility to an analyst in a real-time and
changing environment. These goals were achieved by
a careful design of the statistical storage process. The
use of a pyramidal time window assures that the essen-
tial statistics of evolving data streams can be captured
without sacrificing the underlying space- and time-
efficiency of the stream clustering process. Further,
the exploitation of microclustering ensures that CluS-
tream can achieve higher accuracy than STREAM due
to its registering of more detailed information than the
k points used by the k-means approach. The use of
micro-clustering ensures scalable data collection, while
retaining the sufficiency of data required for effective
clustering.

A wide spectrum of clustering methods have been
developed in data mining, statistics, machine learn-
ing with many applications. Although very few have
been examined in the context of stream data cluster-

ing, we believe that the framework developed in this
study for separating out periodic statistical data col-
lection through a pyramidal time window provides a
unique environment for re-examining these techniques.
As future work, we are going to examine the applica-
tion of the CluStream methodology developed here to
other clustering paradigms for data streams.
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