
Continuous CloudScale
Query Optimization and Processing

Nicolas Bruno
Microsoft Corp.

nicolasb@microsoft.com

Sapna Jain
IIT Bombay

sapnakjain@gmail.com

Jingren Zhou
Microsoft Corp.

jrzhou@microsoft.com

ABSTRACT
Massive data analysis in cloud-scale data centers plays a
crucial role in making critical business decisions. High-
level scripting languages free developers from understanding
various system trade-offs, but introduce new challenges for
query optimization. One key optimization challenge is miss-
ing accurate data statistics, typically due to massive data
volumes and their distributed nature, complex computation
logic, and frequent usage of user-defined functions. In this
paper we propose novel techniques to adapt query processing
in the Scope system, the cloud-scale computation environ-
ment in Microsoft Online Services. We continuously monitor
query execution, collect actual runtime statistics, and adapt
parallel execution plans as the query executes. We discuss
similarities and differences between our approach and al-
ternatives proposed in the context of traditional centralized
systems. Experiments on large-scale Scope production clus-
ters show that the proposed techniques systematically solve
the challenge of missing/inaccurate data statistics, detect
and resolve partition skew and plan structure, and improve
query latency by a few folds for real workloads. Although
we focus on optimizing high-level languages, the same ideas
are also applicable for MapReduce systems.

1. INTRODUCTION
An increasing number of companies rely on the results

of massive data computation for critical business decisions.
Such analysis is crucial to improve service quality, support
novel features, and detect changes in patterns over time.
Usually the scale of the data volumes to be stored and pro-
cessed is so large that traditional, centralized database sys-
tem solutions are no longer practical. Several companies
have thus developed distributed data storage and process-
ing systems on large clusters of thousands of shared-nothing
commodity servers [2, 26, 10, 13].
In the MapReduce model, developers provide map and

reduce functions in procedural languages like Java, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 21508097/13/09... $ 10.00.

perform data transformation and aggregation. The underly-
ing runtime system achieves parallelism by partitioning the
data and processing each partition concurrently, handling
load-balancing, outlier detection, and failure recovery.

This approach, however, has its own set of limitations.
Developers are required to translate their application logic
to the MapReduce model in order to achieve parallelism. For
some applications this mapping is very unnatural, especially
for simple operations like projection and selection. The
resulting custom code is error-prone and hardly reusable.
Moreover, optimizing and reasoning over complex, opaque,
multi-step MapReduce jobs is very challenging.

High level scripting languages were recently proposed to
address these limitations (e.g., Sopremo/Meteor [4], Jaql [5],
Asterix [6], Tenzing [8], Dremel [20], Pig [21], Hive [24],
DryadLINQ [25], and Scope [26, 27]). These languages offer
a single machine programming abstraction and allow devel-
opers to focus on application logic, while providing system-
atic optimizations for the underlying distributed computa-
tion. As in traditional database systems, such optimization
techniques rely on data statistics to choose the best execu-
tion plan in a cost-based manner [27, 17]. Collecting ac-
curate statistics and effectively exploiting such information
has a profound impact on optimization quality.

We now illustrate the importance and challenges of cal-
culating accurate statistics in a large-scale distributed envi-
ronment. Consider the simple query in Figure 1(a), which
joins results of a user-defined aggregate and a user-defined
predicate over two inputs extracted from raw logs using user-
defined extractors. Figure 1(b) shows a possible execution
plan for this query. Specifically, after processing the raw log
r.txt using a user-defined extractor RExtractor, we parti-
tion the data by column {a}, which is required for both the
aggregation1 and subsequent join. We do the same for the
result of filtering data with UDFilter(a, d) from the raw
log s.txt using a user defined extractor SExtractor. This
plan is attractive in general compared to the alternative in
Figure 1(c), which repartitions the data from r.txt twice.
The reason is that data shuffling is one of the most expensive
operations in distributed execution plans.

However, suppose that some values of a in input r.txt are
more frequent than others. In this case, the initial reparti-
tioning by {a} in Figure 1(b) would result in some parti-
tions being much larger than others, which results in much
longer latency and the possibility of job failures in extreme
situations. In such a case, the plan in Figure 1(c) is more

1For correctness, the input to the aggregation operator must be
partitioned by any subset of the grouping columns.

R = SELECT a,
b,
UDAgg(c) AS sc

FROM "r.txt"
USING RExtractor
GROUP BY a, b

S = SELECT a,
d

FROM "s.txt"
USING SExtractor
WHERE UDFilter(a, d) > 5

SELECT *
FROM R JOIN S ON R.a = S.a

Merge (a)

Hash Partition

(a)

Read “r.txt”

Local Hash

Aggregate (a,b)

Hash Aggregate

(a, b)
Merge (a)

Hash Partition

(a)

Read “s.txt”

Filter (UDFilter)

Hash Join (a=a)

Merge (a, b)

Hash Partition

(a, b)

Read “r.txt”

Local Hash

Aggregate (a,b)

Hash Aggregate

(a, b)

Merge (a)

Hash Partition

(a)

Read “s.txt”

Filter (UDFilter)

Hash Join (a=a)

Merge (a)

Hash Partition

(a)

Merge (a,b)

Hash Partition

(a,b)

Read “r.txt”

Local Hash

Aggregate (a,b)

Hash Aggregate

(a, b)
Merge To Serial

Read “s.txt”

Filter (UDFilter)

Hash Broadcast

Join (a=a)

(a) (b) (c) (d)

Figure 1: Alternatives to Execute a Distributed Query

attractive, because it first repartitions by {a,b}, which does
not have skewed distribution, and subsequently reduces data
before repartitioning it on {a} for the join.
Now suppose that the user-defined predicate on input

s.txt is very selective and thus drastically reduces the size
of the input. Then, the plan in Figure 1(d) is a better
choice because it repartitions the data from r.txt by {a,b}
(addressing the skew issue described above), and performs
a broadcast-join alternative that does not require a sec-
ond repartitioning operation. This is especially important
when subsequent operators require the input partitioned by
columns {a,b}. At the same time, however, this plan would
result in very inefficient executions (or failures) if the user-
defined predicate is not selective enough.
The previous examples illustrate that the choice of a plan

heavily depends on properties of the input data and user-
defined functions. Several aspects of highly distributed sys-
tems make this problem more challenging compared to tradi-
tional database systems. First, it is more difficult to obtain
and maintain good quality statistics due to the distributed
nature of the data, its scale, and common design choices
that do not even account for accurate statistics on input
unstructured data. Second, most queries heavily rely on
user-defined code, which makes the problem of statistical
inference much more challenging during optimization. Fi-
nally, input scripts typically consist of hundreds of opera-
tors, which magnify the well-known problem of propagation
of statistical errors. This negatively impacts the quality of
the resulting execution plans, and might lead, as illustrated
above, to choosing plans with partition skew or wrong de-
gree of parallelism. As a result, the performance impact
could be in the orders of magnitude.
On the other hand, queries in such a cloud-scale dis-

tributed environment consume a large amount of system
resources and typically run for minutes or hours. Query
optimization time is almost negligible compared to its ex-
ecution time. Additionally, certain trade-offs between per-
formance and fault-tolerance result in a different execution
model compared to that of centralized system. These design

choices result in unique opportunities to monitor and adjust
execution plans dynamically and cheaply.

In this paper we propose a solution based on continu-
ous query optimization. This approach is different from
the traditional one, which focuses on collecting and prop-
agating data statistics before query execution. Instead, we
continuously monitor query execution, collect actual run-
time statistics, and adapt execution plans as the query ex-
ecutes. Particularly, we seamlessly integrate the query op-
timization, execution, and scheduling components at run-
time. The query optimizer is triggered whenever new run-
time statistics become available. If a better plan is found, we
intelligently adapt the current execution plan with minimal
changes. Experiments on a large-scale Scope production
system at Microsoft show that the proposed approach sys-
tematically solves the challenges of missing/inaccurate data
statistics and improve query latency by a few folds for real-
world queries. Although this paper uses Scope as the un-
derlying platform, the ideas are applicable to any distributed
system that deals with large-scale data computation.

The rest of the paper is structured as follows. In Section 2
we review necessary background on Scope. In Section 3 we
describe continuous query optimization. Section 4 reports
an experimental evaluation of our approach. Section 5 dis-
cusses related work, and Section 6 concludes the paper.

2. THE SCOPE SYSTEM
In this section we describe the main architecture of the

Scope computation system at Microsoft [13, 26].

2.1 The Language and Data Model
The Scope language is declarative and intentionally rem-

iniscing SQL. The select statement is retained along with
joins variants, aggregation, and set operators. Like SQL,
data is modeled as sets of rows composed of typed columns,
and every rowset has a well-defined schema. At the same
time, the language is highly extensible and is deeply inte-
grated with the .NET framework. Users can easily define

(a) Scope script

Process
(NGramProcessor)

Aggregate

({ngram}, count)

Output

(output.txt)

Get

(input.ss)

(b) Optimizer Input tree

S11 S12 S13 S14 S15

S22S21 S23

(d) Scheduled graph

Merge

(ngram)

Hash Partition

(ngram)

Local Stream Agg

({ngram}, count)

Output

(output.txt)

Process
(NGramProcessor)

Sort

(ngram)

Get

(input.ss)

Stream Agg

({ngram}, count)

S1

S2

(c) Optimizer
Output tree

Figure 2: Compiling and Executing in Scope

their own functions and implement their own versions of
relational operators: extractors (parsing and constructing
rows from a raw file), processors (row-wise processing), re-
ducers (group-wise processing), combiners (combining rows
from two inputs), and outputters (formatting and outputting
final results). This flexibility allows users to solve problems
that cannot be easily expressed in SQL, while at the same
time enables sophisticated reasoning of scripts.
In addition to unstructured data, Scope supports struc-

tured streams. Like tables in a database, a structured stream
has a well-defined schema that every record follows. A struc-
tured stream is self-contained and includes, in addition to
the data itself, rich metadata information such as schema,
structural properties (i.e., partitioning and sorting informa-
tion), and statistical information on data distributions [26].
Figure 2(a) shows a simple Scope script that counts the

different 4-grams of a given single-column structured stream.
In the figure, NGramProcessor is a C# user-defined operator
that outputs, for each input row, all its n-grams (4 in the
example). Conceptually, the intermediate output of the pro-
cessor is a regular rowset that is processed by the main outer
query (note that intermediate results are not necessarily ma-
terialized between operators at runtime).

2.2 Query Compilation and Optimization

A Scope script goes through a series of transformations
before it is executed in the cluster. Initially, the Scope
compiler parses the input script, unfolds views and macro
directives, performs syntax and type checking, and resolves
names. The result of this step is an annotated abstract syn-
tax tree, which is passed to the query optimizer. Figure 2(b)
shows an input tree for the sample script.

The Scope optimizer is a cost-based transformation en-
gine that generates efficient execution plans for input trees.
Since the language is heavily influenced by SQL, Scope is
able to leverage existing work on relational query optimiza-
tion and perform rich and non-trivial query rewritings that
consider the input script in a holistic manner. The optimizer
returns an execution plan that specifies the steps that are re-
quired to efficiently execute the script. Figure 2(c) shows the
output from the optimizer, which defines specific implemen-
tations for each operation (e.g., stream-based aggregation),
data partitioning operations (e.g., the partition and merge
operators), and additional implementation details (e.g., the
initial sort after the processor, and the unfolding of the ag-
gregate into a local/global pair).

The backend compiler then generates code for each opera-
tor and combines a series of operators into an execution unit
or stage, obtained by splitting the output tree into compo-
nents that would be processed by a single node. The output
of the compilation of a script thus consists of (i) a graph def-
inition file that enumerates all stages and the data flow re-
lationships among them, and (ii) the assembly itself, which
contains the generated code. This package is sent to the
cluster for execution. Figure 2(c) shows dotted lines for the
two stages corresponding to the input script.

2.3 Job Scheduling and Runtime

The execution of a Scope script is coordinated by a Job
Manager (or JM). The JM is responsible for constructing the
job graph and scheduling work across available resources in
the cluster. As described above, a Scope execution plan
consists of a DAG of stages that can be scheduled and ex-
ecuted on different machines independent of each other. A
stage represents multiple instances, or vertices, which oper-
ate over different partitions of the data (see Figure 2(d)).
The JM maintains the job graph and keeps track of the
state and history of each vertex in the graph. When all in-
puts of a vertex become ready, the JM considers the vertex
runnable and places it in a scheduling queue. The actual
vertex scheduling order is based on vertex priority and re-
source availability. One scheduling principle is based on data
locality. That is, the JM tries to schedule the vertex on a
machine that stores or is close to its input whenever possi-
ble. If the selected machine is temporarily overloaded, the
JM may scale back to another machine that is close in net-
work topology so reading the input can be done efficiently
with minimum network traffic. Additionally, the nature of
distributed computation on top of unreliable hardware re-
sults in the JM sometimes launching redundant vertices, in
what is known as speculative execution. If some machine
is slow or unresponsive, a redundant computation in a dif-
ferent machine can be leveraged rather than increasing the
execution critical path waiting for a slow partial result.

During execution, a vertex reads inputs either locally or
remotely. Operators within a vertex are processed in a
pipelined fashion, similar to a single-node database engine.
Every vertex is given enough memory to satisfy its require-
ments (e.g., hash tables or external sorts), up to a fraction
of total available memory, and a fraction of the available
processors. This procedure sometimes prevents a new vertex
from being run immediately on a busy machine. Similarly to
traditional database systems, each machine uses admission
control techniques and queues outstanding vertices until the

required resources are available. The final result of a ver-
tex is written to local disks (non-replicated for performance
reasons), waiting for the next vertex to pull data.
The pull execution model and materialization of interme-

diate results has many advantages in the context of highly
distributed computation. First, it does not require both
producer and consumer vertices to run concurrently, which
greatly simplifies job scheduling. Second, in case of failures,
which are inevitable, all that is required is to rerun the failed
vertex from the cached inputs. Only a small portion of a
query plan may need to be re-executed. Finally, writing
intermediate results frees system memory to execute other
vertices and simplifies computation resource management.

3. CONTINUOUS QUERY OPTIMIZATION
In previous sections we discussed two important facts re-

garding query processing in distributed settings. First, the
quality of query optimization is directly influenced by the
quality of statistics on the underlying data distributions.
Second, it is very difficult, and sometimes impossible, to
obtain good quality statistics on intermediate computation
results before the query executes. This conflict points to
a fundamental design limitation in the current processing
cycle of complex distributed applications. In this section
we describe our approach for dealing with uncertainty dur-
ing optimization, which essentially (i) continuously gathers
statistics as queries are executed, (ii) reoptimizes the run-
ning query with new, more accurate information, and (iii)
modifies the current execution graph on the fly if significant
differences are found based on newly discovered information.
Our approach is inspired by similar solutions in the con-

text of traditional centralized database systems, but adapted
to deal with and leverage some unique characteristics of the
distributed computation model. First, optimization time in
our environment is a negligible fraction of the overall query
latency, which needs to synchronize computation across large
number of commodity machines. This is different in cen-
tralized systems, where cheap queries can execute in mil-
liseconds, making any additional work a potential perfor-
mance regression. Additionally, the nature of distributed
computation on top of unreliable hardware has a profound
effect on design choices. Speculative execution of vertices is
not needed nor wanted in traditional centralized solutions,
which cannot afford to “waste” resources in anything non-
essential. Also, to gracefully deal with failures, distributed
queries are decomposed into small-running stages, which are
processed in a sequential fashion by writing intermediate
results into stable storage. Traditional centralized systems
push pipelining to an extreme, which is very good for ab-
solute latency minimization in presence of reliable compo-
nents, but a bad alternative if failures are common. This
last point has proven to be a challenge for optimization ap-
proaches in centralized systems, since plan changes either
result in significant intermediate work being discarded or
require explicit buffering between pipelined stages. Our ap-
proach leverages the staged execution model by making each
stage the unit of computation.

3.1 Architecture
Figure 3 describes the overall architecture of our approach

by following a sample job throughout the system. Initially,
a new job is submitted to the cluster for execution (step 1 in
the figure). The compiler parses the input script, performs

Figure 3: Continuous Optimization Architecture

syntax and type checking, and passes an annotated abstract
syntax tree to the query optimizer. The query optimizer
explores many semantically equivalent rewritings (e.g., those
in Figure 1), estimates the cost of each alternative, and picks
the most efficient one (step 2 in the figure).

We extend the query optimizer to annotate each node in
the plan with a signature that uniquely identifies the com-
putation it performs (see Section 3.2). Additionally, we in-
strument the generated code to collect specific statistics on
vertex results (see Section 3.3).

The initial package produced by the optimizer is then sent
to the JM (step 3 in the figure). The JM schedules the
execution graph, transferring runnable vertices to available
machines in the cluster (step 4 in the figure). The runtime
instance on each machine executes vertices as usual, but con-
currently collects statistics requested by the optimizer and
instrumented during code generation (step 5 in the figure).
As a vertex progresses, it periodically sends back to the JM
aggregated statistical information (step 6 in the figure).

The JM aggregates information as vertices finish execut-
ing. Depending on an optimization policy, it eventually
attempts to repair the currently executing plan (step 7 in
the figure). For that purpose, it calls the optimizer asyn-
chronously, passing the collected statistics associated with
the corresponding plan signatures (see Section 3.4). The
optimizer is not only aware of statistical information, but
also of the fact that certain portions of the currently exe-
cuting plan are already materialized as intermediate results.
The optimizer reoptimizes the input query with this addi-
tional information (step 8 in the figure). The resulting plan
is returned to the JM (step 9 in the figure). When the JM
obtains a new execution plan, it repairs the current exe-
cuting plan with the information in the new package, and
seamlessly continues the job execution as normal (see Sec-
tion 3.5). Steps 4-9 are repeated until the job finishes.

3.2 Plan Signatures
Plan signatures uniquely identify a logical query fragment

during optimization. This is similar to the notion of view
matching technology in traditional database systems. View
matching is a very flexible approach, but at the same time it
is very difficult to extend beyond select-project-join queries
with aggregation. Traditional view matching is able to per-
form partial matching on different queries and compensate
differences using additional relational operators. In our sce-
nario we continuously reoptimize the same query, so we take
a different approach that can handle any operator tree in-
cluding user-defined operators in Scope.

Specifically, for every operator subtree we traverse back
the sequence of rules applied during optimization [11] un-

Merge (a)

Hash Partition

(a)

Read “r.txt”

Local Hash

Aggregate (a,b)

Hash Aggregate

(a, b)
Merge (a)

Hash Partition

(a)

Read “s.txt”

Filter (UDFilter)

Hash Join (a=a)

<A5F3…, Random>

<A5F3…,

 Pre-Hash (a)>

<C6H1…, Random>

<A5F3…, Hash (a)>

<BD53…, Hash (a)> <F3A2…, Hash (a)>

<D3C2…, Hash (a)>

<D2F5…, Random>

<F3A2…, Random>

<F3A2…,

 Pre-Hash (a)>

S1

S2

S5

S4

S3

Figure 4: Signatures and Physical Properties

til we reach the initial semantically equivalent expression2.
Since the optimizer is deterministic, this initial expression
can be used as the canonical representation for the opera-
tor tree. We then recursively serialize the representation of
the canonical expression and compute a 64-bit hash value
for each subtree, which serves as the plan signature3. All
fragments producing the same result are grouped together
and have the same plan signature.
Figure 4 shows an execution plan annotated with signa-

tures. Note that the partition and merge nodes in the fig-
ure have the same signature as the read child node, because
they produce the same logical result with different physical
properties (i.e., partitioning). To distinguish these opera-
tors during execution, the optimizer associates each opera-
tor with both its signature and the corresponding delivered
properties. For instance, consider stage S1 in Figure 4. The
read node in S1 is randomly partitioned, while the hash

partition node is hash pre-partitioned by {a} (i.e., while it
is not yet partitioned by {a}, each vertex already generated
the corresponding partitioning buckets).

3.3 Statistics instrumentation

As explained in Section 3.1, we instrument the generated
code to capture statistics during execution and thus enable
reoptimization. Statistics need to satisfy certain properties
in our framework. First, statistics collection needs to have
low overhead and consume little additional memory, as it is
always enabled during normal execution. Second, statistics
must be composable, because each vertex instance computes
partial values that are then sent to and aggregated by the
JM. Finally, statistics must be actionable, as there is no
point in accurately gathering statistics unless the query op-
timizer is able to leverage them.

2Every rule transforms one plan into another, and we tag each
resulting plan with its generating rule and source. That way, we
can always track the plan back to the original logical expression.
3Modulo hash collisions, the signatures of two plan fragments
match if and only if they produce semantically equivalent results.
In practice, hash collisions are so rare that we can hash values
as signatures, but other mechanisms are possible (e.g., using the
serialization of the logical tree as the signature itself).

We conceptually model statistics as very lightweight user-
defined aggregates whose execution is interleaved with nor-
mal vertex processing. This design allows to easily add new
statistics into the framework as needed. Every operator in
the runtime is augmented with a set of statistics to com-
pute. On startup, the operator calls an initialize method
on the statistics object. On producing each output row, the
operator invokes an increment method on the statistics ob-
ject passing the current row. Before closing, the operator
invokes a finalize method on the statistics object, which
computes statistics final results. Each statistics object also
implements a merge method used by the JM to aggregate
partial values across stages4. Examples include:

Cardinality and average row size. The object initializes
cardinality and row size counters to zero, increments the car-
dinality counter and adds the size of the current row to the
size counter for each increment function call, and returns
the cardinality and average row size upon finalization.

Inclusive user-defined operator cost. The object ini-
tializes a timer on creation, does nothing on each increment
function call, and returns the elapsed time at finalization.

Partitioning histogram. Histograms are only used for
partitioning operators, and maintain the number of rows
output to each partition bucket by a given vertex. We use
one counter per output partition and initialize the array
with zeros at the beginning. Each increment call simply
increments the corresponding counter in the array, and we
return the array of counters upon finalization. Merging two
histograms is trivially done by adding each counter inde-
pendently. These histograms provide a very low-overhead
mechanism to calculate the number of rows that would end
up in each partition before performing the aggregation it-
self, and are used to repair inherent data skew generated by
suboptimal choices of partitioning columns.

As an example, a vertex of stage S3 in Figure 4 executes
three operators: read, filter and hash partition. The
vertex collects cardinality and average row sizes at the read
and filter operators, and partition histograms at the hash
partition operator. Suppose the read operator produces
1.5 million rows constituting 1.5GB data, the filter op-
erator reduces the number of rows to 1, 000 constituting
0.35MB of data and the hash partition operator sends
4 rows to the first partition, 5 rows to the second, and
so on. Upon completion, the vertex returns to the JM
{⟨D2F5..., (1.5M, 1K)⟩, ⟨F3A2..., (1K, 350)⟩, ⟨F3A2..., [4, 5, ...]⟩}.
Note that the partitioning histogram is associated to a spe-
cific partition function, which is known by the JM.

3.4 Query Reoptimization
The JM is responsible for orchestrating the new continu-

ous optimization approach. It does so by gathering statis-
tics from vertices, preparing a statistical package sent to
the query optimizer, and transitioning to a new execution
plan if necessary. The JM in Scope has traditionally been
structured to respond to different events, such as vertex is

4Some common statistics are optimized further by directly gen-
erating code that performs the initialization, increment, and fi-
nalization methods without requiring virtual function calls.

ON VertexCompleted (V: vertex in stage S)
01 SP = global statistics package
02 MP = global materialization package
03 if (V is completed for the first time)
04 updateStatisticsPack(SP, V.stats)
05 updateMaterializationPack(MP, V)
06 if (reoptimization policy)
07 newPlan = optimize(query, SP, MP)
08 if (newPlan != currentPlan)
09 replace currentPlan with newPlan
10 // additional vertexCompleted handling...

Figure 5: VertexCompleted Handler

runnable, or vertex finished execution. We introduce con-
tinuous optimization by augmenting the vertex finished ex-
ecution handler5. The pseudocode in Figure 5 details the
additional actions that take place in the JM on completion
of each vertex, enabling continuous optimization. In the
following sections we explain this algorithm in detail.

3.4.1 Data Structures
The JM maintains two additional structures while the job

is executing. The statistics package (or SP in line 1 in Fig-
ure 5), is a global collection of plan signatures and aggre-
gated statistics returned by completed vertices. The ma-
terialization package (or MP in line 2) is a global collection
that tracks intermediate results materialized so far. Specif-
ically, it contains plan signatures along with the fraction
of vertices that already completed execution and the corre-
sponding paths of already materialized intermediate results.

Updating Data Structures: When a vertex finishes ex-
ecution, the JM obtains the statistics gathered during ex-
ecution. Note that due to vertex failures, the same vertex
instance might have been executed multiple times (each time
returning the same results due to determinism assumptions).
If this is the first time the vertex has finished execution,
both the statistics and materialization packages are updated
(lines 3-5). To update statistics for a vertex in SP, the JM
uses the specific merge method defined on the corresponding
statistics objects. Note that while the statistical package is
updated for every plan signature in the vertex, the material-
ization package is only processed for the root plan signature
of the given vertex. The reason is that an internal operator
in a vertex is not materialized to disk and cannot be reused
as an intermediate result. In Figure 4, when a vertex of stage
S3 finishes, the output of Read(s.txt) is not available, as
it is pipelined through the Filter operator.

3.4.2 Reoptimization policy
After the statistics and materialization packages are up-

dated due to the completion of a vertex in the current job,
a policy decides whether to reoptimize the job based on the
current information (line 6 in Figure 5). An extreme policy
is to reoptimize the input query every time a vertex com-
pletes execution. While it provides the finest granularity, it
might impose unnecessary overhead to the JM. The reason
is that query optimization, while efficient, still consumes
resources, and our infrastructure is optimized for schedul-
ing and executing a large number of small vertices. It is

5Finer granularity is possible by periodically sending to the JM
partial statistics from running vertices. We do not consider such
alternatives and uses vertices as the unit of reoptimization.

not uncommon for the JM to have thousands of outstand-
ing executing vertices, and tens of completed vertices per
second. A more reasonable alternative is to wait until a
whole stage is finished (i.e., whenever all vertices of a given
stage finish executing). This option provides a good trade-
off between optimization overhead and the granularity of the
statistics. Note that multiple stages are executing concur-
rently, so completion of all vertices in one stage will neces-
sarily happen while other stages have partially materialized
results. In our experiments we reoptimize the input query
every time all the vertices in a stage are completed, and put
no limit to the number of reoptimizations on a given query.
As shown in the experimental evaluation in Section 4, this
simple policy provides remarkably robust results.

3.4.3 Reoptimization
Scope uses a transformation-based optimizer based on

the Cascades framework [11], which translates input scripts
into efficient execution plans. Transformation-based opti-
mization can be viewed as divided into two phases, namely,
logical exploration and physical optimization. Logical ex-
ploration applies transformation rules that generate new se-
mantically equivalent logical expressions. All equivalent log-
ical expressions are grouped together in a data structured
called memo. Examples of such rules include pushing se-
lection predicates closer to the sources, and transforming an
associative reducer into a local and global pair. Implementa-
tion rules, in turn, convert logical operators to physical op-
erators, cost each alternative, and return the most efficient
one. Examples include using sort- or hash-based algorithms
to implement an aggregate query, or deciding whether to
perform a pairwise or broadcast join variant.

To enable continuous optimization, we extended the op-
timizer to accept, in addition to the input script, optional
statistics and materialization packages (see Section 3.4.1).
The optimizer also computes signatures of each expression
it processes, which is done with very little overhead. We next
describe how we extend the optimizer to leverage statistics
and materialization packages provided by the JM.

Statistics Package
The statistics package produced by the JM contains a set
of signatures with statistical information on corresponding
query subplans. To leverage this information, we modify the
entry point to the derivation of statistical properties in the
optimizer to perform a lookup on the statistics package. For
instance, deriving the cardinality of an expression starts by
checking whether the signature of the expression matches
an instance in the statistics package. If so, cardinality es-
timation is bypassed and replaced by the value specified in
the package. Since all equivalent expressions have the same
signature, this technique produces consistent results.

We also extended the optimizer with a new property called
skew. Skew values are associated with a set of columns C
and approximately model the skew in the number of rows
per partition by C in an intermediate result. Specifically, we
use the ratio between largest partition count and the aver-
age partition count as the basis of skew values. Skew values
range from zero (when all partitions are equally large) to
one (when a single partition contains all values and the oth-
ers are empty). We make the simplifying assumption that
this ratio is independent on the number of partitions, which

is not always true but nevertheless provides a robust mech-
anism to reason with skewed data distributions. Whenever
the statistics package contains a histogram of N frequencies
fi for a given set of columns C, we compute the skew value
for C as skew(C) = (max fi∑

fi/N
−1)· 1

N−1
(so 0 ≤ skew(C) ≤ 1).

We leverage skew values while performing cost estimation.
The optimizer models overall latency, which is obtained by
adding the cost of each operator on a per-partition basis
(e.g., if a reducer is done over 100 partitions, we compute
the cost of the reducer using an input cardinality that is
1/100th of the total input cardinality). We leverage skew
values during cost estimation by calculating the cost of the
operator for the worst case (i.e., the instance with the largest
cardinality values). Suppose the current operator handles P
partitions on columns C, and skew(C) = S. If the total car-
dinality is CT , the original cardinality estimation per par-
tition is simply CT/P . Instead, we compute the cardinality
of the largest partition as CT/P · (1+S · (P − 1)), and thus
model data skew.
For instance, suppose that there is a join operator over

columns (a, b, c). The optimizer needs to partition the join
inputs by any subset of (a, b, c). If we have skew information
on some subset of (a, b, c) (say b), which would result in
outliers during execution time, we will cost such alternatives
much higher than others that partition on a superset of b,
and thus have no (known) skew.

Materialization Package
The JM also creates a materialization package that con-
tains information about intermediate materialized results.
We incorporate this information into the query optimizer
by adding new exploration rules that fire whenever the sig-
nature of the expression being explored matches a signa-
ture in the materialization package. When this happens,
we generate a new alternative expression that simply reads
the intermediate data. Leveraging the property derivation
infrastructure in the optimizer, we set the physical prop-
erties (e.g., partitioning and sorting) of such intermediate
result as dictated by the materialization package. This rule
is conceptually very similar to materialized view matching
rules in centralized database systems, but due to the use of
signatures we are able to match arbitrary query fragments.

Partial Materialized Views: Recall that the materializa-
tion package contains entries for all stages with vertices in
either completed or executing state. The reason is that ver-
tices from different stages often execute concurrently. If we
only capture stages that finished all its vertices and ignore
stages that have only a subset of vertices completed and ma-
terialized, we would waste significant resources. Discarded
stages might have been executing for a long time and in fact
almost ready to be used when a new optimization happen.
To address these scenarios, we model these intermediate re-
sults as partial materialized views. A partial materialized
view is the same as a regular materialized view, but has an
additional cost associated with it. This extra cost models
the remaining work needed to complete the execution of all
remaining vertices for the stage6. We approximate the extra
cost of a partial materialized view by (i) obtaining the orig-
inal plan used to execute the partial materialized view, (ii)

6The unit of execution is still a vertex. Partial materialized views
enable reasoning with stages for which some vertex already fin-
ished, but do not handle partially executed vertices.

MergePlan (P: new plan, G: current execution graph)
01 M = empty map from nodes in P to nodes in G
02 foreach node p in a bottom-up traversal of P
03 foreach pi ∈ children(p)
04 gi = M.lookup(pi)
05 g = G.Locate(p, {gi})
06 if (g not present)
07 g = G.Insert(p, {gi})
08 M.add(p → g)
09 Garbage-collect unreachable nodes in G

Figure 6: Merging a New Plan in the JM

rederiving data properties on this plan using the statistical
package, (iii) recosting the original plan under the new sta-
tistical model, and (iv) adjusting the resulting cost based on
fraction of nodes that already finished execution. The result
of this procedure is the cost of the remainder of the actual
plan being executed in the server, in optimizer units under
the revised statistical model. The execution plan chosen by
the optimizer might refer to a partial materialized view if
the optimizer judges that the cost of waiting for the current
stage to finish is smaller than the cost of restarting the work
using a different plan.

3.5 Adapting Execution Plans
The output from the query optimizer is a new execution

plan for the input query that very frequently depends on
intermediate results specified in the materialization package.
When the JM receives a new execution plan, it merges it
with the currently executing graph and continues execution.
This is done by a bottom-up traversal of the new execution
plan, inserting new or reusing existing nodes in the current
graph. Figure 6 illustrates this procedure.

Specifically, we maintain a map from nodes in the new
execution plan to stages in the job currently executing in the
JM (line 1 in the figure). In lines 2-8 we process nodes in the
new execution plan in a bottom-up manner. For each node
p in the new execution plan, we determine whether the node
is already part of the currently executing graph. For that
purpose, we first determine the nodes in the current graph
that correspond to the children of p (which would have been
added to the map M in previous iterations of the bottom-up
enumeration). Then, we try to locate a node in the current
graph that corresponds to p in line 5. This method searches
G for a node that performs the same semantic operations as
p (i.e., has the same signature), and consumes inputs from
children that (recursively) perform the same operations as
well. If we do not find such g node in the running graph, the
current p node is part of a different execution for the input
query, and so we instantiate it in the graph as traditionally
for the initial graph, and connect its inputs to those in gi.
We then add the new mapping from p to g in the mapping
table M. At the end there will be nodes in G that are no longer
reachable since they are part of the previous execution plan.
These nodes are garbage-collected and discarded (line 9).

A small but important special case occurs whenever the
current node p in the new plan reuses an intermediate result
in the materialization package. Recall that the optimizer
treats intermediate results as materialized views, which are
represented with traditional read operations. In this situa-
tion, line 5 would not succeed in finding the corresponding
node in G. Whenever we insert such a node in the graph
in line 7, we find the node in the original graph producing
the intermediate result consumed by p, and connect these

Merge (a, b)

Hash Partition

(a,b)

Hash Aggregate

(a, b)
Merge To Serial

Hash Broadcast

Join (a=a)

S6

S8S7

S9

S1_Output

S3_Output

Figure 7: Adapting a Query Plan (see Figure 4)

two nodes together. By modifying the graph in this way, the
JM can still use traditional fault tolerance mechanisms to re-
cover from failed nodes. If a machine hosting non-replicated
intermediate results fails, the JM re-runs the parent vertex
corresponding to the missing input and continues as usual.
As an example, suppose that the JM executes stages S1

and S3 in Figure 4 and learns that S1 is skewed on column
a and S3 is much smaller in volume than estimated. The
optimizer might then produce a plan like in Figure 7, which
reuses intermediate materialized results from S1 and repar-
titions the data by (a, b), merges in a serial plan the result
from S3, and changes the join to using a broadcast variant.

4. EXPERIMENTAL EVALUATION
We implemented the continuous query optimization ap-

proach in Scope, which is deployed on production clusters
consisting of tens of thousands of machines at Microsoft.
Scope clusters execute tens of thousands of jobs daily, read-
ing and writing tens of petabytes of data in total, and pow-
ering different online services. Each machine has two six-
core AMD Opteron processors running at 1.8GHz, 24 GB
of DRAM, and four 1TB SATA disks. All machines run
Windows Server 2008 R2 Enterprise X64 Edition.
The following report uses queries chosen from real work-

load and evaluated on a production cluster. In our produc-
tion workload, the main performance bottlenecks of prob-
lematic queries are sub-optimal degree of parallelism and
data partition skew due to suboptimal partitioning keys cho-
sen by the optimizer. This usually happens due to incorrect
estimation of cardinality and key distribution across parti-
tions. Most of the cardinality estimation errors occurs due
to black-box user-defined functions, whose selectivity varies
in a wide range, and unknown data distribution, either from
inputs or from intermediate results. Incorrect cardinality es-
timation also contributes to other sub-optimal plan choices,
such as join reordering, choices of join and aggregation op-
erations. Due to limited space, we focus our experiments on
optimizing the choice of degree of parallelism and partition
keys that demonstrate important performance gains.
In Section 4.1 we present a case study and demonstrate

how continuous query optimization impacts query execution
during the lifetime of a query. We then summarize exper-
imental results for different classes of real user queries in
Section 4.2. Finally, we discuss plan convergence in Sec-
tion 4.3 and optimization overhead in Section 4.4. Due to

Read “s.txt”

Filter (UDFilter)

Rack Merge

Hash Partition

(a) - 250

Merge (a)

Hash Aggregate

(a, b)

Hash Aggregate

(a)

...

0:S1

0:S2

0:S3

Rack Merge

Hash Partition

(a) - 211

Merge (a)

Hash Aggregate

(a, b)

Hash Aggregate

(a)

0:S1_Output

...

1:S1

1:S2

Rack Merge

Hash Partition

(a, b) - 211

Merge (a, b)

Hash Aggregate

(a, b)

Hash Partition

(a) - 211

0:S1_Output

Merge (a)

Hash Aggregate

(a)

...

2:S1

2:S2

3:S2

(a) (b) (c)

Figure 8: Execution Plans for a Simple Query

confidential data/business information, we report relative
performance comparisons rather than absolute numbers.

4.1 Case Study
As a case study, consider the following analytical query. It

first applies a user-defined filter on top of unstructured input
data, and performs a non-associative user-defined aggregate
on columns {a, b}. It then performs a second non-associative
aggregate on the result by column {a}.

A = SELECT a, b, UDAgg(c) AS sc
FROM "r.txt" USING UDExtractor()
WHERE UDFilter(a, b) > 10
GROUP BY a, b

SELECT a, UDAgg(b) AS sb, UDAgg(sc) AS ssc
FROM A
GROUP BY a

4.1.1 Baseline
As a baseline, we used the original Scope optimizer as de-

scribed in [26], which is rather sophisticated but unaware of
any execution feedback. Without knowledge on the selectiv-
ity of the user defined predicate UDFilter or distribution of
values in columns a and b, the optimizer generates the plan
in Figure 8(a), which consists of three stages (we denote a
stage S generated during iteration i as i:S):

0:S1 reads the data using a user-defined extractor and ap-
plies the user-defined filter.

0:S2 partially aggregates the data from different machines
in the same rack, to minimize inter-rack data trans-
fer. It then hash partitions the data on {a} into 250
partitions, which satisfies the requirements from both
GROUP BY operations.

0:S3 aggregates the tuples belonging to same partition across
all the vertices and then computes both aggregations
in a pipelined manner.

9.6

9.0

89.6

0 20 40 60 80 100

0:S1

0:S2

0:S3

S
ta

g
e

s

Runtime in percentage

(a) Baseline

73.2

62.5

6.0

7.1

5.8

7.9

0 20 40 60 80 100

0:S1

0:S2

1:S1

2:S1

2:S2

2:S3

S
ta

g
e

s

Runtime in percentage

(b) CQO without Partial Materialized Views

74.3

68.0

7.3

5.9

8.0

0 20 40 60 80 100

0:S1

0:S2

2:S1

2:S2

2:S3

S
ta

g
e

s

Runtime in percentage

(c) CQO

Figure 9: Normalized Stage Runtime

Figure 9(a) shows the relative runtime of stages during the
lifetime of the input query without continuous query opti-
mization (denoted Baseline in the figure). Note that 0:S3,
which merges the data partitioned by {a} and computes the
aggregate consumes 89% of the total latency due to data
skew. The overall query latency is bounded by the most
expensive vertex processing the largest partition.

4.1.2 Continuous optimization
Consider now continuous optimization (without partial

materialized views). As the query executes, the JM learns
that there is less data generated by UDFilter than the op-
timizer estimation, so 250 partitions are too many. At the
same time, data has significant skew on column a. With our
continuous optimization approach (without partial materi-
alized views), the query is executed as follows.
When stage 0:S1 finishes execution, the JM gets accurate

statistics and reoptimizes the query. The optimizer detects
that the user-defined filter reduced the data size more than
expected and generates a different plan with reduced de-
gree of parallelism (211). The JM dynamically modifies the
graph to the execution plan shown in Figure 8(b), discard-
ing stages 0:S2 and 0:S3, and connecting the output of stage

0

0.2

0.4

0.6

0.8

1

Baseline CQO Without Partial

Materialized Views

CQO

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 L
a

te
n

cy

Figure 10: Query Latency

0:S1 to the new stage 1:S1. Vertices from stage 1:S1 begin
executing, and after they all complete, the next optimization
detects partition skew on a and changes the plan to first par-
titioning on (a, b) to compute the aggregate on {a, b}, and
then repartitioning on {a} to compute the aggregate on {a}.
The JM discards stages 1:S1 and 1:S2 and connects output
of stage 0:S1 to stage 2:S1, as shown in Figure 8(c). Ver-
tices from stage 2:S1 start executing and eventually the job
finishes without further plan changes.

Figure 9(b) shows the relative runtime of stages with con-
tinuous query optimization (denoted CQO without partial
views in the figure). During execution, we discard stages
0:S2, 0:S3, 1:S1 and 1:S2. Among these, 0:S3 and 1:S2
are discarded before they start executing with no overhead.
Stage 0:S2 starts executing along with stage 0:S1 and is dis-
carded right after reoptimization. While it does not result
in latency overhead, it slightly increases resource consump-
tion. The job scheduler gives priority to vertices on earlier
stages, so 0:S2 does not cause delay in vertices of stage 0:S1.
Finally, discarded stage 1:S1 caused increase on latency and
wasted work (around 6%), which is a relatively small price
paid for dynamically detecting and handling partition skew.
Overall, query latency is reduced by 8.4x (see Figure 10).

4.1.3 Leveraging partial materialized views
During the first plan switch, stage 0:S2 was already 80%

complete. So, when the optimizer considers partial materi-
alized views, the cost with over-partitioning (20% of the cost
of stage 0:S2) is cheaper than repartitioning with a slightly
smaller number of partitions (211) so the optimizer does
not change the plan and stage 0:S2 does not get discarded.
When stage 0:S2 finishes, the optimizer detects partition
skew and changes the plan directly to the final one in Fig-
ure 8(c). Figure 9(c) shows the relative runtime of stages
in this case. The only overhead in terms of latency is the
time 0:S2 takes after 0:S1 finishes, and the overall latency
is further reduced by 9.4%, as shown in Figure 10.

4.2 Performance Evaluation
We next summarize results on evaluating continuous opti-

mization on a representative workload consisting of queries
both externally obtained from different customers (which in-
clude advertising and revenue, click information, and statis-
tics about user searches), and internally used to adminis-
ter the Scope cluster7. The queries in the workload have
large variability in resource usage, with latencies that range

7All operational data generated by Scope is stored in the cluster
itself, so analysis and mining of interesting cluster properties can
be done by using Scope.

SELECT sd, se
UDF(R.a, S.a),
UDF(R.b, S.b),
UDF(R.c, S.c),

FROM (SELECT a, b, c, d,
UDA(e) AS se

FROM <...> AS T
GROUP BY a, b, c, d
) AS R

FULL OUTER JOIN
(<...>) AS S

ON R.a == S.a AND
R.b == S.b AND
R.c == S.c

SELECT a, b
UDA(c) AS sc,
UDA(sd) AS ssd

FROM (SELECT a, b, c,
UDAgg(d) AS sd

FROM (PROCESS
(SELECT a, b, c, d
FROM <...>) AS T

USING UDProcessor
) AS R

GROUP BY a, b, c
)

GROUP BY a, b

SELECT a,
RecursiveUDA(b) AS sb

FROM (SELECT a, b FROM <...>
UNION ALL
SELECT a, b FROM <...>
UNION ALL
SELECT a, b FROM <...>
) AS R

WHERE UDF(a, b) > 5
GROUP BY a

SELECT R.a, R.b, R.sc, S.d
FROM (SELECT a, b,

UDAgg(c) AS sc
FROM (<...>)
GROUP BY a, b) AS R

JOIN (SELECT a, d
FROM (<...>)
WHERE UDF(a, d) > 5

) AS S
ON R.a == S.a

(a) Q2: skew on T (a, b, c) (b) Q3: Processor doubles volume (c) Q5: UDF and RecursiveUDA (d) Q6: UDF reduces S to

and skew on R(a, b) reduce data volume to 800MB 500MB and skew on R(a)

Figure 11: Query Fragments of Jobs Used in the Experimental Evaluation

from minutes to several hours, and process from gigabytes to
many terabytes. Rather than showing full complex queries,
we highlight in Figure 11 specific patterns and sometimes
show simplified query fragments that illustrate the main
ideas without providing much unnecessary detail.

Partition skew: Most queries suffer from some form of par-
tition skew. With continuous query optimization, the opti-
mizer detects skew right after the partitioning stage (before
the expensive merge state) and modifies the plan to avoid
skew if possible by choosing a different partition key.

Over-partitioning: Continuous optimization avoids over-
partitioning by reducing the degree of parallelism in the
plan. Query 5, shown in Figure 11(c), is a case of extreme
over-partitioning. Specifically, UDF reduces the data volume
500 times to under 1GB. Continuous optimization detects
it, aggregates S into a single node, and changes the remain-
ing plan into a serial plan. By avoiding overpartitioning,
query 5 reduces latency by 2.9x (see Figure 12).

Under-partitioning: Under-partitioning is more danger-
ous than over-partitioning, because nodes process too much
data, not only increasing latency but also recovery time in
case of failures. For that reason, the optimizer conserva-
tively prefers over-partitioning in absence of accurate infor-
mation. Query 7 suffers from under-partitioning, and by
suitably increasing the number of partitions after optimiza-
tion, the query latency is reduced by 1.3x (see Figure 12).

Join variants: Figure 11(d) shows a fragment of query 6,
in which R has partition skew on the join column a, causing
a parallel pair-wise join to suffer from partition skew. How-
ever, predicate UDF reduces the volume of data from S by
200x to 500MB. After optimization, we modify the plan
to use a parallel broadcast join variant, which transfers the
whole S to all the partitions of R and thus avoids partition
skew. Query latency is reduced by 1.4x by this plan change
(over 2.5x for the query fragment in the figure).

Reusing intermediate results: Intermediate material-
ized results are given to the optimizer as a choice to recom-
putation. If the size of intermediate data is much larger than
the input relations, it may be cheaper to re-compute inter-
mediate results than reading them. In most queries, the op-
timizer chooses to reuse intermediate results. In query Q3,
however, the optimizer chooses to recompute UDProcessor
instead of using its output as a materialized view. Fig-
ure 11(b) shows the interesting fragment of this query. Orig-
inally, the optimizer chooses to partition R (the output of

8.4

5.9

3.4 3.5

2.9

1.4 1.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7

S
p
e
e
d
-u
p

Queries

Figure 12: Query Latency Speedup

1

10

1 1

2

10

3

0

2

4

6

8

10

12

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u

m
b

e
r

 o
f

it
e

ra
ti

o
n

s

Queries

Figure 13: Number of Iterations before Convergence

UDProcessor) on {a, b}, so that both aggregates can be com-
puted locally on each partition without data shuffling. Later
on, optimization detects that R has data skew on {a, b} and
modifies the plan to first partition on {a, b, c}, compute the
aggregate, partition on {a, b}, and compute the second ag-
gregate. In the modified plan, the optimizer recomputes
UDProcessor, since it doubles the input data size, and read-
ing its output is more expensive than recomputing it.

Overall, the queries in this section resulted in speedup
values ranging from 1.3x to 8.4x (see Figure 12).

4.3 Plan Convergence
An important practical consideration in our approach is

convergence to a final plan. Figure 13 shows the number
of plan changes observed while executing the queries in the
previous section. We can see that the system converges to
the final plan in just a couple of iterations in most cases.
Queries 2 and 6 are outliers and take 10 iterations to con-
verge. Figure 11(a) shows the relevant fragment of query
2, where the intermediate relation T has partition skew on
(a, b, c) (and therefore, on all of its subsets). The aggregate
and subsequent join operators require T to be partitioned on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q1 Q2 Q3 Q4 Q5 Q6 Q7

F
ra

ct
io

n
 o

f
la

te
n

cy
 o

f
b

a
se

li
n

e
 p

la
n CQO Optimal

Figure 14: Latency Slowdown Compared to Optimal

any subset of (a, b, c). Without knowledge about partition
skew, the optimizer tries to partition it on a (fewer parti-
tioning columns result in cheaper executions due to fewer
processing time on the partitioning function). After detect-
ing skew, the optimizer attempts all other subsets before
reaching (a, b, c). The remaining two iterations change the
degree of parallelism. A more intelligent reoptimization ap-
proach that takes into account the history of previous re-
optimizations would cut the number of plan changes signif-
icantly, choosing (a, b, c) directly on the second reoptimiza-
tion. However, it is interesting to see that even in a scenario
that changes the plan 10 times, the system converged to the
final plan with an overall latency, including all false starts,
that was almost 6 times better than for the baseline8.

4.4 Continuous Optimization Overhead
In the previous sections we evaluated the overall improve-

ments of our continuous optimization approach. It is also
important to analyze the overhead of our proposed frame-
work, and understand how much additional work it performs
compared to a optimistic best-case scenario, where the opti-
mizer knows in advance all interesting data properties. This
optimal solution is of course unfeasible to implement in prac-
tice, but gives a lower bound on the execution latency of
input queries. Figure 14 shows the fraction of latency that
our approach (CQO in the figure) and the optimal approach
(Optimal in the figure) took compared to the baseline alter-
native without continuous optimization.
Most queries using CQO are just a few percentage points

above the optimal strategy, which validates our approach.
The main outlier is query Q6. While CQO results in a 25%
reduction in latency, the figure shows that there is vast room
for improvement, as the optimal strategy reduces latency by
over 90%. Query Q6 is one instance that changes the plan
multiple times to recover from a multi-column skew. As
discussed earlier, there are mechanisms to react better to
multiple reoptimizations (such as more aggressively choos-
ing partitioning columns based on the history of reoptimiza-
tions). These alternatives are part of future work.

5. RELATED WORK
Several data processing systems have been recently de-

veloped to analyze cloud-scale data like Map-Reduce [10],
Hadoop [2], Dryad [13], and Hyracks [6]. These data pro-
cessing frameworks provide simplified abstractions to ex-
press parallel data flow computations, but can be difficult

8Other policies that limit the number of reoptimizations, espe-
cially in late stages of execution, might be useful in practice.

to use for complex scenarios. To tackle the increasing com-
plexity of user scripts, high level programming languages
were proposed, including Nephele/PACT [4], Jaql [5], Ten-
zing [8], Dremel [20], Pig [21], Hive [24], DryadLINQ [25],
and Scope [26, 27]. All these languages are declarative, hide
system complexities, and benefit from query optimization to
generate efficient distributed execution plans [17, 27].

Virtually all of optimization techniques rely on accurate
data statistics to choose the best execution plan in a cost
based manner. It is well known to be very difficult, and
sometimes impossible, to compute good quality statistics
on intermediate computation results. This problem is not
unique to cloud-scale data processing systems, as traditional
query optimizers also have similar issues. To deal with the
uncertainties of run-time resources and parameter markers
in queries, early work [9, 12] proposes generating multiple
plans at compile time. When unknown quantities are discov-
ered at run time, a decision tree mechanism decides which
plan to execute. This approach suffers from a combinatorial
explosion in the number of plans that need to be generated
and stored at compile time.

A different approach [15, 19] uses the optimizer to gen-
erate a new plan when cardinality inconsistencies are de-
tected. Progressive query OPtimization (POP) [19] detects
cardinality estimation errors in mid-execution by comparing
the estimated cardinality values against the actual run-time
counts. If the actual count is outside a pre-determined va-
lidity range for that part of the plan, a re-optimization of
the current plan is triggered. This approach is similar to our
proposed framework as it tries to repair the current query by
re-optimization. However, POP is designed for traditional
centralized database systems, where query latency is small
and optimization time and resource consumption is a signif-
icant proportion of total latency. Thus, POP is more con-
servative and uses validity ranges to trigger re-optimization,
which are very difficult to compute precisely in the general
case. At the same time, the underlying system in POP ag-
gressively leverages pipelining, which reduces the instances
where reoptimization can be triggered.

The DB2 LEarning Optimizer [23], in contrast, waits until
a plan has finished executing to compare actual row counts
to the optimizer’s estimates. It learns from misestimates by
adjusting the statistics to improve the quality of optimiza-
tions in future queries. Recent work [1, 7], and the basis of
our approach, extends these ideas to a distributed setting,
leveraging the fact that a large fraction of scripts are para-
metric and recurring over a time series of data. The idea is
to instrument queries and piggybacking statistics collection
with its normal execution, in a similar way as our approach.
After collecting such statistics, it is possible to create a sta-
tistical profile that would be fed to the optimizer on a future
invocation of the same job. The Stubby system [18] propose
a cost-based optimizer for MapReduce systems. The system
works with black box map and reduce functions and tries to
find optimal configuration parameters for a MapReduce job
in a cost based manner. It also collects job profile (statis-
tics) while a job is running and uses it to optimizer similar
jobs later on. These approaches focus on using query feed-
back to improve future query executions, but do not address
improving query performance in mid-execution, which is the
focus of this paper.

A more extreme approach is represented by the Eddies
framework [3, 22], which does not require a complex compile-

time optimizer. Instead, a run-time optimizer routes each
row independently through a sequence of join operators.
Per-row routing gives high opportunity for re-optimization,
but imposes a big overhead in steady state. Adaptive join
reordering [16] is a light-weight run-time re-optimization
technique that improves both robustness and dynamically
arranges the join order of pipelined join execution plans ac-
cording to the observed data characteristics at run-time.

6. CONCLUSION AND FUTURE WORK
Massive data analysis in cloud-scale data centers plays

a crucial role in making critical business decisions and im-
proving quality of service. High-level scripting languages
free users from understanding various system trade-offs and
complexities, support a transparent abstraction of the un-
derlying system, and provide the system great opportunities
and challenges for query optimization.
In this paper, we propose a solution of continuous query

optimization for cloud-scale systems. The approach is dif-
ferent from the traditional one, which focuses on collecting
and propagating data statistics before query execution and
utilizing them at query compilation/optimization. Instead,
we continuously monitor the query execution, collect actual
runtime statistics, and adapt execution plans as a query ex-
ecutes. Particularly, we seamlessly integrate the query op-
timizer, runtime, and scheduler components together dur-
ing runtime execution. The query optimizer is triggered
whenever new runtime statistics become available and gen-
erates a new optimized execution plan. If the new plan is
better than the current one, we intelligently adapt the cur-
rent execution plan with minimal costs. Experiments on a
large-scale Scope production system at Microsoft show that
the proposed techniques systematically solves the challenges
of missing/inaccurate data statistics and improve query la-
tency by a few folds for real-world queries.
Reoptimization opportunities are influenced by stage bound-

aries (i.e., by the way the system groups operators into
stages). An open-ended problem and direction of future
work is to make this operator grouping aware of reopti-
mization opportunities, rather than the current approach
which performs grouping in a reoptimization-agnostic man-
ner. Another direction for future work is to effectively ex-
ploit statistics from partially completed vertices to detect
expensive predicates before a single vertex finishes execu-
tion. Finally, an open-ended question is on leveraging dif-
ferent conditions to trigger reoptimization, rather than the
current fixed policy.

7. REFERENCES
[1] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica,

and J. Zhou. Re-optimizing data-parallel computing. In
Proceedings of NSDI, 2012.

[2] Apache. Hadoop. http://hadoop.apache.org/.
[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. In Proceedings of SIGMOD
Conference, 2000.

[4] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A programming model and
execution framework for web-scale analytical processing. In
Proceedings of the ACM symposium on Cloud computing,
2010.

[5] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita.

Jaql: A scripting language for large scale semistructured
data analysis. In Proceedings of VLDB Conference, 2011.

[6] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A flexible and extensible foundation for
data-intensive computing. In Proceedings of ICDE
Conference, 2011.

[7] N. Bruno, S. Agarwal, S. Kandula, M.-C. Wu, B. Shi, and
J. Zhou. Recurring job optimization in scope. In
Proceedings of SIGMOD Conference, 2012.

[8] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL
implementation on the mapreduce framework. In
Proceedings of VLDB Conference, 2011.

[9] R. L. Cole and G. Graefe. Optimization of dynamic query
evaluation plans. In Proceedings of SIGMOD Conference,
1994.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of OSDI
Conference, 2004.

[11] G. Graefe. The Cascades framework for query optimization.
Data Engineering Bulletin, 18(3), 1995.

[12] G. Graefe and K. Ward. Dynamic query evaluation plans.
In Proceedings of SIGMOD Conference, 1989.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In Proc. of EuroSys Conference, 2007.

[14] M. Isard et al. Dryad: Distributed data-parallel programs
from sequential building blocks. In Proc. of EuroSys
Conference, 2007.

[15] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
Proceedings of SIGMOD Conference, 1998.

[16] Q. Li, M. Shao, V. Markl, K. S. Beyer, L. S. Colby, and
G. M. Lohman. Adaptively reordering joins during query
execution. In Proceedings of ICDE Conference, 2007.

[17] H. Lim, H. Herodotou, and S. Babu. Stubby: A
transformation-based optimizer for mapreduce workflows.
In Proceedings of VLDB Conference, 2012.

[18] H. Lim, H. Herodotou, and S. Babu. Stubby: A
Transformation-based Optimizer for MapReduce
Workflows. PVLDB, 5(11), 2012.

[19] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and
H. Pirahesh. Robust query processing through progressive
optimization. In Proceedings of SIGMOD Conference, 2004.

[20] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of webscale datasets. In Proceedings of
VLDB Conference, 2010.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for data
processing. In Proceedings of SIGMOD Conference, 2008.

[22] V. Raman, A. Deshpande, and J. M. Hellerstein. Using
state modules for adaptive query processing. In Proceedings
of ICDE Conference, 2003.

[23] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO
- DB2’s LEarning Optimizer. In Proceedings of VLDB
Conference, 2001.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive – a
petabyte scale data warehouse using Hadoop. In
Proceedings of ICDE Conference, 2010.

[25] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In Proc. of OSDI Conference, 2008.

[26] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson, R. Chaiken,
and D. Shakib. SCOPE: Parallel databases meet
mapreduce. The VLDB Journal, 21(5), 2012.

[27] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE optimizer.
In Proceedings of ICDE Conference, 2010.

