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ABSTRACT
Web-based enterprises process events generated by millions
of users interacting with their websites. Rich statistical
data distilled from combining such interactions in near real-
time generates enormous business value. In this paper, we
describe the architecture of Photon, a geographically dis-
tributed system for joining multiple continuously flowing
streams of data in real-time with high scalability and low
latency, where the streams may be unordered or delayed.
The system fully tolerates infrastructure degradation and
datacenter-level outages without any manual intervention.
Photon guarantees that there will be no duplicates in the
joined output (at-most-once semantics) at any point in time,
that most joinable events will be present in the output in
real-time (near-exact semantics), and exactly-once seman-
tics eventually.

Photon is deployed within Google Advertising System to
join data streams such as web search queries and user clicks
on advertisements. It produces joined logs that are used to
derive key business metrics, including billing for advertisers.
Our production deployment processes millions of events per
minute at peak with an average end-to-end latency of less
than 10 seconds. We also present challenges and solutions
in maintaining large persistent state across geographically
distant locations, and highlight the design principles that
emerged from our experience.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems — Distributed
databases; H.3.5 [Online Information Services]: Web-
based services

General Terms
Design, Performance, Reliability
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1. INTRODUCTION
Joining data streams has received considerable attention

in the past two decades [24, 25] due to its importance in
numerous applications (e.g. IP network management, tele-
phone fraud detection), where information arrives in the
form of very high-speed streams that need to be processed
online to enable real-time response [9].

With the explosive evolution of the Internet and the World
Wide Web in the last several years, the need for similar tech-
nologies has grown multifold as web-based enterprises must
process events generated by millions of users interacting with
their websites. Users all over the world visit Google’s web
pages on a daily basis, issuing web-search queries, browsing
search results, and clicking on ads (advertisements) shown
on result pages.

Distilling rich statistical data from web user interactions
in near real-time has a huge impact on business processes.
The data enables advertisers to fine-tune their bids, budgets
and campaigns, and vary the parameters in real-time to suit
changing user behavior. It provides immediate feedback to
advertisers on the effectiveness of their changes, and also al-
lows Google to optimize the budget spent for each advertiser
on a continuous basis.

To provide real-time statistical data, we built a system,
called Photon, that can relate a primary user event (e.g. a
search query) with subsequent events (e.g. a click on an
ad) within seconds of the occurrence of such events. Photon
joins multiple continuous streams of events using a shared
identifier to combine the related events.

Let us illustrate the operational steps in Photon with an
example of joining a click and a query event:

• When a user issues a search query (using terms such
as “buy flowers”) at google.com, Google serves ads to
the user along with search results. The web server that
serves the ad also sends information about this event
to multiple logs-datacenters, where the data is stored
persistently in the Google File System [14] (GFS). The
logged data includes information such as advertiser
identifier, ad text, and online ad auction parameters.
This data is later used to generate reports for adver-
tisers, perform quality analysis, etc. Each query event
is assigned a unique identifier known as query id. Fig-
ure 1 shows the query event happening at time t1.

• After receiving the results of the search query, the user
may click on one of the ads. The ad click request is
sent to a backend server while the user is being for-
warded/redirected to the advertiser’s website. The

577



Is
su

es
 a

 q
ue

ry

Clicks on an Ad

t1 t2

Timeline

Photon

Click Event
{click_id, 

query_id, ...}

Query Event
{query_id, 

advertiser_id, 
ad text, ...}

Joined Click Event

{click_id, query_id, 
advertiser_id, ad text, ...}

Figure 1: Joining query and click events in Photon

click event is also logged and copied to multiple logs
datacenters. The logged data includes information of
the ad that the user clicked, and is used to bill ad-
vertisers. The click event contains the query id of the
corresponding query. Each click event is assigned a
unique identifier known as click id. Figure 1 shows
the click event happening at time t2.

Continuing with the example, when a click event is shipped
to logs datacenters, Photon joins the click event with its cor-
responding query event based on query id. As part of the
join, Photon copies all the details from the query event into
a new joined click event (as shown in Figure 1). Photon
reads input event streams from log files on GFS in differ-
ent datacenters and writes joined events to new output log
files on GFS in multiple datacenters. Joined logs are used
to generate rich statistical data, combining the information
from queries, ads and clicks.

Note that individual logs do not contain all the informa-
tion necessary for generating rich statistical data. For ex-
ample, when we compile statistics on a click event, we need
access to the complete information recorded in the corre-
sponding query event, such as other ads that were shown
in the query result page, in addition to the ad recorded by
this click event. It is possible to embed the query informa-
tion in the Click URL sent to the user. However, sending
extra data would increase latency of response and degrade
user experience, as well as increase exposure to critical data.
Moreover, URL length has an upper limit, thus restricting
the amount of information we can propagate about a query.
Hence, it is infeasible to include all the required information
in the click event.

1.1 Problem Statement
Formally, given two continuously growing log streams such

that each event in the primary log stream contains a unique
identifier, and each event in the foreign log stream contains
the identifier referring to an event in the primary log stream,
we want to join each foreign log event with the corresponding
primary log event and produce the joined event.

In relational database (RDBMS) terms, we can consider
the two log streams as two tables with a foreign-key con-

straint [7]. The primary log stream is analogous to the
primary table, and the foreign log stream corresponds to
the foreign table. The stream joining problem is essentially
an inner join between these two log streams. More specifi-
cally, the click logs mentioned above represent a foreign table
that will be joined with the primary table (i.e., query logs).
Hence, we refer to click events as foreign events, and query
events as primary events, with the query id as the key used
in the joins. The resulting events are referred to as joined
events. We use the generic terms in the rest of the paper,
but we may use clicks and queries as illustrative examples.

The main goal of Photon is to perform continuous stream
joining in real-time. We use this framework to join many
different event streams at Google.

1.2 System Challenges
While building Photon to join continuous data streams,

we face these challenges:

• Exactly-once semantics: The output produced by
Photon is used for billing advertisers, reporting rev-
enue to investors in Wall Street, and so on. Photon
must guarantee that a single click is never processed
twice, since this leads to double-charging the adver-
tisers. On the other hand, Google loses money for
every click which is not processed by Photon. In prac-
tice, to meet the business needs, we require Photon to
join 99.9999% events within a few seconds, and 100%
events within a few hours. These requirements imply
that Photon must provide: a) at-most-once semantics
at any point of time, b) near-exact semantics in real-
time, and c) exactly-once semantics eventually.

• Automatic datacenter-level fault-tolerance: Dat-
acenters regularly face different forms of outages. Some
of these are planned (such as a software update or
hardware replacement) and others are unplanned (like
a power failure or network fiber cut). Service interrup-
tions can last from a couple of minutes to a few days
or even weeks. In this environment, a system designed
to operate in a single datacenter suffers from serious
drawbacks. After a failure, manual effort is required
to setup the system in another datacenter, which can
be tedious and error-prone. Reconstructing the state
of the system can take hours, thus adversely affect-
ing the overall availability of the system. In case of
transient hiccups, it is difficult to decide whether to
initiate the expensive effort of migrating the system to
another datacenter, or try to ride out the outage, again
impacting the system availability. Some distributed
systems like GFS [14] and Bigtable [6] are excellent
at handling a limited number of machine failures. But
they are not designed to handle large-scale datacenter-
level outages, and thus developers are responsible for
designing their applications to handle outages grace-
fully. Given its direct impact on revenue, business
needs mandate Photon to be a system with a very
high degree of fault-tolerance that can automatically
handle even a datacenter-level outage, with no manual
operations and no impact on system availability.

• High scalability : Not only does Photon need to han-
dle millions of events per minute today, it must also
be able to handle the ever-increasing number of events
in the future.
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• Low latency : The output of Photon is used to com-
pute statistics for advertisers and publishers on how
their marketing campaigns are performing, detecting
invalid clicks, optimizing budget, etc. Having Photon
perform the join within a few seconds significantly im-
proves the effectiveness of these business processes.

• Unordered streams: Our primary stream (i.e. query)
contains events approximately sorted by the times-
tamps of the events. However, the foreign stream (i.e.
click) is typically not sorted by the query timestamp,
since clicks can be arbitrarily delayed relative to the
queries. This makes it very hard to apply window join
algorithms [24, 25] proposed in literature.

• Delayed primary stream : A click can only be joined
if the corresponding query event is available in the logs
datacenter. Logically, the query event always occurs
before the corresponding click. However, the servers
generating click events and query events are distributed
throughout the world (to minimize end-user latency),
and click and query logs are shipped independently to
logs datacenters. The volume of query logs is orders
of magnitude more than the volume of click logs, thus,
it is not uncommon for a subset of query logs to be
delayed relative to the corresponding click logs. Pho-
ton needs to be able to join whenever the query is
available. This makes Photon different from standard
RDBMS where a foreign key must always exist in the
primary table.

1.3 Our Contributions
The key contributions from this paper are:

• To the best of our knowledge, this is the first paper
to formulate and solve the problem of joining multiple
streams continuously under these system constraints:
exactly-once semantics, fault-tolerance at datacenter-
level, high scalability, low latency, unordered streams,
and delayed primary stream.

• We present challenges and solutions in maintaining
persistent state across geographically distributed lo-
cations. While using commodity hardware resources,
special attention is given to improving fault-tolerance
and increasing throughput.

• The solutions detailed in this paper have been fully
implemented and deployed in a live production envi-
ronment for several months. Based on this real-world
experience, we present detailed performance results,
design trade-offs, and key design lessons from our de-
ployment.

The rest of this paper is organized as follows. In sec-
tion 2, we discuss how to store the critical state of our sys-
tem in multiple datacenters while addressing all the systems
challenges discussed above. Section 3 presents the detailed
design and architecture of the Photon system. Section 4
describes our production deployment settings and measure-
ments collected from the running system. Section 5 lists
the lessons learnt from building Photon. Sections 6 and 7
describe related research, and summarize future work and
conclusions.

2. PAXOS-BASED ID REGISTRY
The simplest way to achieve fault-tolerance on commodity

hardware is through replication [22]. Extending this prin-
ciple to a large collection of machines, we can withstand
datacenter-level outage by running the same system in mul-
tiple datacenters in parallel. This approach has been applied
to almost all web search servers and ad servers at Google to
render the systems resilient to datacenter failures with no
discontinuity in the level of service. Load balancers auto-
matically redirect each user request to the closest running
server, where it is processed without the need to consult any
other server.

To provide datacenter-level fault-tolerance, Photon work-
ers in multiple datacenters will attempt to join the same
input event, but workers must coordinate their output to
guarantee that each input event is joined at-most-once. The
critical state shared between the workers consists of the set
of event ids (e.g. click id) that have already been joined
in the last N days. This state is stored in the IdRegistry.
The constant N is determined by evaluating the trade-off
between the cost of storage, and the cost of dropping events
that are delayed by more than N days. Note that the system
should always discard events delayed by N days as there is
no way to detect duplicates among such events, and our goal
is to avoid double-charging the advertisers.

Before writing a joined event to output, each worker veri-
fies whether the event id already exists in the IdRegistry. If
the identifier exists, the worker skips processing the event.
Otherwise, the worker attempts to write the event id into
the IdRegistry. The worker must successfully insert the
event id into the IdRegistry before it can write the joined
event to output the logs. The IdRegistry must guarantee
that once an event id is written to it, subsequent requests
to write the same identifier will fail.

The key requirements for the IdRegistry can be summa-
rized as follows:

• Fault-tolerance at datacenter-level:
The IdRegistry must be synchronously replicated to
multiple datacenters so that its service is always avail-
able even when there is an outage in one or more data-
centers. The maximum number of simultaneously tol-
erated datacenter outages should be configurable.

• Read-modify-write transactions:
Workers must be able to perform conditional commits
such as writing an event id in the IdRegistry only if it
does not exist in the IdRegistry yet.

Given the requirements of fault-tolerance and strong con-
sistency, we implemented the IdRegistry using Paxos [18].
Paxos is a consensus algorithm executed by a set of replicas
(e.g workers), to agree on a single value in the presence of
failures. The algorithm guarantees synchronous replication
of submitted values across the majority of replicas.

Figure 2 shows the high-level design of Photon to illus-
trate the use of the IdRegistry. We deploy the same Photon
pipeline in multiple datacenters. Each pipeline processes all
the events (e.g., clicks) present in the closest logs datacen-
ter — at Google, logs are written to multiple geographically
distributed datacenters. Each pipeline keeps retrying until
the event is joined (i.e., written to the IdRegistry), which
guarantees that each event is processed at least once by the
system with minimal loss. To ensure that each event is pro-
cessed at-most-once, the IdRegistry stores identifiers for the
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Figure 2: Photon pipeline running independently in two dat-
acenters with the IdRegistry storing the global state syn-
chronously in multiple datacenters.

events (e.g., click id) that have been joined in the last N
days. Since the global list of already joined events is stored
in the IdRegistry, the Photon pipelines in multiple datacen-
ters can work independently without directly communicat-
ing with each other.

2.1 IdRegistry Server Architecture
To implement an efficient IdRegistry, we use an in-memory

key-value store that is consistently replicated across multi-
ple datacenters using Paxos. By storing the id of an event
as a key, the IdRegistry can quickly identify if an event is
already joined or not. If the event id already exists, it can
fail the worker that tries to commit the same event id. If the
event id does not exist, the IdRegistry does a Paxos commit
to insert the new key with the condition that the key is still
absent (i.e., using a read-modify-write transaction).

The IdRegistry is built on top of PaxosDB [4], a fault tol-
erant key-value in-memory store that uses the Paxos consen-
sus algorithm. The PaxosDB implementation executes the
consensus algorithm repeatedly for every incoming value to
guarantee that each replica has access to the same sequence
of submitted values. Each replica constructs its in-memory
key-value store by processing the same sequence of submit-
ted values. In other words, the in-memory key-value store
at each caught-up replica is consistent. PaxosDB also guar-
antees that at most one of the group members will be the
master at any given instant of time. Only the master can
submit updates to Paxos. If the master dies, PaxosDB au-
tomatically elects a new master.

Figure 3 shows the architecture of a single IdRegistry
server. The interaction between Photon workers and the
IdRegistry follows a client-server model. Photon workers
take the role of clients by sending two kinds of requests: (1)
a lookup request to check if an event id has already been
committed; and (2) a conditional commit request to insert
an event id if and only if it is not present. The Remote Pro-
cedure Call (RPC) handler threads in the IdRegistry server
accept incoming RPCs from clients. The handler is very
lightweight in that it simply adds the input requests into an
in-memory queue. A background thread dequeues requests,
performs transactions on PaxosDB, and executes RPC call-
backs which send responses to the client.

2.2 Scalable IdRegistry
To ensure that the outage of one relatively large geo-

graphical region does not affect the IdRegistry, we place Id-
Registry replicas in different geographical regions such that
replicas from more than one geographical region have to
agree before a transaction can be committed into PaxosDB.

RPC handler 
thread 1

RPC handler 
thread 2

RPC handler 
thread N. . . . .

.

.

.

.

Producers

In-memory queue 
of client requests 

for server-side 
batching

IdRegistry 
Server

Registry thread
Consumer

PaxosDB (fault-tolerant key-value store)

Fault-tolerant log

IdRegistry Clients

Paxos 
protocol

RPC

Log

File I/O

Figure 3: Architecture of a single IdRegistry server shard.

The downside of requiring such isolation zones is that the
throughput of the IdRegistry will be limited by network la-
tency. Based on typical network statistics, the round-trip-
time between different geographical regions (such as east
and west coasts of the United States) can be over 100 mil-
liseconds. This would limit the throughput of Paxos to less
than 10 transactions per second, which is orders of magni-
tude fewer than our requirements—we need to process (both
read and write) tens of thousands of events (i.e., key com-
mits) per second.

Although each client may be able to bundle multiple key
commits into one RPC request, when there are a large num-
ber of clients, client-side batching is not always effective. We
describe two mechanisms to achieve high scalability with the
IdRegistry: server-side batching and sharding.

2.2.1 Server-side Batching
IdRegistry replicas are located in different geographical re-

gions, hence a Paxos commit can take up to 100 milliseconds
due to the round-trip latency. The latency mainly comes
from the inherent network topology and not due to the
amount of data we are sending around. In fact, each Paxos
commit only needs to send a small amount of event-level
data. Based on this observation, we implemented server-
side batching to improve the throughput of each IdRegistry
server. The key idea is to combine multiple event-level com-
mits into one bigger commit. This is similar to the classic
database technique of group commit [23].

As shown in Figure 3, the IdRegistry server has a single
background thread (called registry thread) that dequeues
client RPC requests, translates them to PaxosDB transac-
tions, and sends the RPC response. The registry thread
dequeues multiple requests and batches them into a single
PaxosDB transaction.

Within a batch of requests, the registry thread performs
application-level conflict resolution. Consider the case where
multiple requests try to insert the same event id into the Id-
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Registry. If the event id does not already exist, the registry
thread will insert the event id into PaxosDB, and respond
with success to one client which marks the event as joined;
other clients will receive a failure message which must drop
the event. We take advantage of multi-row transactions
in PaxosDB (updating multiple key/value pairs atomically
with condition checks) to implement this behavior.

Assuming the size of an RPC for one event id is less than
100 bytes, we can easily batch thousands of RPC requests
into a single PaxosDB transaction. We do not enforce a
minimum batch size, hence there is no tradeoff on latency.

2.2.2 Sharding
Although server-side batching improves the throughput

of the IdRegistry significantly, it still fails to meet our re-
quirements. The motivation for sharding comes from this
observation: in the IdRegistry, events with different ids are
processed independently of each other. To take advantage of
the event id independence, we partition the event id space
handled by the IdRegistry into disjoint shards such that
event ids from separate shards are managed by separate
IdRegistry servers. The IdRegistry servers run in parallel
and can accept requests for event ids deterministically as-
signed to them. Figure 4 shows client requests being sent to
different server shards, depending on their event ids. The
shard number is computed using a deterministic hash of the
event id, modulo the total number of shards. Note that each
Photon worker can still process events from multiple shards;
it can send RPCs to multiple IdRegistry server shards in par-
allel. This sharding approach ensures high scalability, and
allows the IdRegistry to achieve the throughput we need.

Dynamically changing the number of shards
As the number of logged events increases, we need to add
more shards to the IdRegistry. However, while adding more
shards, simply changing the number of shards in the modulo
can violate the deterministic property of the hash, and that
can result in the same event id to be mapped to a different
shard number after increasing the shards. This is unaccept-
able because it will lead to duplicate events in the output
logs. Thus, we need a deterministic mapping mechanism
that allows dynamic changes of the number of shards while
preserving mapping of existing event ids across shards — the
mapping mechanism must support backward compatibility.

To solve the above problem, we use a timestamp-based
sharding configuration, which defines the number of shards
to use at any given instance of time. We associate a times-
tamp with an event id, and require that the clock skew of
two timestamps is bounded by S seconds (using a global
TrueTime [8] server, see section 3.1 for details). If the
current time is t1, we choose a future time t2 > t1 + S
and specify that events with timestamp less than t2 should
use hash(event id) modulo the number of shards before in-
creasing the shards, while the events with timestamp >= t2
should use hash(event id) modulo the number of shards after
increasing the shards. This guarantees that we will deter-
ministically compute the shard number for a given event id.

As an example, if the IdRegistry has 100 shards, the
sharding configuration will be:

start time : 0, end time :∞, number of shards : 100
If we increase the number of shards from 100 to 120, cur-

rent time is 5000, skew is 200, our sharding configuration
will change to:

JoinerEventStore IdRegistry

Joined Click 
Logs

Query Logs Dispatcher

Click Logs

Retry

3. Lookup query

2. Send click

4. Insert click_id

1. Lookup click_id

5. Output joined click

Figure 5: Components of pipeline in a single datacenter

start time : 0, end time : 5200, number of shards : 100
start time : 5200, end time :∞, number of shards : 120
We store the sharding configuration inside PaxosDB to

ensure that all the IdRegistry server shards and clients share
the same configuration. Note that number of shards can be
decreased in a similar way.

2.3 Deleting Old Keys
We can only keep a finite number of event ids in the Id-

Registry. Since each event id is timestamped, the IdReg-
istry can delete ids older than N days. We refer to N as
garbage collection threshold.

A background thread in each IdRegistry server periodi-
cally scans the old keys, and deletes them from the IdReg-
istry if the timestamp of these keys is older than the garbage
collection threshold. The garbage collection thread runs
only at the master IdRegistry replica. To guard against time
differences between the different IdRegistry servers when the
master changes, we store the garbage collection boundary
timestamp in the IdRegistry servers, one timestamp for each
IdRegistry server shard. This boundary timestamp is peri-
odically updated by another thread using TrueTime [8] and
we make sure it never goes back. The garbage collection
thread only removes event id entries whose timestamps are
smaller than the recorded boundary timestamp.

If a client tries to insert or lookup an event older than the
boundary timestamp, the IdRegistry sends failure response
with a special error code, and the client skips processing the
event.

3. SINGLE DATACENTER PIPELINE
As mentioned in Section 2, we deploy the same Photon

pipeline in multiple datacenters. We now describe the ar-
chitecture of a pipeline at a single datacenter, as shown in
Figure 5. In the following examples, we use click and query
logs as inputs, but the architecture applies to any similar
event streams.

There are three major components in a single datacenter
pipeline: the dispatcher to read clicks continuously and feed
them to the joiner; the EventStore to provide efficient lookup
for queries; and the joiner to find the corresponding query

581



Client 1

Client 2

Lookup/Insert

f(event i) = shard x Pa
xo

sD
b 

(M
as

te
r)

Pa
xo

sR
eg

is
try

 
La

ye
r

PaxosDb

PaxosRegistry 
Layer

PaxosDb

PaxosRegistry 

Layer

PaxosD
b

PaxosR
egistry 

Layer

PaxosDb

IdRegistry 
Server

Shard x

Pa
xo

sD
b 

(M
as

te
r)

Id
R

eg
is

try
 L

ay
er

PaxosDb

PaxosRegistry 
Layer

PaxosDb

PaxosRegistry 

Layer

PaxosD
b

PaxosR
egistry 

Layer

PaxosDb

IdRegistry 
Server

Shard y

Paxos

IdRegistry 
Server

Paxos
IdRegistry 

Server

Paxos

IdR
egistry 

ServerPa
xo

s 
(M

as
te

r)

Id
R

eg
is

try
 

Se
rv

er

Paxos

IdRegistry 
Server

Shard z

Lookup/Insert

f(event k) = shard z

Lookup/Insert

f(event j) = shard y

Figure 4: Sharding the IdRegistry to scale throughput

for a click using EventStore, deduplicate using the IdReg-
istry, and then generate joined output logs.

The sequence of steps to join a click with its corresponding
query into a joined event are:

1. The dispatcher consumes the click events from the logs
as they come in, and issues a lookup in the IdReg-
istry. If the click id already exists in the IdRegistry,
the dispatcher assumes that the click has already been
joined and skips processing the click.

2. If the click id does not exist in the IdRegistry, the dis-
patcher sends the click to the joiner asynchronously
and waits for the response. If the joiner fails to join
the click (say, due to a network problem, or because of
a missing query event), the dispatcher will keep retry-
ing by sending the click to another joiner instance after
some backoff period. This guarantees at-least-once se-
mantics with minimum losses.

3. The joiner extracts query id from the click and does
a lookup in the EventStore to find the corresponding
query.

4. If the query is not found, the joiner sends a failure
response to the dispatcher so that it can retry. If the
query is found, the joiner tries to register the click id
into the IdRegistry.

5. If the click id already exists in the IdRegistry, the
joiner assumes that the click has already been joined.
If the joiner is able to register click id into the IdReg-
istry, the joiner stores information from the query in
the click and writes the event to the joined click logs.

Note that the above algorithm is susceptible to losses if
the joiner successfully registers the click id to the IdRegistry
but fails to write to output logs. Later, we present simple
techniques to minimize the loss in Section 3.3.2, and also dis-
cuss procedures to recover missing output in Section 3.3.3.

Figure 6 depicts the same Photon pipeline running in-
dependently in multiple datacenters, with the global state
maintained by the IdRegistry. The rest of this section de-
scribes in detail the basic architecture, the design of each
component and the technical challenges involved.

JoinerEventStore IdRegistry

Joined Click Logs

Query Logs

Dispatcher

Click Logs

Joiner EventStore

Joined Click Logs

Query Logs

Dispatcher

Click Logs

Photon pipeline in DC 1 Photon pipeline in DC 2

Figure 6: Components of pipelines running independently
in two datacenters with the global state in the IdRegistry

3.1 Unique Event_Id Generation
Given the critical nature of the data they deal with, servers

write all events (e.g. query and click) to a persistent storage
like GFS [14] and also replicate them to multiple logs data-
centers. When an event is recorded by a server, it is given
a globally unique identifier (such as query id or click id as
discussed before).

Production deployments consist of thousands of servers
across the world that log all such events, a scale at which
quick generation of event ids is critical for a fast response
to user actions. Independent generation of event ids is a
prerequisite to satisfy this requirement.

An event id consists of three fields: ServerIP, ProcessID
and Timestamp. These fields uniquely identify the server
and the process on that server that generated an event, as
well as the time the event was generated. Each server gen-
erates monotonically increasing timestamps for every event
based on the current time. All the events in a log file
are approximately sorted by their timestamp since multiple
threads in the same process independently generate event ids.
This encoding of the location of an event, even if not entirely
precise, plays a crucial role in finding the event in a large
set of log files; this is discussed further in section 3.4.

Note that generating the timestamp for each event id on
each server locally may be adversely impacted by clock skew
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on the local machine. To limit the skew to S seconds, we use
the TrueTime API [8] that provides clock synchronization
primitives. By using GPS and atomic clocks, the primitives
guarantee an upper bound on the clock uncertainty. Each
server generating event ids executes a background thread
that sends an RPC to one of the TrueTime servers every S
seconds to synchronize the local clock.

3.2 Dispatcher: Ensuring At-Least-Once Se-
mantics

The input to Photon consists of events that are written to
log files. Those files continuously grow in size. Events can
overflow to new files when log files reach a maximum size.
At any given time, a Photon instance has to track several
thousands of growing log files. Thus, the main objectives of
the dispatcher are: monitor the growth of log files contin-
uously, read new events in a scalable and timely way, and
dispatch them to the joiner with minimal latency.

The dispatcher periodically scans the directory where log
files are located to identify new files and check the growth
of existing files. The dispatcher stores a per-file state in the
local GFS cell. This state includes the files encountered by
the dispatcher, and the next byte offset to read from each
file. To achieve a high degree of scalability, the dispatcher
uses many worker processes to concurrently process the log
files. With the persistent state, the processing information
is preserved across restarts of workers. All the concurrent
workers share the persistent file state locally so that they
can work on different parts of log files without stepping onto
each other.

Before sending events to the joiner, the dispatcher looks
up each event id in IdRegistry to make sure the event has
not been joined. This optimization technique significantly
improved performance as observed from the measured re-
sults (Section 4).

3.2.1 Retry Logic
Note that a click can only be joined if the corresponding

query event is available in the logs datacenter. As mentioned
in Section 1, it is not uncommon for a subset of query logs
to be delayed relative to the corresponding click logs. In
such cases, a joiner will not be able to process click events
until corresponding query events have arrived in the logs
datacenter.

After reading a click event from a log file, the dispatcher
sends an RPC to the joiner, and asynchronously waits for the
response. When the dispatcher fails to receive a successful
response from the joiner for a click, it saves the click in
local GFS and retries it later. This guarantees at-least-once
semantics for every event with minimum losses. To limit
the rate of retries in case of repeated failures (e.g. due to a
network congestion), the dispatcher employs an exponential
backoff algorithm. If the joiner still fails to join a click after
a certain number of retries, and the click is older than a
threshold, the joiner will mark the click as unjoinable and
return success to the dispatcher. In practice, unjoinable
events represent a very small fraction of all the events.

3.2.2 Handling Datacenter Outages
The file state maintained by the dispatcher is local to the

datacenter where it runs. If the local GFS datacenter suf-
fers an outage, the dispatcher will be stalled. This does not
impact the end-to-end availability of the Photon system be-

cause we have at least two copies of the Photon pipeline in
different datacenters each of which continues processing in-
dependent of the other. Once the datacenter that suffered
the outage recovers to a healthy state, if the persistent state
is intact, the dispatcher can resume where it left off and
starts by processing the backlog. Since majority of back-
log events would have been processed by the pipeline in the
other datacenter, these events will already exist in the Id-
Registry, and the dispatcher will catch-up quickly from the
backlog to start processing recent events. We use appro-
priate throttling of outstanding requests to the IdRegistry
to avoid overloading it, and ensure adequate performance
during catch-up.

In rare cases where the dispatcher file state cannot be
recovered after a datacenter outage, we could manually ini-
tialize it to ignore the backlog and immediately start pro-
cessing latest events from the current time, assuming the
pipeline in the other datacenter has been operating without
interruptions.

3.3 Joiner
The joiner is implemented as a stateless RPC server that

accepts requests from the dispatcher and coordinates with
the EventStore and the IdRegistry to perform the join as
well as any specific business logic.

3.3.1 Processing Logic
After accepting an incoming RPC from the dispatcher, the

joiner extracts the click id and query id from the click event.
Then the joiner sends an asynchronous RPC to EventStore
to lookup the query for the corresponding query id. If the
EventStore cannot find the query, the joiner returns an error
code to the dispatcher, so that the dispatcher can retry the
request after some backoff time. When a joiner receives an
event from the dispatcher, it first checks if there are already
too many requests in flight. If so, the request will be rejected
and the dispatcher will have to retry it later. Such throttling
is essential to maintain the smooth flow of processing of
events through the joiner.

A successful lookup to the EventStore returns the query
corresponding to the click. As the next step in process-
ing, the query and the click are passed to a library called
the adapter. Usually, the adapter simply combines the two
events into one joined event and passes the result back to
the joiner. However, it may also apply application-specific
business logic for filtering, or it can force the joiner to skip
the click based on certain properties of the query. Isolating
such business logic to the adapter adds flexibility to Photon,
so that any two realtime data streams can be joined without
modifying the core infrastructure.

After receiving the joined click event from the adapter
library, the joiner will attempt to register the click id into
the IdRegistry using an asynchronous RPC. If successful,
the joiner will then proceed to append the joined click to
the output log, stored in the logs datacenters. Since the Id-
Registry guarantees at-most-once semantics, for any given
click id at most one joiner will be able to successfully register
it, preventing duplicate joined clicks to occur in the output
logs.

If the joiner is unable to successfully register the click id
into the IdRegistry, it will drop the event. We consider this
as a wasted join. In our production deployment, since we
have dispatchers running in at least two datacenters, Photon
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reads each click at least twice. However, we minimize the
wasted joins in the system by having the dispatcher do a
lookup in the IdRegistry before sending the click to a joiner,
and dropping the event if it is already present.

In contrast to the dispatcher, the joiner does not use a
persistent storage to maintain any state. In addition, all
joiners are functionally equivalent so we can use RPC-based
load balancing to uniformly distribute the input requests
from the dispatchers amongst all the joiners.

3.3.2 Minimizing Joiner Losses
The joiner writes an event to the output log only after

successfully writing the event id to the IdRegistry. Once an
event id is registered into the IdRegistry, another request to
register the same event id will fail. The IdRegistry guaran-
tees this property. However, the lack of transactional atom-
icity between writing the output and registering the event id
can lead to problems as illustrated below while processing
click events.

The problem arises when the IdRegistry successfully regis-
ters the click id but the joiner times out or the RPC response
to the register request gets lost in the network. Subsequent
register requests from the same joiner will fail due to the
existence of the click id and the click will never be joined
as a result. In our early test deployment, we observed a
noticeable number of clicks missing from the joined output
logs due to this reason.

To solve this problem, when a joiner commits a click id
to the IdRegistry, it also sends a globally unique token to
the IdRegistry (consisting of the joiner server address, the
joiner process identifier, and a timestamp) along with the
click id. The IdRegistry stores this information about the
joiner as the value associated with the click id. If the joiner
does not receive response from IdRegistry within a certain
timeout interval, it retries the request with the exact same
token.

When the IdRegistry receives a request to register an ex-
isting click id, it checks if the value for the click id stored
inside IdRegistry matches with the token in the request. If
they match, it means the request is a retry from the same
joiner that registered this click id last time but did not re-
ceive the RPC response. In such a case, the IdRegistry re-
turns success to the joiner, which will be able to output the
joined click. This mechanism enables us to gracefully han-
dle joiner retries and greatly reduce the number of missing
clicks. In our production deployment of Photon, this tech-
nique reduced the number of missing clicks in joined output
logs by two orders of magnitude.

Another potential source of event loss is due to unexpected
crash of the joiner workers. Once a joiner sends an RPC to
the IdRegistry, the latter may successfully register it into
the IdRegistry but the joiner may crash and restart before
receiving the acknowledgment and writing the joined click to
output logs. Since Photon workers run on commodity hard-
ware, such intermittent failures are inevitable, especially on
large scale. After such a missed write, no other joiner can
commit the event to output logs because the token kept in
the IdRegistry does not belong to any joiner. We minimize
the loss by enforcing an upper limit on the number of out-
standing RPCs from any joiner to the IdRegistry. Once the
joiner reaches the limit, it throttles the incoming requests
from the dispatchers.

3.3.3 Verification and Recovery
As discussed above, Photon can miss events in the out-

put joined logs due to absence of transactional atomicity
between recording the event in the IdRegistry and record-
ing in the output joined logs. Example scenarios that can
surface this situation are: (a) the joiner crashes or restarts
after writing to the IdRegistry, (b) logs storage loses data,
(c) a bug in the code manifests itself after committing to the
IdRegistry.

In normal conditions, observed losses represent a very
small fraction – less than 0.0001 percent – of the total vol-
ume of joinable events. Consequently, the recovery scheme
presented below is more useful to act as an insurance for rare
cases such as bugs or catastrophic, uncontrollable failures.

Photon provides a verification system which takes each
event in the input and checks its presence in the output. If
an event in the IdRegistry is not present in the output log, we
read the server address and process identifier from the token
in the IdRegistry corresponding to the missing event, and
identify the joiner. If the joiner had crashed or restarted, the
event can be safely reprocessed without causing duplicates.
To recover the event, we delete the missing event from the
IdRegistry, and re-inject the event back into the dispatcher.

The recovery system only needs to read the tokens of
events missing in the output logs. Hence, we can opti-
mize storage cost of the IdRegistry by removing tokens of
all joined events that have been successfully committed to
the output logs. We scan the output joined logs continu-
ously and clear the corresponding values from the IdReg-
istry. Thus the IdRegistry will only store tokens for lost
events over a longer period of time, until they are recovered.

3.4 EventStore
EventStore is a service that takes a query id as input and

returns the corresponding query event. One simple approach
to implement the lookup is to sequentially read the query
logs and store the mapping from query id to the log file name
and byte offset where the query event is located. The map-
ping can be saved in a distributed hash table (e.g. BigTable
[6]).

We built two implementations of EventStore based on the
characteristics of our data: CacheEventStore, that exploits
the temporal locality of events (for example, most of the
ads are clicked shortly after the search query), and LogsEv-
entStore, that exploits the fact that queries in a log file are
approximately sorted by the timestamp of the events (see
Section 3.1 for details).

3.4.1 CacheEventStore
CacheEventStore is an in-memory cache which provides

high throughput and low-latency lookups for recent queries.
It is a distributed key-value store similar to Memcached [12],
where the key is the query id and the value is the full query
event. CacheEventStore is sharded by the hash of query id
and we use consistent hashing [17] to support smooth transi-
tions during resharding. CacheEventStore is populated by a
simple reader process that reads query logs sequentially and
stores them in memory. CacheEventStore can keep several
minutes worth of query events in memory. When it is full,
the least recently used query events are evicted. Many of
the events are never accessed because the number of foreign
events is much smaller than the primary events stored in
CacheEventStore. CacheEventStore is a best-effort system:
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in case of a cache miss, the query lookup is forwarded to
the LogsEventStore. It does not employ any kind of per-
sistence mechanism and is there purely to optimize latency
of primary event lookups, and save disk seeks by avoiding
requests to the LogsEventStore: even though in order to
populate it we end up reading all of primary logs, it is all in
sequential reads and we avoid expensive random file access
required by the LogsEventStore.

3.4.2 LogsEventStore
LogsEventStore serves requests that are not satisfied by

the CacheEventStore. Normally such requests constitute
only a small fraction (about 10%) of all lookups. But Log-
sEventStore may need to serve 100% of lookups during catch-
up to process old logs, or when the CacheEventStore is hav-
ing problems.

LogsEventStore serves requests by consulting a persistent
log file map to determine the approximate position of an
event in the primary log file. From that position, it reads
a small amount of data sequentially to find the exact event.
Log file map is a collection of entries that map an event id
to a particular offset within a log file where that event is
located. These entries are emitted at regular intervals (ev-
ery W seconds or M bytes) by the event reader as it reads
primary log files to populate the CacheEventStore. En-
tries are stored in BigTable [6], which implements a dis-
tributed ordered map that allows efficient key range scans.
To find the log file name and offset that is close to the event,
the LogsEventStore scans a range of the file map BigTable
key space beginning with ServerIP:ProcessId:(Timestamp-
W) and ending just after ServerIP:ProcessId:Timestamp. It
is not necessary for either of the keys to exist in the table,
but as long as the primary event reader has been configured
to emit map entries every W seconds, the result will con-
tain at least one map entry which will put the reader within
M bytes of the target event. By adjusting M and W we
find the desired balance between the map table size and the
amount of I/O required for each lookup.

4. PERFORMANCE RESULTS
Photon has been deployed in production for more than one

year, and it has proven to be significantly more reliable than
our previous singly-homed system. During this period, Pho-
ton has survived multiple planned and unplanned outages of
datacenters without impacting the end-to-end latency. The
physical placement of pipelines and the IdRegistry replicas
is as follows:

• The IdRegistry replicas are deployed in five datacen-
ters located in three geographical regions across the
United States. These geographical regions are up to
100ms apart in round-trip latency. Each region has
at most two IdRegistry replicas. Since we configured
the IdRegistry to commit as long as three out of five
replicas reach consensus, this setup ensures that we
can cope with the complete outage of one region (as
in case of a major natural disaster) without causing
disturbance to production.

• All the other components in the pipelines (including
dispatchers, joiners, etc.) are deployed in two geo-
graphically distant regions on the east and west coast
of the United States. These two regions also have close
physical proximity with logs datacenters.

The following statistics highlight the scale and efficiency
of Photon:

• Photon produces billions of joined events per day. Dur-
ing the peak periods, Photon can scale up to millions
of events per minute.

• Each day, Photon consumes terabytes of foreign logs
(e.g. clicks), and tens of terabytes of primary logs (e.g.
queries).

• More than a thousand IdRegistry shards run in each
datacenter.

• Each datacenter employs thousands of dispatchers and
joiners, and hundreds of CacheEventStore and LogsEv-
entStore workers. These components are replicated in
two or more datacenters globally.

To satisfy the mission-critical nature of the data, Photon
pipelines monitor a wide variety of performance metrics. Be-
low, we present some performance numbers from our real-
world deployment. Note that the time range and granularity
in some of the following graphs are not specified for business
confidentiality reasons.

4.1 End-to-end Latency

Figure 7: End-to-end latency of Photon

We define the end-to-end latency of each joined event as
follows: when the joiner is ready to output a joined event, we
export its latency as the current time minus the time when
the event was logged — which is obtained from the event
id’s timestamp. The end-to-end 90th-percentile latency of
Photon is computed based on the latency of each of the
joined events.

Figure 7 plots the end-to-end 90th-percentile joining la-
tency over a 30-day period. This graph shows that 90% of
the events were joined in less than 7 seconds. This low la-
tency is a direct result of the fact that the multiple stages
in the pipeline communicate with each other through RPCs
without the need to write intermediate data to disk storage
(see Section 3).

One potential performance bottleneck arises from the time
spent in disk seeks by LogsEventStore. With in-memory
caching (i.e., CacheEventStore), Photon reduces the number
of disk-based lookups significantly. Figure 8 shows the cache
hit ratio for the CacheEventStore. The graph shows that
most lookups are successfully handled by CacheEventStore
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Figure 8: Photon EventStore lookups in a single datacenter

and only a small volume of traffic is processed by the slower
LogsEventStore. Note that the volume of traffic to LogsEv-
entStore stays relatively flat compared to the traffic growth
- this means that we get even higher cache hit rate when the
traffic increases.

4.2 Effect of Datacenter Outages

Figure 9: Photon withstanding a real datacenter disaster

Figure 9 shows the numbers of joined events produced
by production pipelines in two separate datacenters over a
period of time. When both datacenters are healthy, each
processes half of the total events. However, when one of
the datacenters suffers from a disaster, the other datacenter
automatically starts handling the complete traffic without
any manual intervention.

Similarly, when one of the IdRegistry datacenters goes
down, the end-to-end performance of Photon is not im-
pacted: since we are running five PaxosDB replicas in our
setup, it lets us tolerate up to two datacenter-level outages.

4.3 IdRegistry Performance
In Section 2.2, we described how the IdRegistry batches

multiple client requests into a single PaxosDB transaction to
increase the throughput. Figure 10 shows the effectiveness of
server-side batching at a single IdRegistry shard. This par-
ticular shard receives hundreds of client write requests per
second. However, after batching, the number of PaxosDB
transactions is only 6 to 12 per second.

Figure 10: Effectiveness of server-side batching in the Id-
Registry

Figure 11: IdRegistry dynamic time-based upsharding

Figure 11 shows the effect of the IdRegistry dynamic re-
sharding based on timestamp. Before upsharding, the size
(= number of keys * bytes per key) of shard 0 was around
1.6GB. We tripled the number of shards and made it effec-
tive starting at Fri 12:00. This caused the size of shard 0 to
drop and the size of newly added shard 90 to increase, until
they both converged to 500MB. The IdRegistry garbage-
collects event ids that are older than 3 days, which explains
why the old and new shards converge to the same size after
3 days.

4.4 Resource Efficiency
As mentioned in Section 2, we are able to tolerate data-

center-level failure by running independent pipelines in two
datacenters, which clearly leads to some redundancy in the
performed work. Recall from Section 3.2 that the dis-
patcher uses IdRegistry lookups to reduce the number of
wasted joins.

Figure 12 shows that even though we read all events in
both the datacenters, the optimization works very well in
practice: less than 5% of the events are processed by both
joiners.

This lookup technique also reduces the dispatcher catch-
up time required after an extended downtime.

Figure 13 shows the dispatcher in one datacenter coming
back after a 2-day downtime, and benefiting from the op-
timization. As soon as it was brought up, the dispatcher
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Figure 12: Wasted joins minimized by the dispatcher per-
forming an IdRegistry lookup before sending events to the
joiner

Figure 13: Dispatcher in one datacenter catching up after
downtime

started to reprocess all the events of the last two days. Be-
cause a majority of these events had already been processed
by the other healthy datacenter, the dispatcher caught up
very quickly from the backlog.

5. DESIGN LESSONS
While designing and implementing many versions of the

joining system, several design principles and lessons have
emerged. Our experience is summarized below.

• To build a scalable distributed system based on Paxos,
we need to minimize the critical state managed by
the system, and ideally restrict it to meta-data only.
Writing data through Paxos is very expensive because
the data needs to be replicated to multiple datacen-
ters across wide-area network in a synchronous fash-
ion. Note that if the size of data is relatively small, it
may be feasible to store the complete data (instead of
meta-data) in Paxos as described in Spanner [8].

• In Photon, IdRegistry is the central point of commu-
nication among multiple pipelines maintaining consis-
tent global state, and could turn into a bottleneck that
limits scalability. We ensured that dynamic resharding
of a running system is a first-class citizen in the design
to avoid this limitation.

• RPC communication among workers helps in reduc-
ing the end-to-end latency, compared to using disk as
the means of data communication. But using RPC re-
quires application-level check for lost RPCs and retries
to satisfy reliability guarantees. Special care should
be exercised in throttling asynchronous RPCs to avoid
overloading various servers such as the IdRegistry. Des-
ignating a single job (in this case, Dispatcher) to be
responsible for retries facilitated the implementation
of all other jobs to communicate via RPCs.

• It is better to isolate the specialized work to a separate
pool of workers in order to make the system more scal-
able (in other words, divide and conquer). In our pre-
vious joining system, the work of the EventStore and
the joiner was performed by the same component, and
we did not have a CacheEventStore. Since LogsEv-
entStore requires opening files and doing disk seeks,
workers had affinity to only process the clicks where
the corresponding query may be in the same physical
file. This limited the scalability of the system. For a
given category of work, designing each worker to be
capable of operating on any particular piece of input
makes the system more scalable.

• Some stream processing systems [26] recommend group-
ing individual events into a bigger batch. This works
well only if all the events in a batch can be processed at
the same time. For our case, it is very common to see
a click event before its corresponding query event. If
we group multiple clicks into a batch, then the whole
batch cannot be committed until the corresponding
queries are available. Hence, system designers need to
make a careful decision on whether to batch or not.

6. RELATED WORK
There is a rich body of work on join algorithms in par-

allel and distributed RDBMS [19]. Over the last decade,
researchers have also proposed techniques to join multiple
streams continuously [1, 3, 5, 13, 15, 20, 24–26]. To the best
of our knowledge, none of the existing literature addresses
this problem under the following system constraints - even-
tually exactly-once semantics, fault-tolerance at datacenter-
level, high scalability, low latency, unordered streams, de-
layed primary streams. Teubner et al. [24] used mod-
ern multi-core systems as opposed to commodity hardware.
Blanan et al. [3] used MapReduce [10] to join streams, which
is more suitable for a batch system rather than a continu-
ously running one. Rao et al. [21] proposed using Paxos to
maintain consistent database replication while being fault-
tolerant. Unlike Photon, they store all Paxos replicas within
a single datacenter, and hence are not impervious to dat-
acenter disasters. Zaharia et al. [26] proposed breaking
continuous streams into discrete units, which is not accept-
able for Photon since we may see some clicks in a discrete
stream before their corresponding query has arrived at the
logs datacenter. Das et al. [9] proposed approximate joins
as opposed to exact ones. Most of the existing join algo-
rithms also assume that events in both input streams are
sorted by the shared identifier, hence, they operate within
a window to join [16]. In Photon, click can be arbitrarily
delayed relative to its query.

Spanner [8], Megastore [2] and DynamoDB [11] provide
consistent replication across datacenters as a storage service.
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Both Spanner and Megastore do not currently allow appli-
cations to perform server-side batching of multiple client re-
quests into a single Paxos commit.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described our experience in building

and deploying a distributed stateful stream joining system
that can withstand datacenter-level outages. The dispatcher
keeps sending an event to the joiner until the IdRegistry
server registers the event, ensuring at-least-once semantics.
The IdRegistry is the heart of the system, as it ensures that
no event is present in the output more than once. The dis-
patcher and the IdRegistry together guarantee that the only
case where an event is lost is when the system commits
the event to the IdRegistry, but fails to write the joined
event to output. We presented an off-line mechanism to re-
cover such unlikely losses. There is no single point of failure
in the system, and all the components scale linearly with
increased volume of traffic, including the scaling of criti-
cal state through resharding of IdRegistry. Asynchronous
RPC-based communication among components reduces the
latency, and helps achieve the goal of timely availability of
rich statistical data.

We are working to extend Photon to join multiple con-
tinuous streams and scale sub-linearly. To reduce the end-
to-end latency even further, we plan to have another fast,
best-effort RPC path where the servers that generate query
and click events directly send RPCs to the joiners (instead
of the dispatcher waiting for these events to be copied to
the logs datacenter). This will allow majority of events to
be processed by the fast path, leaving the current logs-based
system to process the missing events.
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