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Abstract— The rise of GPS and broadband-speed wireless
devices has led to tremendous excitement about a range of
applications broadly characterized as “location based services”.
Current database storage systems, however, are inadequate for
manipulating the very large and dynamic spatio-temporal data
sets required to support such services. Proposals in the literature
either present new indices without discussing how to cluster data,
potentially resulting in many disk seeks for lookups of densely
packed objects, or use static quadtrees or other partitioning
structures, which become rapidly suboptimal as the data or
queries evolve. As a result of these performance limitations,
we built TrajStore, a dynamic storage system optimized for
efficiently retrieving all data in a particular spatiotemporal
region. TrajStore maintains an optimal index on the data and
dynamically co-locates and compresses spatially and temporally
adjacent segments on disk. By letting the storage layer evolve
with the index, the system adapts to incoming queries and data
and is able to answer most queries via a very limited number of
I/Os, even when the queries target regions containing hundreds
or thousands of different trajectories.

I. INTRODUCTION

The rise of GPS and broadband-speed wireless devices has
led to tremendous excitement about a range of applications
broadly characterized as “location based services”. These
applications will provide users with information that is targeted
and personalized to their location, whether it be nearby stores,
friends, traffic conditions, etc.

To build these services, it is necessary to collect tremendous
amounts of data about users’ activities and movement patterns
in different locations. In the context of our CarTel telematics
infrastructure (see http://cartel.csail.mit.edu/)
we have been focusing on road-usage, with a goal of reporting
on traffic data as well as allowing individual users to browse and
mine their driving patterns to detect inefficiencies, recommend
alternative routes, find carpools, or detect ailing cars. For the
past four years we have been continuously collecting speed,
position, altitude, as well as a variety of sensor data, including
accelerometer traces and data from the on board diagnostic
system (called OBD-II, standard in all US cars since 1996)
from a collection of 30 taxi cabs and 15 individual users’ cars
in the Boston metropolitan area. At this point, our database
consists of about 200 million GPS readings, representing tens
of thousands of drives and more than 68,000 hours of driving.

Currently we store driving data in Postgres, using the
PostGIS spatial extensions to index individual drives in an
R-Tree index. This is adequate for storing and retrieving data
about a single drive but is extremely slow when trying to
retrieve data about or compute aggregates over a particular
geographic region, as there are often thousands of drives passing
through even relatively small (a few square miles) areas, and

retrieving each drive incurs a disk seek to fetch the geometry of
the drive. Our experiments show that R-Trees can be orders of
magnitude slower than the methods we develop in this paper.

Example applications that need the ability to query many
trajectories simultaneously include finding the data about all
drives passing through an intersection to aggregate traffic
statistics for that region, extracting all drives that go from
the airport to some part of the city (to compute, for example,
taxi tolls – something we have been asked to do by the taxi
commission in Boston), and finding all drives that go from one
location to another for purposes of computing average delays
or finding the best routes.

Due to the performance limitations of the existing data
structures, we built TrajStore, a system optimized for effi-
ciently retrieving all of the trajectories in a particular geo-
spatial/temporal region. Although there is a large amount of
related work on indexing trajectories, most of the current
approaches ultimately perform a disk-seek per trajectory lookup,
which can substantially impair performance in our settings for
the same reasons R-Trees do not perform well. See section II for
more detail about related work; our experiments (Section VI)
show that our system is about 8 times faster than one state of
the art approach [1].

Unlike most existing systems which simply index geo-spatial
data, TrajStore is a storage system designed to segment trajec-
tories and co-locate trajectory segments that are geographically
and temporally near each other. It slices trajectories into sub-
trajectories that fit into spatio-temporal regions, and dense-
packs the data about each region in a block (or collection of
blocks) on disk. It uses an adaptive multi-level grid [2] over
those blocks to look up data in space and a sparse index in
time to answer historical queries (which can be formulated as
hypercubes.) In this way, most queries can be answered by
reading just a few blocks from disk, even if those blocks contain
data from hundreds or thousands of trajectories. In addition to
this basic formulation, we make four primary contributions:

1) We describe an adaptive storage scheme that chooses the
size of the spatial cells in our quadtree index based on
the density of data, the expected (or observed) sizes of
queries run over the data, and the page size of the system.

2) We describe how our scheme can adapt the clustering
of data as new points are inserted or deleted or as the
workload changes, and how it maintains an optimal index
at all times by splitting / merging cells recursively.

3) We describe a compression algorithm to compress the
trajectories in the cells using an approximate trajectory
encoding scheme, which accepts a user-specified error
threshold. Our method achieves compression ratios of



7.7::1, leading to overall performance gains of 2–3x.
4) We demonstrate that TrajStore can retrieve results from our

real-world data set 8 times faster than existing approaches
based on segmenting trajectories and storing them in a
clustered R-Tree.

Before describing the details of our system architecture and
indexing scheme, we first describe the differences between
TrajStore and related systems in more detail.

II. RELATED WORK

There has been substantial related work on storing and
querying spatio-temporal data.

The “classic” data structure for indexing moving objects and
trajectories is the R-Tree [3]. Unlike TrajStore, R-Trees do not
per se cluster data and are optimized for accessing arbitrary
spatial objects, rather than large numbers of overlapping
trajectories. Of course, it is possible to attempt to physically
co-locate (cluster) objects in the same R-Tree rectangle together
on disk (indeed, in our evaluation of R-Trees we found this
was necessary to get anything close to reasonable performance
on our data set.) Even so, as R-Trees consider nested bounding
rectangles to index the objects, it is very likely that if there are
many trajectories passing through a small area, there will be
large overlaps in these bounding rectangles, resulting in many
I/Os to answer any query.

There have been many optimizations to R-Trees for spatio-
temporal data, including TB-Trees [4] and SEB-Trees [5]. TB-
Trees are optimized R-Tree indices with special support for
temporal predicates. They also do not deal well with very long
trajectories that tend to have very large bounding rectangles,
and can include a high number of I/Os per lookup. SEB-Trees
segment space and time, but are not specifically designed for
indexing trajectories. Research on TB-trees and SEB-trees does
not explicitly discuss how to cluster data, and both are non-
adaptive (i.e., they do not reorganize previously added pages
as new data arrives.)

To address the concern with very large trajectories, several
systems have proposed segmenting trajectories to reduce the
sizes of bounding boxes and group portions of trajectories that
are near each other in space together on disk. Rasetic et al. [1]
propose splitting trajectories into a number of sub-trajectories,
and then indexing those segments in an R-Tree. They propose
a formal model for the number of I/Os needed to evaluate a
query, and use a dynamic programming algorithm to minimize
the I/O for an average query size. TrajStore also includes an
algorithm for optimally splitting trajectories, but physically
clusters those trajectory segments rather than just indexing
them. We also show how to efficiently maintain this clustering
in the face of insertions and deletions. We explicitly compare
against Rasetic et al.’s approach in our experiments; we chose
them as a point of comparison because their paper [1] shows
that they dominates earlier approaches like SEB-Trees and
TB-Trees for the kinds of trajectory queries we are running.

SETI [6] also advocates a segmentation-based approach
like TrajStore. It segments incoming trajectories into sub-
trajectories, groups them into a collection of “spatial partitions”,
and then runs queries over just the spatial partitions that are
most relevant to a given query. Like TrajStore, SETI’s approach
is on-line, in the sense that it allows new data to be added

dynamically. The principal differences between TrajStore and
SETI are that: 1) the SETI paper does not describe how the size
or geometry of partitions are selected, or whether it changes as
inserts occur, which is a key contribution of TrajStore, and 2)
SETI does not discuss trajectory compression. Furthermore, the
SETI paper provides very few details about how the algorithms
and encoding schemes work, such that we cannot compare
to the SETI approach. We contacted the SETI authors and
they were unable to provide an implementation. However, we
compare against conceptually similar approaches (see the Grid
approaches in Section VI.)

PIST [7] focuses on indexing points rather than trajectories
making it directly incomparable to our approach. PIST is similar
in spirit to TrajStore in that it attempts to optimally partition
a collection of points into a variable-sized grid according to
the density of the data and query size using a quad-tree like
data structure. Unlike TrajStore, PIST is off-line (i.e., it does
not adapt to new data being added dynamically). It also does
not compress data. Finally, its load performance is slow – in
Section 5.6 of [7], the authors report that PIST takes about
900 s to index 2.5 million points; TrajStore is able to load a
75 million point data set in 900 s on a comparable machine,
making TrajStore about 30 times faster.

A number of other systems, such as STRIPES [8], use a dual
transformed space to index trajectories. While such indices
are very compelling when indexing the future positions of
moving objects, they are known to be suboptimal for answering
historical queries [9].

Clustering and compressing trajectories is very important
in our context because of the very high redundancy generated
when sampling the position of urban vehicles at high rates.
Spatial clustering has been extensively studied in [10], [11],
[12]. These approaches focus on generic methods to extract
cluster information from large collections of ad hoc data points.
Our clustering problem is more specific, since we deal with
series of points ordered in time. Also, we take advantage of
the fact that the underlying model for our trajectories are road
segments, which we use to directly detect similar trajectory
segments within each index cell.

Much of the work related to compressing geo-spatial data
is focused on fitting raw data points to an underlying road
network [13], [14], [15] that form a piecewise polynomial
approximation of the trajectory. As such, this work requires as
input a road map, which TrajStore does not require. Cao and
Wolfson’s approach [14], though dependent on a road map,
is the most similar to TrajStore. Cao and Wolfson store all
trajectory segments that are within some ε distance from a
road segment as a list of time deltas encoding when and how
fast the segment was traversed. In contrast, TrajStore finds
segments that are within some ε distance of each other and
encodes these segments as a canonical trajectory and a list of
time deltas. Finally, work such as [16], [17], [18] focus on
single trajectory compression by constructing representative
trajectories. The algorithms typically remove points while
keeping the compressed trajectory within a user specified error
bound. In Section V, we describe an efficient window algorithm
(as in [18]) that is modified to take into account time-stamps,
and show how to combine this algorithm with our trajectory
clustering techniques.
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Fig. 1. The TrajStore Architecture.

III. OVERVIEW OF APPROACH

In this section, we discuss the overall design of TrajStore
and the basic approach for processing queries and updates.
The architecture of TrajStore is shown in Figure 1. The
query processor receives a stream of queries as well as new
trajectories to store. A query Q(T, r, t) over a table T , a spatial
region r (in the form of a rectangle), and a temporal range t
returns a set of sub-trajectories that lie within r during t. The
sub-trajectories are portions of larger trajectories clipped to
the rectangle r.

Tables have a schema of the form (f1, . . . , fn, T j) where
f1, . . . , fn are metadata pertaining to a trajectory Tj. The
metadata may include, for example, a trajectory id, a user
identifier specifying who collected the data, some measure of
accuracy, and so on. This metadata is specified at the time
table T is created. New trajectories are added via a call to
insert(f1, . . . , fn, T j). A trajectory Tj is simply a vector of
(x, y, t) or (x, y, z, t) of tuples, ordered by time-stamp t.

A. Storage Structures

TrajStore storage structures are optimized for spatial queries
over specific regions with relatively large time bounds, rather
than finding just one or a few trajectories that pass through a
region at an exact point in time. For this reason, our storage is
primarily organized according to a spatial index, with temporal
predicates applied on the data retrieved from this spatial index,
as we expect spatial predicates to be generally more selective
than temporal predicates.

The basic storage layout of TrajStore is shown in Figure 2.
Data in TrajStore is stored by the spatial index and clusterer,
as described in Section IV. TrajStore employs several indexing
algorithms, all of which work by segmenting trajectories into
sub-trajectories, and then clustering spatially co-located sub-
trajectories into cells on disk. The primary new spatial index
that we propose is an adaptive quadtree, where each cell in
the quadtree corresponds to a collection of pages on disk that
contain the trajectory fragments in that cell. The metadata
regarding the bounds and location on disk of the cells fits in
memory (as shown in Table II, it consists of a few hundred
rectangles for hundreds of megabytes of trajectory data.)

Each cell consists of one or more disk pages, which are
the fundamental unit of transfer between the file system and
TrajStore; in our experiments, we set the page size to 100 KB.
New pages are allocated from a free list; by keeping pages
relatively large, we limit the relative fraction of time spent
seeking between pages when reading a cell from disk.

Fig. 2. Basic storage structures to represent data on disk.

TrajStore is primarily optimized for append only storage;
trajectories are assumed to arrive in insertion order, and new
sub-trajectories are simply appended to the most recent page
allocated for each cell in the spatial index. We believe this is
a reasonable assumption as trajectories are generally collected
from GPS devices and should not change or need to be
updated after the fact. To support removal of data, TrajStore
associates a “deleted” bit with every sub-trajectory as discussed
in Section III-D.

As sub-trajectories are added to a cell, new pages may be
allocated. We associate a sparse time-stamp index with each
cell that simply stores a start-time-stamp and end-time-stamp
for each page in the cell, making it easy to find the subset of
pages in a cell that overlap a given time predicate.

Each cell can be compressed using a collection of compres-
sion schemes, as described in Section V. The main idea with
our compression approach is to eliminate spatial redundancy
which arises when many trajectories traverse approximately
the same path through a cell.

TrajStore maintains an in memory buffer pool of pages that
have been recently read or updated. Pages are written back
using an LRU cache management policy. TrajStore maintains
a standard sequential write-ahead log of unflushed updates to
pages to facilitate crash recovery.

Finally, TrajStore maintains a trajectory index which, for
each trajectory, maps to a list of cells containing the sub-
trajectories of that trajectory.

B. Processing Queries

To process a given query Q(T, r, t), TrajStore first performs
a lookup on the spatial index to retrieve the cells overlapping r.
The system then uses the time-stamp index to find all relevant
pages that overlap t within a cell. Finally, it fetches the pages
from disk and linearly scans the sub-trajectories that satisfy the
spatial and temporal predicates to extract those that overlap r.
This produces a set of (sub-trajectory, time-stamp) pairs. The
system then assembles sub-trajectories from the same trajectory
together in time-stamp order to produce the final query results.

C. Handling Insertions

Each new trajectory is processed by the clusterer, which
possibly re-organizes one or more of the cells in the index,
splits the trajectory into sub-trajectories, updates the cells on
disk (allocating new pages as needed), and finally updates both
the temporal indices attached to the pages and the trajectory
index. The details of cell creation and management are specific



to the clustering algorithm and are described in Section IV. To
prevent concurrent queries from seeing insertions, each query’s
temporal predicate is constrained to discard time ranges of
trajectories inserted after the query began.

D. Deletions and Space Reclamation
To delete a trajectory Tj, the system uses the trajectory

index to find all of the sub-trajectories of Tj. It then sets the
deleted bit for each of those sub-trajectories to 1 and removes
Tj from the trajectory index.

Additionally, TrajStore maintains a “deleted count” for each
disk page that indicates the number of deleted sub-trajectories
on that page. When a page’s fraction of deleted trajectories
goes above some threshold, the page is added to a reclamation
list. Periodically a reclamation process runs, processing a cell
at a time. For each cell that has a page on the reclamation list,
it looks at each of the pages needing reclamation and writes
a new version of the page to disk discarding the deleted sub-
trajectories. When processing a cell, the reclamation process
will whenever possible merge together lists of pages that are
partially empty, updating the temporal index on the cell as it
runs.

To prevent the reclamation process from interfering with
concurrent modifications, each cell has a “reclamation lock” on
it that can be held concurrently by many inserters or queriers
but must be held exclusively by the reclamation process.

IV. SPATIAL INDEX AND CLUSTERER

In this section, we describe the new spatial indexing
technique we have developed. The key idea behind this
technique is to segment space into a series of optimally sized
rectangles for retrieving large numbers of spatially related sub-
trajectories. Our approach dynamically adapts the index as new
data is loaded or as the query workload evolves.

A. Motivation for a New Technique
We devised a novel, adaptive and iterative algorithm to

co-locate spatially related segments on disk. As discussed in
Section II, there already exist several approaches for segmenting
trajectories. However, all previous clustering or indexing
techniques either require a large number of independent I/Os
when retrieving data from a very dense region (e.g., [1],
[7], [19], [20] etc.), or suggest uniform, grid-like partitioning
schemes (e.g., [6]).

Both classes of techniques have drawbacks in the setting
we consider. Splitting individual trajectories [1], or relying on
standard storage systems to retrieve the segments [7] incurs a
number of disk seeks proportional to the number of segments
touched, which is inappropriate for large datasets residing
on disk due to high seek costs (see Section VI). Splitting
algorithms for small query sizes create a very large number of
bounding boxes, which lead to unnecessarily large indices.

Using fixed grid index to split trajectories and co-locate
sub-trajectories on disk also has limitations. Query resolution
is directly dependent on the size of the cells making up the grid.
Big cells are inadequate for smaller queries, as they contain
many segments that do not intersect with the query. Smaller
cells, on the other hand, require more disk seeks to retrieve
a given spatial region and generate a higher number of split
points that need to be inserted in addition to the original points

in order to reconstruct the trajectories. The optimal grid cell is
difficult to determine, as it depends both on the exact spatial
extents of the trajectories and the query load. Thus, the optimal
grid size changes with the query load or as more trajectories
are added to the system (see also Section VI). One of the key
ideas in TrajStore, which we present in the following section,
is to employ an adaptive technique to determine and maintain
index cells optimized for the retrieval of large numbers of
sub-trajectories, even when new trajectories are inserted or
when the workload evolves.

B. Optimal Cell Size
As with many data warehousing applications, the time taken

to answer historical queries on large trajectory data sets is
largely dominated by disk operations, since most of the time
is actually spent fetching data from disk. As discussed above,
TrajStore strives to limit disk seeks and data transfers by
compactly co-locating neighboring sub-trajectories on the same
disk page. Hence, one of the issues we have to tackle is
determining which segments should be co-located on the same
page. The answer to that question is not straightforward as it
depends simultaneously on the workload, the spatial extent of
the trajectories, and the page size.

Consider random rectangle queries q of size qw × qh on
the spatial plane. The optimal way of answering such queries
(assuming the exact coordinates of the query are known a
priori) would be to define a bounding box around the segments
touched by the query and to co-locate these segments on the
same page(s). Our system was built from the start to handle
large data pages of several hundreds of thousands of kilobytes
in order to enable data prefetching and amortize disk seeks.
Hence, we estimate that the query answering cost is directly
proportional to the number of pages accessed to answer the
query (we show that this is indeed the case in practice in
Section VI):

Cost(q) ∼ #pages accessed.

For a homogeneous region cellw × cellh with a density D of
data points (observations) per square unit, the query answering
cost is thus:

Costcell(q) ∼
⌈

(cellw × cellh) D
pageSize

⌉
where pageSize stands for the maximal number of data points
that a page can contain (note that we neglect the cost incurred
by the additional points needed when splitting the trajectory).
The above function is highly non-linear – a cell with no points
costs 0 (in practice, keeping track of empty cells can be done
without disk access) whereas a cell containing any number of
points from one to pageSize costs 1.

For a larger homogeneous region of area area, more cells
are needed. The cost associated with accessing this area given
a random query of size qw × qh and for a given cell size is
thus [21]:

Costarea(q) ∼
∑
cell

P (q ∩ cell)
⌈

(cellw × cellh) D
pageSize

⌉
where P (q ∩ cell) is the probability that the random query
intersects the cell cell. This probability depends on the spatial



extents of both the query and the cell. Clearly, the query
intersects a cell when its center falls within the boundaries of
the cell. It also intersects the cell when its center falls just
outside of the cell, up to a distance qw/2 of the vertical edges
of the cell, and up to qh/2 outside the horizontal edges [1].
For an area area and by neglecting border effects that happen
at the edges of the region (outside of which queries would not
be allowed), the probability of a random query q intersecting
a given cell is thus:

P (q ∩ cell) ∼ (cellw + qw)(cellh + qh)
area

.

By substituting this probability in the cost expression, we
obtain the final cost expression for a query:

Costarea(q) =∑
cell

(cellw + qw)(cellh + qh)
area

⌈
(cellw × cellh) D

pageSize

⌉
.

Our objective in the remainder of this section is to show how
to minimize this expression.

C. Multi-Level Grid
The cost formula introduced above allows us to determine

the optimal grid size for a large homogeneous area of density
D, by considering a series of juxtaposed squares of the same
size cell× cell covering the area. Replacing the summation in
the previous expression with the number of cells in the total
area, which is area/cell2, and again neglecting border effects,
we obtain the following expression for the optimal cell size in
a regular grid approach:

cellopt = argmin
cell

(
(cell + qw)(cell + qh)

cell2

⌈
(cell2) D
pageSize

⌉)
.

The above expression points out the limitations of a fixed
grid approach. The optimal cell size depends on the density
of the region considered. However, large trajectory data sets
are highly skewed in the spatial dimension, as most traces
concentrate around popular areas (e.g., city centers) and roads,
while isolated areas (e.g., forests) are mostly empty. Thus, the
optimal grid size compromises by averaging the query retrieval
cost over all regions. Even more problematic, the density of
the data set evolves every time a new trajectory is inserted.
Maintaining an optimal grid size in presence of updates would
require repeatedly re-clustering the entire data set, replacing
all pages with new pages corresponding to a new cell size,
which is unacceptable for very large data sets.

Instead of a fixed grid approach, we develop in the following
an adaptive, multi-level grid approach, which recursively splits
and merges cells in order to minimize the number of disk
transfers. Figure 3 gives an example of the resulting index
structure. The information about each cell is maintained in a
dynamic quadtree, whose cells point to series of pages storing
the data. Our dynamic approach splits regions in order to
minimize empty space in the cells containing segments. On the
left hand side of Figure 3 (point 1), for instance, the cells are
recursively split in order to isolate a few segments. Cells are
also divided in dense areas (point 2), where accessing any point
in space is costly and where any overhead associated with the
access of superfluous areas has to be avoided. However, splitting
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Fig. 3. Our index structure recursively splits cells in four in order to minimize
the number of accesses to the storage layer.

cells may also lead to suboptimal partitions, for example for
sparse areas containing a few segments only that should be
stored together in order to minimize disk access (Figure 3
point 3) or for bigger query sizes. We give the details of our
splitting algorithm below.

D. Index Construction
As our system continually receives trajectory data from a

fleet of moving objects, we have devised an efficient, iterative
mechanism to maintain an optimal index in the presence of
frequent inserts. At any point in time, we keep a spatial index
(a quadtree) representing the spatial configuration of the index
cells. Each cell is also associated with a cost:

Costcell(q) =
(cellw + qw)(cellh + qh)

area

⌈ ∑4
i=1 pi

pageSize

⌉
.

where p1, . . . , p4 represents the current number of points in
each of the four quadrants of the cell. This cost is derived from
the general cost expression described above and represents
the expected (average) cost for the retrieval of the trajectory
segments contained in the cell, given a query q. The first term
represents the probability that the cell gets queried, as before. In
the remaining cost expressions, we drop the 1/area term from
this expression as it is a constant that affects the magnitude
but not the relative costs of different cell configurations.

We initially start with a set of four empty cells covering
the entire area of interest. We split any incoming trajectory
according to the spatial index, creating lists of sub-trajectories
each of which is spatially contained by a cell. Before writing
a sub-trajectory to disk on the pages corresponding to its
enclosing cell, however, we split the sub-trajectory one
additional time, creating sub-trajectories for each of the (virtual)
sub-quadrants of the present cell. Now, suppose we want
to insert a sub-trajectory in a cell at level l, where level 0
corresponds to the root of the quadtree, level 1 to its four
children, etc. Three different cases can occur:
Split Taking into account both the current number of points
(p1, . . . , p4) contained in the cell at level l and the points
(n1, . . . , n4) from the new trajectory split by quadrant, we
determine the cost associated with the replacement of the
current cell by its four children:

ChildCostcell =
4∑

i=1

(cellw/2 + qw)(cellh/2 + qh)
⌈
pi + ni

pageSize

⌉
.



A new cost smaller than the current cost triggers the split(cell)
subroutine (see Algorithm 1), which recursively splits the cell
as long as the cost associated with the sub-cells is smaller than
that of the parent cells. New sets of pages are created on disk
for each of the sub-cells.

Merge Similarly, we compute the cost associated with the
replacement of the current cell and its three siblings (which
can themselves contain sub-cells) by a new parent cell:

ParentCostcell = (cellw × 2 + qw)(cellh × 2 + qh)×⌈∑4
i=1 ni +

∑4
i=1 p

neigh
i ∀neigh ∈ desc(par(cell))
pageSize

⌉

where par() retrieves the parent of a cell and desc() all the
cells in the sub-tree attached to a given parent (its descendants).
We call the merge subroutine (see Algorithm 2) whenever the
cost associated with replacing the current configuration of cells
by a parent cell is smaller than the current cost. This happens
in relatively sparse regions, where storing adjacent segments in
the same cell is less costly than creating relatively empty cells
for each of the segments. Merge reads the sub-trajectories
from several cells, sorts the sub-trajectories by time whenever
necessary, and produces a merged list of sub-trajectories.

Append For dense regions, adding a few segments to a cell
does not typically alter the cost of the cell significantly. When
neither splitting nor merging is necessary, we simply append
the new data to the page corresponding to the cell and update
the values of p1, . . . , p4.

We use a cost penalty in practice to avoid splitting or merging
cells unnecessarily for insignificant cost gains (i.e., we only
split when ChildCostc×(1+εcost) < Costc and merge when
ParentCostc × (1 + εcost) < Costc for a given εcost). All
three subroutines maintain a temporal index on the temporal
range (smallest time-stamp and biggest time-stamp) of each
page. In order to minimize the seeks when fetching data from
a cell, both split and merge request lists of pages from the
storage manager that are contiguous on disk when writing new
cells.

The index constructed in this way is optimal, in the sense
that the expected cost of answering the workload is iteratively
minimized by splitting and merging cells for every insertion. In
environments where inserts are infrequent, we extend the above
algorithm and assess the total cost of several split/merge steps
for every insertion to ensure that the partitioning converges
rapidly.

E. Query Processing

To retrieve trajectory data for a given query, we perform a
lookup on the spatial index to determine the cells that intersect
the query on the spatial plane. We examine the temporal range
of all pages associated with the cells intersecting the query,
and retrieve those pages that contain data in the temporal range
specified by the query. Finally, we reconstruct the trajectories by
merging all sub-trajectories with the same trajectory identifier,
and clip the resulting set of trajectories following the exact
query bounds to return the results.

Input: A cell cell that will be split
Output: The number of cells nbNewCells that have been

inserted into the quadtree to replace this cell
int nbNewCells = 01
cell[] children = doSplitInFour(cell)2
quadTree.remove(cell)3
foreach cell newCell ∈ children do4

if childCost(newCell) ∗ (1 + ε) < cost(newCell) then5
nbNewCells + = split(newCell)6

else7
quadTree.insert(newCell)8
nbNewCells+ +9

return nbNewCells10

Algorithm 1: Algorithm Split for recursively splitting cells.

Input: A cell cell that will be merged with its neighbors
Output: The number of cells nbMergedCells that have been

merged and replaced by a new cell
int nbMergedCells = 01
cell[] neighbors = desc(par(cell))2
cell newCell = doMergeCells(neighbors)3
quadTree.remove(neighbors)4
nbMergedCells + = neighbors.size()5
if parentCost(newCell) ∗ (1 + ε) <

P
cost(cell) ∀cell ∈6

desc(par(newCell)) then
nbMergedCells + = merge(newCell)7

else8
quadTree.insert(newCell)9

return nbMergedCells10

Algorithm 2: Algorithm Merge for merging cells.

F. Query Adaptivity

Our approach as described thus far easily adapts to the
addition of new data—as trajectories are added, grid cells may
be split or merged as needed to optimize performance.

We provide additional mechanisms to support query adap-
tivity. The key observation is that the formula for the cost of
a cell is dependent on the query size. One option is to assume
an average query size that is used over all time, but this is
clearly simplistic. As an alternative, we have implemented a
scheme that records an exponentially weighted moving average
(EWMA) query size QS with each cell. We update the current
EWMA query size curQS (represented as two values, h,w)
when a new query newQS(h,w) is processed as follows:

curQS = (α× curQS.h+ (1− α)× newQS.h,
α× curQS.w + (1− α)× newQS.w)

where α is an exponential weighting factor. Whenever a cell
is queried, we recompute the EWMA as curQS and save the
value along with QS. When |curQS.h× curQS.w−QS.h×
QS.w| > t for some size threshold t, we re-cluster the cell and
save curQS as QS. Re-clustering simply involves applying
the cost formulas for split and merge given in Section IV-
D with q set to curQS. We show the effectiveness of this
adaptivity technique in our experiments.

V. COMPRESSION

In this section, we describe our method for compressing
sub-trajectories stored within a cell. Our approach combines
two compression schemes:



1) We use a lossless delta compression scheme to encode
successive time and space coordinates within a trajectory.

2) We use a lossy compression scheme to cluster trajectories
traveling on nearly identical paths, and store a single
representative spatial path for all trajectories along with a
collection of time offsets for each trajectory in the cluster.

Our clustering mechanism is particularly effective in the
context of our dataset of road trajectories, where different cars
drive the same roads and paths over and over again, which
leads to a great deal of redundancy. Unlike other compression
methods for trajectory data (e.g., [14]), our approach does
not rely on an underlying map of road geometry to identify
and cluster related trajectories. Although such road maps are
available for some parts of the world, they must be kept up to
date as roads change and cannot be made to work for pedestrian
or off-road tracks, which limits their utility.

A. Single Trajectory Delta Compression
Our delta compression scheme encodes a trajectory of the

form:
(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)

as a starting coordinate followed by a series of deltas, e.g.:

(x1, y1, t1), (∆x2,∆y2,∆t2), . . . , (∆xn,∆yn,∆tn)

where ∆(x|y|t)i = (x|y|t)i−1 − (x|y|t)i. The key idea is that
each of these deltas can be encoded using significantly less
space than the original value. Because of the difficulty in storing
floating point numbers, we encode the deltas using fixed point
arithmetic. For the majority of points, we can store each delta
in a single byte, with some larger differences requiring 2 or
3 bytes. Overall, delta encoding alone reduces the size of the
data set by about a factor of 4, as we show in Section VI.

B. Cluster-based Compression
In combination to delta-encoding, TrajStore employs a

cluster-based lossy compression method that encodes multiple
sub-trajectories together. The overall idea is to cluster related
sub-trajectories in each cell into cluster groups, and store only
one trajectory per group. This method is lossy as it relies
on storing a summary trajectory for each group, omitting the
individual spatial points of each trajectory in the group. Because
different trajectories may record traversals of the same roads
at different times and rates, we still must delta-encode and
store each trajectory’s time values. The following describes this
algorithm in more detail, as well as additional optimizations.

1) Calculating Distances Between Trajectories: Given two
trajectories:

t1 = [(x11, y11), (x12, y12), . . . , (x1n, y1n)]
t2 = [(x21, y21), (x22, y22), . . . , (x2n, y2n)]

we can calculate the distance between t2 and t1 by considering
each point pi1 in t1 and computing its distance from the
corresponding point pi2 in t2. We find the corresponding point
pi2 in t2 by first calculating pi’s linear distance along t1 from
p11, and traveling the same distance along t2. We then measure
the Euclidean distance d between the two points pi1 and pi2.
Finally, we compute the distance between the two trajectories:

traj dist(t1, t2) = max(d(pi1, pi2)) ∀pi1 ∈ t1, pi2 ∈ t2

We note that traj dist(t1, t2) may not equal traj dist(t2, t1),
as the two trajectories may have a different number of input
points. Hence, we report the final distance as:

dist = max(traj dist(t1, t2), traj dist(t2, t1))

2) Calculating cluster groups: Cluster groups are formed
around a central trajectory t, such that for all other trajectories
t′ in the group, dist(t, t′) < ε. We currently select the first
trajectory scanned as the central trajectory. Algorithm 3 shows
the algorithm for cluster group formation.

Input: A cell containing a set of trajectories
Output: A list of cluster groups {G1, . . . , Gn}, where all

trajectories in a group Gi have dist < ε from each
other.

foreach trajectory t in cell do1
if t is in a group then2

continue3
/* t is central trajectory of G */
create new group G = {t}4
foreach trajectory t′ in cell do5

if t′ is in a group then6
continue7

if dist(t, t′) < ε then8
G = G ∪ {t′}9

Algorithm 3: Algorithm for forming cluster groups.

3) Storing Cluster Groups: Once cluster groups have been
formed, the compressed cell can be written to disk. For each
group, the central trajectory t is written out using delta encoding
(as above). For other trajectories, we must record their time
vectors. Because these other trajectories may have been sampled
at different rates or frequencies than t, we must extrapolate
each stored position p in t to the times when each of these
other trajectories visited p. This extrapolation is done in a
manner similar to the distance calculation given above: for
a given non-central trajectory t′, for every point p in t, we
find the point p′ that is the same distance along t′ as p is
along t. Then, we compute the time tsp′ when t′ visited p′

by looking at the stored time-stamps of the two points in t′

that are closest to p′, assuming that the object moved at a
uniform speed between those points. Finally, for each t′, we
delta encode and store these tsp′ time-stamps.

4) Updating Cluster Groups: When a new trajectory t′ is
inserted into a cell, we search for a group g with central
trajectory tg such that dist(t′, tg) < ε. If we find such a group,
we encode t′ and store it with the cluster group as above.
Otherwise, we create a new group for t′ and make t′ the
central trajectory of that group.

Our results in Section VI show that cluster group compres-
sion, combined with delta compression of time-stamps, yields
an overall compression ratio of nearly a factor of 8 on our real
world driving data.

C. Eliminating Extraneous Points

Because our GPS data is sampled at relatively high frequency,
there are often times when vehicles don’t move or move along
a completely linear trajectory. Hence, as a final compression
step, we eliminate extraneous points that can be predicted via
linear interpolation from the surrounding points. To describe the
algorithm, we first define a function isSummary(pi, . . . , pj),



which returns true if the points between pi and pj can be
linearly extrapolated (see Algorithm 4).

Input: List of points (pi, . . . , pj), ε
Output: Returns True if the line between pi and pj is an ε

approximation of points pi, . . . , pj . Else, returns False.
Compute the line L between pi and pj1
foreach px between pi and pj do2

tx = px’s time-stamp3
`x = Interpolated location of a point at tx along L4
if

p
(`x − px)2 < ε then5
px is removable6

if all points between pi and pj are removable then7
return True8

else9
return False10

Algorithm 4: isSummary() Algorithm

To eliminate extraneous points in a trajectory T , we set pi

to the first point in T and find the furthest point pj along
the segment such that isSummary(pi, pj) is True. The points
between pi and pj are removed, pi is set to pj , and the process
is repeated until pi is at the end point.

D. Choosing Epsilons

As mentioned earlier, both cluster based compression and
extraneous point elimination are schemes that attempt to
summarize segments within user specified error bounds. If
we set the error bounds for clustering and point elimination to
ε1 and ε2, respectively, then the maximum error incurred when
using both schemes is simply 2× ε1 + ε2. Thus, we can ensure
a bound of ε for the entire system, by setting the bounds for
clustering to ε1 = ε/4 and point elimination to ε2 = ε/2.

VI. EXPERIMENTS

Having described our scheme for indexing and compressing
trajectories in TrajStore, we now evaluate the performance of
our approach.

A. Experimental Setup

To analyze the performance of our approach, we imple-
mented and compared several trajectory indexing schemes in
the same basic experimental framework.

1) Software Implementation: We implemented TrajStore,
including the indexing, clustering, and compression methods in
Java 1.6. Our implementation consists of approximately 30,000
lines of code. In all cases, we ran Java configured with 1024
megabytes of memory.

We compared against several approaches (described below).
In most cases, we implemented these approaches from scratch
using the TrajStore framework, though we did use the open
source XXL [22] library for our R-Tree implementation. We
experimented with different fanouts for the R-Tree, and finally
chose a fanout of 500, which worked best for the approaches
that heavily rely on the R-Tree (ClustSplit and NoSplit below.)

2) Hardware Configuration: Our results were produced on
a dual 3.2 GHz Pentium IV with 2 gigabytes of RAM and a
300GB 7200 RPM drive, running Redhat Linux 2.6.16.

3) Data Set: Our primary experiments were with 890 MB
(approximately 77 M data points) of driving data from the
data set described in the introduction. This comprises 11,014
separate trajectories. Although this data set can fit into the RAM
of our machine, the experiments we run are all disk bound as

we flushed the buffer pool and OS file system cache (using
the Linux 2.6.16 /proc/sys/vm/drop caches method)
before each trial. This data set was collected from a fleet of 20
vehicles; however, the techniques described in this paper scale
to much larger fleets, whose aggregate size could easily exceed
the memory of any modern machine (see Section VI-B.7, which
reports scalability results).

This data covers 68,000 hours of driving, from January 24,
2007 to December 3, 2008. The average trajectory is 6,990
GPS readings taken once per second, so the average drive
is about 2 hours. Trajectories primarily come from taxi cabs,
which tend to have long drives. A new trajectory is created
when a car turns off or idles in the same location for a long
time. As with most real data sets, this data set is skewed (our
taxis drive mostly in downtown and from/to the airport.) We
note that this data set is approximately 20 times larger than the
data sets used in previous papers [1] on large scale trajectory
management, which used about 5 million synthetic data points.

4) Approaches Compared: We compared a number of
approaches in our experiments:
Adaptive: The TrajStore adaptive clustering approach, as
described in Section IV. The adaptivity (Section IV-F) and
compression (Section V) features of our approach were turned
off, except for three experiments described below (experiments
3, 4, and 7).
Grid: This approach segments trajectories according to a fixed
size grid chosen based on an input query size, and then stores
trajectory segments from the same grid cell together on disk
using TrajStore’s storage manager. It uses a simple spatial
index to find the grid cells that can be used to answer a query.
ClustSplit: The method of [1], where a trajectory is split into
a number of sub-trajectories based on a dynamic programming
algorithm that optimally splits a trajectory for a given query size.
The algorithm described in [1] incurs one I/O per sub-trajectory
segment retrieved, which yields very poor performance when
running queries that retrieve a large fraction of the database,
which is our main focus. To improve its performance, we
co-locate all of the segments contained within a given leaf
node of the R-Tree together on disk, reading them all into
memory when a query over any of them is asked. Without
this optimization, performance of this approach are about three
orders of magnitude slower on our data set because of the
huge number of random I/Os required.
NoSplit: This approach stores each of the trajectories in an R-
Tree, and performs no splitting. It incurs one I/O per trajectory
read. This is comparable to what we use in our current vehicular
trajectory database described in the introduction. For most
experiments with R-Trees, we chose to use the XXL package
over PostGIS (http://postgis.refractions.net/)
because it offered better performance; however, we also
experimented with Postgres/PostGIS R-Trees as a baseline.
CapacityQuad: This approach uses a capacity-bound quad-
tree as an index, where each cell in the quad-tree is represented
by a single page on disk. Trajectories are segmented according
to the boundaries of the quad-tree, and sub-trajectories are
stored in each quad-tree cell. A quad-tree cell is split into four
sub-cells when its page is full. We stop the splitting process
for tiny cell sizes to prevent floating point arithmetic issues.



5) Performance Metrics: We use two performance metrics.
The first is the number of I/Os (e.g., disk pages read). In our
experiments, we varied the disk page size from 10KB to 1MB.
We stored all pages belonging to the same cell contiguously on
disk to create large blocks of related data that could be read
continuously. Hence, the time taken to answer a query didn’t
vary significantly with the page size (less than 10% variations
for page sizes ranging from 10KB to 1MB). In the following,
we use 100KB pages, which we found worked well over a
range of experiments, unless otherwise reported. Disk I/O is
a good indicator of overall system performance, but does not
capture disk seek. For this reason, we also measure the overall
running time for each approach.

B. Results

In this section, we present the results of several experiments.
1) Baseline Experiments: We started by running a few

simple experiments comparing our system to two well-known
approaches. We compared TrajStore to a standard Postgres
installation with PostGIS and ClustSplit, our own implementa-
tion of the trajectory splitting technique in [1] with clustering
of the objects in the same leaf page. We loaded a subset of
our CarTel data set representing 250 MB of trajectory data
and measured the average time needed to retrieve trajectory
segments in 1% of the total area considered. PostGIS with
a spatial index on each trajectory required 4.1 s on average,
due to the large number of trajectories (and number of points)
that are retrieved (many of these points are in fact outside the
query rectangle). ClustSplit took on average 9 s to answer the
queries, due to the large index it creates (see Table II), which
requires a large number of random I/Os to traverse. In contrast,
TrajStore took an average of 48 ms to answer the queries, as
it needs to read only a few blocks from disk containing the
trajectory segments of interest.

2) Experiment 1: Query Size: In the first experiment we
ran queries with spatial predicates over 10%, 1%, and 0.1% of
the entire region covered by our data set. For this experiment,
we queried 100% of the temporal data; we experiment with
temporal predicates in Experiment 5 below. For 10% queries,
we ran 10 randomly selected queries; for 1% queries, we
ran 100 randomly selected queries; for 0.1% queries, we
ran 1000 randomly selected queries. Thus, each trial queries
approximately the same amount of total data from the system.
The same query rectangles were used for each different index.
For these experiments, the Adaptive, Grid and ClustSplit
methods, which use the query size as input, were given the
exact query size for use during indexing. In later experiments
we show the robustness of these algorithms when the exact
query size in unknown, or when the query size varies during
the experiment.

Figures 4, 5 and 6 show the runtimes and number of I/Os
for 10%, 1%, and 0.1% queries, respectively. Results are the
average number of milliseconds or I/Os per query.

Here, “Adapt.” is our Adaptive scheme. It performs the best
of all the approaches, both in terms of I/Os and running time.
As it groups pages on disk within cells, and keeps cells sized
optimally for the query, its overall performance is very good.
As expected, larger queries require more I/O and take longer
to run, but performance is essentially linear, with about 100x

more I/O and running time for a 10% query than a 0.1%
query. In general, Adaptive is about a factor of 8 better than
the ClustSplit algorithm in terms of total time per query on
this data set. The figure also shows the accuracy or our cost
model, as the number of I/Os is directly proportional to the
time taken to answer the queries, and our model is able to
perfectly estimate the number of I/Os (since it has access to
the index structure when making decisions about whether to
split/merge cells.)

For the grid approach, we computed the optimal grid size
by exhaustively iterating through all grid sizes for subsets of
our data set. In general, we found that a grid size of between
50% (Grid1/2) of the query size and 100% (Grid 1/1) of the
query size works best for gridding. Of course, in practice
such exhaustive search isn’t possible, but the purpose of this
experiment is to show the best these methods can do. Though
this optimal grid approach appears competitive here, we show
in the next section that it does not deal well with queries it
was not explicitly optimized for.

ClustSplit is the optimized version of the technique in [1];
Our optimized version does well in terms of number of I/Os
(nearly matching Adapt.) but generally has a large overall
runtime because it must perform many random I/Os through
the R-Tree when reading pages from disk.

NoSplit, on the other hand, generally reads more pages from
disk, because it stores large bounding rectangles that intersect
many queries, but sometimes performs better than ClustSplit
when many trajectories span more than one disk page. Its
performance is worse for small queries as it has to read whole
trajectories when only small pieces are needed.

CapacityQuad performs reasonably well, especially for small
queries. However, as it writes one page per cell, it ends
up doing lots of random I/O to retrieve the results, which
hurts its performance. Also, it creates many additional (split)
points, which represents a significant overhead both for query
processing and storage.

Indexing Time: We also measured the time to build each of
the data structures for the entire data set and a 1% query size
The results are summarized in Table I. Our adaptive method,
while slower that the simple grid-based approach, still performs
quickly. Our approach can insert approximatively 100,000 new
points per second, which is more than sufficient to handle the
moderate update rates in our telematics infrastructure. It does
much better than the ClustSplit algorithm, which takes quite
a long time to cluster (these numbers are consistent with the
results in [1] (Figure 8), which show that for a 5M point data
set, the total indexing time was between 5,000 and 20,000
seconds.) CapacityQuad is also very slow as it has to split the
trajectories frequently because of all the cells it creates.

TABLE I
INDEXING TIME

Index Time to build (s)
Adaptive 920
Grid 1/1 380
Grid 1/4 502
ClustSplit 10% 7,174
NoSplit 316
CapacityQuad 8,200
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Index Size: Finally, we measured the size of the data structures
and the number of cells created. The results are shown in
Table II. The initial data set was 890 MB and about 77 M
points. As expected, all methods increase the size somewhat.
ClustSplit uses substantially more space as it creates many
more segments than the other approaches (since it segments
each trajectory individually.) The indices created by Adapt,
Grid and NoSplit are several orders of magnitude smaller.

TABLE II
INDEXING SIZE

Index Size (MB) Num. cells Num. split points
x1000

Adaptive 935 802 747
Grid 1/1 913 108 313
Grid 1/4 922.1 408 468
ClustSplit 10% 1.5× 103 14,183 3,521
ClustSplit 1% 2.0× 103 21,094 5,626
ClustSplit 0.1% 1.5× 103 30,118 7,965
NoSplit 890 – –
CapacityQuad 1.5× 103 15,008 3,780

3) Experiment 2: Sensitivity to Query Size: In the next set
of experiments, we look at how well each of our approaches
performs when we optimize the indices for a particular query
size and then run a set of queries with a different size. This
experiment is important because it shows the sensitivity of the
clustering and indexing methods—in reality, queries will never
be of fixed size, and will vary substantially. Hence, an ideal
method would be relatively insensitive to the training query size.
Here, we only show results for Adaptive, Grid, and ClustSplit
(the two other index construction methods are independent of
the query size). In these experiments, we disabled the additional
adaptivity mechanisms (Section IV-F) of our Adaptive scheme.

Figure 7 shows the results when we run 10% queries on
indices built assuming queries are 1% or 0.1%, Figure 8 shows
results for 1% queries on indices built for 10% and 0.1%
queries, and Figure 9 shows 0.1% queries on indices built for
10% and 1% queries. These figures show “speedup”, which is
the ratio of performance of the experiments shown in Figures 4–
6 to the performance where the index was built with a non-ideal
query size (thus, a result > 1 indicates that it was actually
faster/required fewer I/Os when using a non-ideal query size!)
The dark horizontal line indicates a speedup factor of 1 (i.e.,
no performance impact when constructing the index using a
different query size.)

These experiments show that the Adaptive approach is
relatively insensitive to input query size, with runtime slightly
(<5%) faster (for 10% queries on an index built for 1% queries)
to about 40% slower (for 0.1% queries on and index built for

10% queries.) Generally, running smaller queries on a index
built for larger queries is expected to be more expensive because
those queries will have to read substantially larger blocks of
data than what the index was tuned for. Our algorithm does
well in that case, however, because it tends to create small
cells on disk (much smaller than 10% of the entire data set),
even when built for queries over 10% of the data.

The Grid approach is unsurprisingly very sensitive to the
input query size. It is completely non-adaptive, and performs
segmentation based solely on the size of the query, so
performance with a different sized query can be as much
as a factor of 10 slower.

Finally, the ClustSplit algorithm shows surprising results in
this experiment. It is substantially faster (about a factor of 5)
to run .1% queries on an index built for 10% queries, although
the number of accesses is not that much less. The reason for
this has to do with the number of split points generated by the
algorithm. These large numbers of split points lead to many
more tiny rectangles in our R-Tree built for 0.1% queries.
These rectangles tend to be spread randomly across the disk,
incurring substantial random I/O. When indices are built for
10% queries, larger cells are written in the leaves of the R-Tree.
Though those blocks take longer to read, the index co-locates
the pages of these cells on disk, so they are read sequentially,
substantially decreasing the number of seeks.

4) Experiment 3: Adaptivity: The next set of experiments
measured the effectiveness of our query adaptivity scheme. We
initially built clusters for a query size of 10%. We then ran
100 queries of size 1% with our EWMA adaptivity scheme in
place and measured after each query the average number of
I/Os required to answer a 1% query. We intentionally chose
small values for α to increase the convergence speed. The
results are shown in Figure 10.

From the graph, we can see that the number of I/Os per
query drops as more and more cells adapt to the new query
size. Smaller values of α lead to a faster adaptation of the
index. Overall for α = 0.1, the performance stabilizes after
about 100 queries from about 240 I/Os per query to about 180,
a performance improvement of 33%.

5) Experiment 4: Real Query Workload: This experiment
measures the effectiveness of our scheme on a real query
workload taken from a drive management system we built
for CarTel. Users can use this system to browse their own
historical drives as well as traffic patterns and other trajectory
data. Users pose “queries” by panning a map and zooming in
or out; we logged these queries over a period of about two
months. The resulting workload contains approximatively 5000
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queries. More than 50% of those queries retrieve trajectories
in areas representing 0.1% to 1% of the total area considered.
A few queries (approximatively 10%) are significantly larger
and retrieve more than 10% of the area considered. Figure 11
shows the performance of our adaptive approach compared to
the grid approach. The figure shows the cumulative number
of I/Os required to answer the queries for 50 steps, where
we insert 100 trajectories and then pose 100 queries at each
step. Both schemes were initialized using the mean query size
of the first 100 queries. Figure 11 includes two versions of
our Adaptive approach, one with query adaptivity turned on
(α = 0.8), and one with query adaptivity turned off (α = 1).
As can be seen on the figure, our approach clearly outperforms
the static grid approach and is able to iteratively adapt to
the insert and query workloads. The Adaptive scheme with
the EWMA query adaptivity turned on is more effective, but
requires longer to index the trajectories (the total indexing time
is about 40% slower for α = 0.8).

6) Experiment 5: Temporal Predicates: In the fifth set of
experiments, we measured the effect of temporal predicates.
Our goal was to show that the system is able to reduce query
processing time when temporal predicates are included. In
addition to spatial predicates of size 10%, 1%, and 0.1%, we
added temporal predicates of 50%, 10%, and 1% of the time
covered by our entire data. We ran our clustering algorithm
with the correct input query size in space. We then measured
the ratio of performance of each temporal predicate vs. the
performance of the same spatial predicate without a temporal
predicate. The results are shown in Figure 12.

The leftmost group of bars shows the performance with
10% spatial queries and varying time predicates. A 50% time
predicate runs in about 51% of the time as the query without
a time predicate. 10% and 1% time predicates run in about
17% and 8% of the time, respectively. The 10% predicate
is still selective, but generally only uses about 60% of the
data on each page that is read from a cell, wasting some I/O
time. This effect is even more pronounced at 1% temporal
predicates, and only a few records are used from each cell
that is read. Though the results do not scale perfectly, it is
worth noting that we are still reading 175 trajectory fragments
from disk in just 408 ms in this case! Results are similar
for the 1% spatial predicate case (middle bars). The speedup
from temporal predicates is substantially reduced in the 0.1%
spatial predicate case (rightmost bars), especially for smaller
time ranges. This is because so little data is selected in these
cases (we read 8 and 4 sub-trajectories on average for 1% and

0.1% time predicates) that total runtime is dominated by seeks
between cells (runtime is 32 ms and 20 ms respectively in
these cases.)

7) Experiment 6: Scalability: To confirm that our approach
scales with the number of trajectories, we experimented with
data sets of various sizes. Table III gives the results for the
number of I/Os and the time required to answer 1% queries
using our adaptive scheme on data sets ranging from 40 M to
200 M points, corresponding to databases ranging from 470
MB to 2.3 GB approximatively. As can be seen from that table,
both the number of pages fetched from disk and the time taken
to answer the query scale linearly with the size of the data.

TABLE III
SCALABILITY

40M 80M 120M 160M 200M
No. I/Os 90 189 275 376 457
Time (ms) 232 448 719 952 1208

8) Experiment 7: Compression and Extraneous Point Elimi-
nation: In the final experiment, we measured the performance
of our point elimination and compression schemes. For testing
compression, we ran both the single trajectory compression
algorithm and the cluster-based delta compression algorithm.
For these results, we used a page size of 10K. We reduced the
page size to 10K because after compressing the trajectories,
many of the 100K sized pages would have been underutilized.

TABLE IV
COMPRESSION SIZE

No Comp. Delta Cluster LZ
Size (MB) 935 233 121 330
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Fig. 13. 10%, 1%, and 0.1% Query Runtime on Compressed Data.

The sizes of the compressed data are shown in Table IV and
the query times for the same queries as in Figures 4, 5 and



180 

190 

200 

210 

220 

230 

240 

0  10  20  30  40  50  60  70  80  90 

N
o 
I/
O
s 

Query # 

α = 0.5 

α = 0.3 

α = 0.1 

Fig. 10. Query perf. with query adaptation.

0 

1,000,000 

2,000,000 

3,000,000 

4,000,000 

5,000,000 

6,000,000 

7,000,000 

8,000,000 

9,000,000 

10,000,000 

0  1000  2000  3000  4000  5000 

Cu
m
ul
a&

ve
 #
 I/
O
s 

Query # 

Grid1/1 

Adapt(α=1) 

Adapt(α=0.8) 

Fig. 11. Query perf. on the CarTel workload.

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

10% 
Access 

10% 
Time 

1% 
Access 

1% 
Time 

0.1% 
Access 

0.1% 
Time 

Ru
n$

m
e 
Ra

$
o 

100%  50%  10%  1% Time Intervals 

Fig. 12. Query perf. with temporal predicates.

6 are shown in Figure 13. Overall, compression reduces table
sizes by a factor of 7.7, and improves performance by a factor of
1.8–2.6. For reference, we also show results (LZ) for a scheme
where we use Java’s built in LempelZiv compressor to compress
blocks as they are written out. We then decompress the blocks
before processing them. LZ provides a compression ratio of
about 3::1, but actually slows the overall query performance
due to decompression costs.
Single Trajectory Delta Compression. Single trajectory delta
compression reduces data size from 935 MB to 233 MB, a
factor of 4.1. Most points in the trajectories are a very small
distance from the previous point, and thus delta compression
is very effective. Query performance shows less than a factor
of 4 speedup because performance is not purely a factor of
storage size. Decompression costs and disk seeks are also
significant. Performance gains are greater with smaller queries,
since smaller queries lead to fewer seeks and are thus more
affected by reduced I/O demands.
Cluster Compression. Here, we set ε = 1m (see Section V-D).
We also enable extraneous point elimination with ε2 = 0.5m.
Combined, the two techniques reduce the overall size by a
factor of 7.8, about half the size of delta compression alone.
Extraneous point elimination is responsible for a factor of
2.4 compression by itself. Of the total of 9.7× 105 total sub-
trajectories stored, we ended up with 6.0× 105clusters, each
containing 1.6 sub-trajectories on average. The total storage of
121 MB consists of 50 MB of storage for cluster representative
trajectories, and 71 MB for time data points.

VII. CONCLUSIONS

In this paper, we presented TrajStore, a new scheme for
indexing, clustering, and storing trajectory data. TrajStore is
optimized for relatively large spatio-temporal queries retrieving
data about many trajectories passing through a particular
location. Our approach works by using an adaptive gridding
scheme that partitions space into a number of grid cells, and
adaptively splits or merges cells as new data is added or
the query size changes. Our results show that our approach
is substantially better—about a factor of 8—than the best
existing approaches by avoiding expensive I/Os and dense-
packing related data on disk. We also showed that our method
is online, in the sense that it adapts as new data is inserted
or as queries evolve, and that it is relatively insensitive to
configuration parameters such as the input query size. We
presented a compression method that eliminates redundancy
between trajectories that cover similar paths. Our compression

method is able to receive compression ratios of 7.7::1. These
results suggest that TrajStore is the system of choice for large
scale analytic queries over trajectory data.
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