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Abstract

We propose a new genre of overlay network for dissemi-
nating information from popular but resource constrained
sources. We call this communication primitive as La-
tency Gradated Overlay, where information consumers self-
organize themselves according to their individual resource
constraints and the latency they are willing to tolerate in
receiving the information from the source. Such a commu-
nication primitive finds immediate use in applications like
RSS feeds aggregation. We propose heuristic algorithms to
construct LagOver based on preferably some partial knowl-
edge of the network at users (no knowledge slows the con-
struction process) but no global coordination. The algo-
rithms are evaluated based on simulations and show good
characteristics including convergence, satisfying peers’ la-
tency and bandwidth constraints even in presence of mod-
erately high membership dynamics. There are two points
worth noting. First, optimizing jointly for latency and ca-
pacity (i.e., placing nodes that have free capacity close to
the source) as long as latency constraint of other nodes
are not violated performs better than optimizing for latency
only. The joint optimization strategy has faster conver-
gence of the LagOver network, and can deal with adver-
sarial workloads that optimization of only latency can not
deal with. Secondly, somewhat counter-intuitively, in order
to do the aforementioned joint optimization, it is sufficient
to find random nodes based on only the latency constraint,
since even if the capacity of individual nodes is saturated it
does not matter since the LagOver network can potentially
be reconfigured.
Keywords: Overlay Networks, Peer-to-Peer, Heterogeneity,
Web 2.0/RSS, Information dissemination, Algorithms

“If a million people subscribe to a data feed from The Boston Globe,

their constant hits on the site could overwhelm our servers. What’s needed

is a network of feed collectors that could spread the load over a larger

number of computers, the way Akamai Technology in Cambridge smooths

out spikes in Internet traffic for CNN and other big firms.” - Boston

Globe [1]

1 Introduction

Consider a large number of consumers interested in in-
formation available at a single source. Consumers typically
do not have a priori knowledge about the time when new
information is available at the source, and consumers have
individual tolerance of the delay within which they want to
receive the information.

The logical approach to adopt will be to push [6] the in-
formation from the source to the consumers whenever new
information is available at the source. If the source is to
deliver the new information to all the consumers directly
using a source-to-each-consumer communication primitive,
the system will not scale with the size of consumer popu-
lation. This becomes a critical problem for popular infor-
mation sources with limited resources as is increasingly the
case in the age of Web 2.0, e.g., bloggers. Moreover, if
users have differential time constraints, it makes the task of
the source much more complicated and even unattainable
particularly if the source is resource constrained. Finally,
some consumers may not necessarily want to subscribe di-
rectly with the source because of privacy concerns.

A possible alternative to the client(consumer)-
server(source) paradigm is to use the consumers’ resources
to disseminate the information in a peer-to-peer manner.

Furthermore, if different consumers have different re-
quirements with respect to the delay to be tolerated for in-
formation delivery, then consumers can ideally be organized
in the overlay such that the consumers with strictest delay
constraints are placed closer to the server, and they in turn
cater to other consumers with relatively relaxed delay con-
straints. So to say, it’d be desirable to organize the con-
sumers in a latency gradated overlay (LagOver).

In recent years RSS [13]/Atom [7] based publication and
aggregation has gained immense popularity. Designed for
timely delivery of new updates, RSS protocol again requires
the consumers to periodically or regularly pull information
from the server even if there is no new information [9] - and
thus suffers from what is widely termed as the “bandwidth
overload problem”. The fundamental problem with the cur-
rent realization of RSS protocol and aggregator clients is



that all the clients periodically and continuously poll the
source irrespective of whether there are any new updates.
There are various other causes of the bandwidth overload
problem, which are well summarized in [11]. Moreover the
RSS protocol is increasingly being used to disseminate con-
tent, including multi-media content, which is much more
resource consuming than what RSS was originally designed
for. A resource constrained server will fail to cater to an in-
creasing consumer base. RSS might very well be headed
down the path of another pull based application, Pointcast,
which eventually succumbed to its own popularity since fre-
quent pulls were used to emulate push [6].

Providing a practical solution to deal with RSS’s prob-
lems gives us a compelling motivation for designing a la-
tency gradated overlay - where the consumers with strictest
latency constraints are placed closest to the server and con-
tinue to pull from the server periodically, however other
nodes1 can pull from nodes upstream. Alternatively the
nodes closer to the source can even push the updates down-
stream. Such an approach is non-intrusive to the existing
infrastructure since it does not require the RSS protocol it-
self to be changed at all, particularly requiring no modifica-
tions at the source/servers, but needs only redesigning the
clients so that the clients self-organize into a LagOver to
disseminate feeds in a P2P manner.

In this paper we propose a generic communication prim-
itive called latency gradated overlays (LagOver) which ex-
plicitly accounts for peer heterogeneity and individual pref-
erences as inherent parts of the design. We provide heuris-
tic algorithms to construct such latency gradated dissemina-
tion tree overlay networks in a self-organizing fashion, com-
prising of nodes with individual delay and bandwidth con-
straints. We evaluated the algorithms with extensive simu-
lations to demonstrate the viability of LagOver even under
churn (membership dynamics of the consumer population).

While we do not address the issue of incentives or altru-
ism of individual peers and assume collaborative peers, we
explicitly consider a system where individual nodes specify
the maximum resource it is willing to provide, and hence the
number of nodes it is willing to serve. Thus we would like
to design algorithms to construct a latency gradated overlay,
which not only satisfies the delay constraint of individual
nodes, but also is subject to the fan-out constraint of each
node. In order to facilitate the construction of such an over-
lay, we’d assume partial availability of global information
at individual peers (Oracle based model). We shall study
the influence of varying degree of global knowledge on the
LagOver convergence. The assumed Oracles can be read-
ily realized in diverse manner, and we elaborate on possible
realizations when we describe the Oracle properties.

1We interchangeably use the terms consumers, nodes and peer. Also,
we use the term “feed” loosely, and it may mean not only RSS feeds, but
also any other information being disseminated in general.

2 Notation and system model

In Table-1 we summarize the notation used in this paper.

Table 1. Notation
Notation Meaning
ilf Node i with maximum fanout f

and delay constraint l.
fi Maximum fanout of node i.
li Delay constraint of node i.
Node 0 Feed source (server).
j ← i i is the parent of node j in the LagOver,

thus i pushes to j or j pulls from i.
We use both← and→, and only the
arrow-head provides the context
of a parent-child relation.

Parent() Gives a node’s parent node (if any).
Children() Gives a set comprising a node’s children.
n � A node n without parent (currently).
j � i Node j decides to leave its parent i.
i↔ j Node i interacts with node j.
i↔ j ← k Node i interacts with node j s.t. j ← k.
i↔ j � Node i interacts with node j s.t. j �.
Root() Gives the node at the root of the chain

for a peer.
DelayAt() The actual delay perceived at a node.

2.1 Assumptions and setting

2.1.1 Decoupled Time

We use two notions of time - one is the interval for a node
to initiate a new interaction during the bootstrapping of
LagOver, other, the latency tolerated by nodes for obtain-
ing new information. Thus LagOver will be constructed in
time rounds, but this has no relation and is different from the
latency constraints at each node for obtaining feed which is
in effect determined by the round trip time between nodes.

2.1.2 Pull at source

We consider that the information source can support only
pulls from clients (as is currently for RSS). Nodes directly
pull from the source at an interval of T time units get infor-
mation which is no staler than T . A server supporting push
can also readily use a LagOver based P2P dissemination,
but we focus here only on pull based servers.

2.1.3 Local information at peers

At any given time, from the perspective of a peer c, lets say
a chain c← i← k ← ...← r � is formed.

We assume that the following information is available
locally at all nodes, piggy-backed over the chain, which
is then exploited by the nodes during their interaction with
other nodes.

Any node in the chain knows the root of the chain at that
instant of time, that is Root(c) = r. Furthermore they know



their parent Parent(c) = i. Similarly, each node knows its
direct descendants c ∈ Children(i). If r = 0, that means
that all the nodes in the chain are connected to the source,
and hence can actually receive the feed (information).

We also assume that nodes can determine the actual max-
imum delay DelayAt(c) in terms of overlay hops which
they would observe. It is essentially determined by the
length of the chain upstream plus the delay at the node clos-
est to the source which is performing periodic pulls.

2.1.4 Oracles - Partial global information

LagOver construction relies on random interaction with
other nodes. While global coordination of the sequence
of interactions is not necessary, partial global information
in order to choose appropriate interaction partners can
influence the rate and convergence of the overlay con-
struction process. We assume that an Oracle has such
information, and facilitates node interactions. The Oracle
can be distinguished variously, depending on the degree of
global information utilized by the Oracle while providing
reference for random interactions.
Random: Oracle Random provides to an enquiring node
i a random contact j which is interested in the same feed.
Note that in using this Oracle, no global information is
being used at all, and hence determines a baseline case.
Random-Capacity: Oracle Random-Capacity provides a
random node interested in the same feed and has some free
capacity (fanout not fully used) irrespective of whether the
latency constraint is being satisfied.
Random-Delay-Capacity: Oracle Random-Delay-Capacity
provides a random node interested in the same feed and
can satisfy latency constraint of the querying peer (that is,
its actual observed delay is less than the querying peer’s
latency constraint) and also has free capacity.
Random-Delay: Oracle Random-Delay provides any ran-
dom node interested in the same feed whose actual latency
is less than the enquiring peer’s latency constraint, irre-
spective of whether it has any free capacity (unused fanout).

The above mentioned Oracles may be realized in various
manner. For instance, if nodes participate in an unstruc-
tured network, random walkers can be used to implement
Oracle Random. The other Oracles Random-Delay-and/or-
Latency require a directory service, which may be provided
by a centralized authority like Syndic8 [12], but can also
be realized if the nodes organize as a distributed hash table.
More realistically, we can assume a separate open service
like (and even using) OpenDHT [10] to provide the service
of the Oracle - since it is run in a single trust domain using a
relatively stable and dedicated infrastructure like PlanetLab
and has proven to support various other services.

Realizing the Oracle using more stable and smaller pop-

ulation of peers (logically different from the consumers) is
also desirable, since the consumer population itself will be
highly volatile and can be potentially large, such that addi-
tionally maintaining a DHT for all these peers put together
may not be feasible.

3 Bootsrapping a LagOver

The basic idea behind the latency gradated overlay con-
struction involves random interaction among nodes in order
to locally decide which of these nodes should be closer to
the source in comparison to others. Thus, during the con-
struction process, several disjoint groups will be formed.
Eventually, all these groups should coalesce into a dissemi-
nation tree with the source (node 0) as its root, where ideally
the distance of each node from the source is such that its la-
tency constraint is satisfied, while respecting all the nodes’
fanout constraints.

Depending upon the bilateral action of nodes during the
random interactions, and the specific properties (determined
by the Oracle) of the random peers with which these interac-
tions are performed, the interesting aspects of the LagOver
construction algorithm include the convergence of the iso-
lated nodes to form a single-source dissemination tree and
resilience of the overlay construction and maintenance pro-
cess against churn.

3.1 Greedy algorithm

A natural approach to satisfy the delay constraints of all
nodes in the system would be to place the nodes in the tree
according to their delay constraints, i.e., place the nodes
with tighter delay constraints closer to the source. The
idea is intuitive and the algorithmic details (omitted here
because of space constraints) can be found in an extended
version [5]. The more robust hybrid construction algorithm
is later explained in full detail. To summarize, the principal
ideas of the greedy algorithm include:
- Peer interactions are facilitated by the Oracle, but also by
the peers themselves. If peer i interacts with peer j which
already has a parent node, then if lj < li, i tries to become
a child node of j, possibly by becoming parent of one of
j’s current children m provided m’s latency constraint is
not violated by the reconfiguration. Unless node i finds a
suitable parent, it is referred to k - parent of node j, which
is further upstream and more likely to fulfill i’s latency
constraint.
- Opportunistic cluster formation of peers based on their
relative delay constraints, with the peers with strictest delay
constraints directly pulling information from the source.
- Reconfiguration of the clusters (maintenance operations)
upon encountering peers with stricter delay constraints.



Figure 1. Evolution of a LagOver
Reconfiguration is necessary because of two reasons: (i)

The nodes are not synchronized, and a node with laxer la-
tency constraint may still contact the server earlier than a
node with stricter latency constraint. (ii) Churn in the sys-
tem means that a node with stricter latency constraint may
(re-)join the system after some node with laxer constraint
has already started receiving information directly from the
source, and needs to be replaced.

The greedy algorithm ensures that if i← j for any i and
j, then lj ≤ li.

Next we illustrate with some intermediate snapshots of
a toy example system how the greedy LagOver construc-
tion works, particularly to show that the greedy construction
algorithm needs to be complemented with a maintenance
strategy in order to successfully construct a LagOver.

3.2 Maintenance operations

Consider a system comprising of the source 03 and con-
sumers a1

2, b
3
2, c

3
2, d

1
2, e

2
2, f

3
2 , g3

2 , h3
2, i

3
2, j

4
2 . The time evolu-

tion of a possible LagOver based on random interaction of
nodes is partially shown in Figure 1.

At any intermediate stage, there are separate groups of
nodes forming parts of the dissemination tree optimistically.
Ideally, they all should eventually coalesce into a single
connected group and act as a dissemination tree. Since these
groups are formed opportunistically, it may so happen that
at a later point of time some of the nodes discover that their
latency constraint can not be met if they continue to stay
connected in the same manner. This necessitates that these
nodes discard their current parents and try to find an alter-
nate node which can meet the nodes’ latency constraint. In
the example, this is the case for nodes g and i after the sec-
ond step. Once the disconnection actions g � f and i � h
are undertaken they reach the state g � and i �, and thus
locally restarts the LagOver construction algorithm, that is
to say, tries to locate and interact with other suitable nodes.
Note that though c ← b seems to be a similar case, but

since b← a and a pulls from source such that it has the lat-
est updates within a delay of 1 time unit, b gets the updates
pushed by a within a delay of 2 time units and similarly c
gets it within 3 time units. So to say, c← b← a is a config-
uration that meets the latency constraint of all the concerned
nodes and needs no maintenance operations.

While it is necessary to locally detect that a node’s la-
tency constraint can’t be met, if all such nodes immediately
discard their parent nodes, it will not only waste a lot of the
past interactions and the structure built therefrom, but also
such a knee-jerk reactive mechanism will cause a larger than
necessary dynamicity of the evolving LagOver and require
even more future interactions. For instance, in this example
the configuration j ← i can still be reused once i discov-
ers a suitable parent node. Thus a pragmatic decision needs
to be taken by nodes to discard their parent nodes based on
local information.

For the Greedy LagOver construction a node i can deter-
mine if DelayAt(i) = li + 1 and Root(i) = 0 to discard
its parent node. We summarized the maintenance operation
in Algorithm 1.
Lemma: The maintenance strategy (of Algorithm 1) is suf-
ficient for the greedy construction algorithm.
Proof: Only the node in a chain which is the first (upstream)
one with its latency constraint violated need to leave the
chain. Nodes downstream do not need to do any thing. Of-
course, at a later time, after other reconfigurations, they too
may have to actuate the maintenance action. We only need
to prove that, for the first node in a chain with latency con-
straint violation, DelayAt(i) = li + 1 and Root(i) = 0.

Algorithm 1 Maintenance operations at node i

1: if i← j s.t. (DelayAt(i) = li + 1 and Root(i) = 0) then
2: i � j {The condition is sufficient for greedily constructed overlay,

but a more aggressive condition (timeout based) is required for the
hybrid construction (Algorithm 2) described later.}

3: end if

Consider i ← j. Recall that the greedy algorithm en-
sures that lj ≤ li. Thus, two cases arise. If lj < li and
j’s latency constraint is met, then i’s latency constraint will
also be met. Hence the violation may occur only if lj = li.
In that case, if i is the first node in the chain with its la-
tency constraint violated DelayAt(i) ≥ li then necessarily
DelayAt(j) ≤ lj . If DelayAt(j) < lj then i’s latency is
not violated either, hence DelayAt(j) = lj . Since lj = li,
thus it follows that DelayAt(i) = li + 1. — q.e.d.

3.3 A sufficient condition for existence of
LagOver

Lets say Nl represent the set of nodes with latency
constraint of l, where l ≥ 1.



Observation: If
∑

p∈Nl
fp ≥ |Nl+1|, and if the latency

constraint of all p ∈ Nl is satisfied, then the latency con-
straint of all p ∈ Nl+1 can also be satisfied.

Lemma: If latency constraint for all nodes with la-
tency constraints < l can be met, then it can also be met
for all nodes with constraint l if |Nl| ≤

∑
p∈Nl−1

fp +
∑

l′<l−1(
∑

l′ fp − |Nl′+1|)
This yields a lower-bound for the maximum number of

nodes with a specific latency constraint l that can be ac-
commodated in a LagOver, thus a sufficient condition for
existence of a LagOver for a given population of nodes.

3.3.1 Sufficient but not necessary: A counter-example

Note that the sufficiency condition is not a necessary condi-
tion for existence of a LagOver, however the greedy algo-
rithm is not well disposed to explore alternative possibilities
when the sufficiency condition is not met.

We use another toy example to show that there are set-
tings where it is possible to meet the latency and fanout con-
straints of all nodes, but the greedy algorithm simply can not
achieve the desirable configuration of nodes to do so.

Consider the set of nodes: {01, 11
1, 2

2
1, 3

4
2, 4

3
1, 5

3
0}, where

01 means that the source will directly support only 1 con-
sumer. For these nodes, one possible configuration of the
LagOver is: 53

0 ← 34
2, 4

3
1 ← 34

2, 3
4
2 ← 22

1, 2
2
1 ← 11

1, 1
1
1 ←

01. The greedy algorithm however will not establish the
configurations 53

0 ← 34
2, 4

3
1 ← 34

2, and instead will try to
put nodes 4 or 5 closer to the source than node 3, in which
case it will not be possible to meet all the nodes’ latency
and fanout constraints.

3.4 Hybrid algorithm

Though such adversarial situations may not be common-
place, it nonetheless is interesting to investigate if it is at
all possible to devise an algorithm which tries to explore
other configurations, by not always greedily pushing nodes
with stricter latency constraints closer to the source, but do-
ing so only if otherwise the node’s latency constraint is vio-
lated, but in general giving preference to nodes with higher
fanout, so that more nodes can be accommodated down-
stream. Note that a greedy preference of only fanout would
have worked best in keeping the dissemination tree depth
least and minimizing the achieved average latency if there
were no individual and diverse latency constraints. How-
ever, in order to accommodate both the individual latency
constraints as well as to serve larger number of nodes down-
stream, we need a hybrid strategy.

Algorithm 2 is such a hybrid LagOver construction
mechanism. While this algorithm is expected to have more
flexibility since it can explore a greater combination of node

configurations even in an adversarial situation, if the suffi-
ciency condition is not met the peers may still not converge
to a possible LagOver, even if such a configuration exists.

Algorithm 2 Hybrid LagOver construction algorithm as
executed at node i

1: while i � do
2: if Timeout = True then
3: if Free capacity at 0 (source) then
4: i← 0
5: else
6: if ∃ c← 0 s.t. lc > li then
7: c← i← 0 {Needed primarily because of churn}
8: else
9: Reset counter for Timeout

10: end if
11: end if
12: else
13: i ↔ j {interact with some j referred at last interaction or by

Oracle. There is an exception: It may happen that the Oracle
finds no suitable j, and the peer needs to wait and try again. }

14: if j=0 then
15: Same as when contacting server because of timeout.
16: else
17: if j � then
18: if i or j has unused fanout then
19: try i← j or j ← i

{Give preference to the node with larger fanout to be
parent if fanout is available at both nodes.
If fi = fj , give preference to the node with stricter
latency constraint to be the parent node.}

20: end if
21: else
22: if j ← 0 then
23: if Pull only server then
24: if li < lj then
25: try j ← i← 0
26: else
27: try i← j or else try l← i← j

{Refer i to 0 otherwise. - Need to check what’s
being done for li < lj .}

28: end if
29: else
30: if fi > fj then
31: try j ← i ← 0 {i may need to discard one

child node. }
32: else
33: try i← j or else try m← i← j
34: end if
35: end if
36: else
37: if fi ≥ fj then
38: try j ← i ← k {i may discard one of its current

children}
39: else
40: try if possible i← j or else try m← i← j where

m ∈ Children(j) s.t. the reconfiguration does
not violate m’s latency constraint.

41: end if
42: If neither of the above configurations are possible be-

cause DelayAt(j) ≥ li, i will use k as its next refer-
ence, trying to move closer to the server. Otherwise i
will refer to the Oracle.

43: end if
44: end if
45: end if
46: end if
47: end while

The interaction of a node at the server is the same as in
the case of the greedy algorithm. Thus nodes with strictest
latency constraint communicate directly with the source.
This is necessary particularly for the case where the source
supports only content pulls.

For a i ↔ j � interaction initiated by i, unlike the
greedy case where preference is given to latency constraint,



the hybrid mechanism prefers nodes with higher fanout to
be the parent node (steps 9-11). This however may some-
times lead to a situation where the node at the tip of such a
group eventually contacts the server, and the nodes down-
stream have their latency constraint violated, whence some
of these downstream nodes leave this node, and continues
with the construction process, potentially leading to later re-
configuration like j ← i ← 0 (step 17). However note that
in a system of large peer population, only a small fraction
of nodes have to go through such a reconfiguration, and in
the absence of global knowledge, particularly about which
nodes really have strictest latency constraints, it is necessary
to use the opportunistic configurations of steps 9-11.

Upon i interacting with j ← 0, if the source is pushing
information then any node can potentially be placed com-
municating directly with the server, and thus the node with
larger fanout is typically given preference (steps 21-23). La-
tency thus plays a deciding role only if latency constraint
is violated in one of the two possible parent-child config-
urations or else when fanout of both interacting nodes is
the same (steps 24-25). For a source supporting only pulls,
latency based reconfiguration (step 17) may be necessary.
The case i ↔ j ← k is dealt with in steps 28-34, where
reconfigurations are done on the basis of nodes’ fanouts.

Since the hybrid algorithm does not order the LagOver
strictly based on individual nodes’ latency constraints, but
opts for arbitrary configurations as long as the constraints
are met, it has a greater flexibility. However, unlike the
greedy algorithm, i ← j for any i and j provides no in-
formation about the relative ordering of li and lj . This has
its implications for the maintenance algorithm (Lemma of
Section 3.2). Hence, apart from using DelayAt(i) = li +1
and Root(i) = 0 at any time, a more aggressive manner
of discarding parent node is necessary. We still need to
dampen the i � j events for the same reasons as elabo-
rated for the greedy algorithm. So if DelayAt(i) > li and
Root(i) = 0, to reduce knee-jerk reactions node i waits for
a (maintenance) timeout before it leaves its parent node.

4 Simulation settings

Both the proposed LagOver construction algorithms
were evaluated using a discrete time simulator. Simula-
tions were run for various workloads, primarily character-
ized by the nodes’ latency constraints, fanouts and the churn
in the system. Unless otherwise mentioned, we implicitly
assume that the nodes originally meet the sufficiency con-
dition (Section 3.3) of existence of a LagOver. However,
under churn, the set of online peers at any given time may
violate this condition.

4.1 Topological constraints

For the latency and fanout constraints, we use several
combinations of inputs. Since the constraints restrict the
potential topologies of the resulting LagOver, we call them
the topological constraints.
Use full available capacity (Tf1): A simple case is where
all nodes have same fanout, and the latency constraints are
chosen such that nodes utilize the whole capacity of the sys-
tem. Consider a scenario where the source supports 3 con-
sumers, and each consumer in turn supports 3 more con-
sumers and there are 3, 9, 27, 81 (and so on) consumers with
latency constraints 1, 2, 3, 4 units (and so on) respectively.
Then the complete capacity available at nodes upstream is
required to satisfy the nodes downstream.
Random delay and latency constraints (Rand): In this sce-
nario nodes have random delay and capacity constraints,
and the delays and capacities are not correlated.
Bimodal correlated constraints (BiCorr): A worst case
scenario is where peers with strict latency constraint also
have low downstream bandwidth capacity. We furthermore
assume that peers have either low (modem users) or rather
abundant (broadband users) bandwidth capacity. In typi-
cal simulation runs peers had latency constraints such that
it could be anywhere between 1 to 10 time units, while a
fanout of either 1 or 2 (low) or 7 or 8 (high) subject to the
condition that peers with latency constraint less than 3 time
units also had low fanout.
Bimodal uncorrelated constraints (BiUnCorr): A con-
trasting scenario is where peers have bimodal bandwidth
constraints but the latency constraint is uncorrelated with
bandwidth constraint. Here, there is no systematic conflict
of interest in putting these peers close to the server.

5 Evaluation

The algorithms are evaluated via simulations and show
good characteristics, including convergence fulfilling peers’
latency and bandwidth constraints even in presence of mod-
erately high membership dynamics. The construction algo-
rithms are evaluated based on construction latency, i.e., the
time needed to complete the LagOver construction process.

There are two points worth noting. First, optimizing
jointly for latency and capacity (i.e., placing nodes with free
capacity close to the source) performs better than optimiz-
ing for latency only (greedy algorithm), as long as latency
constraint of other nodes are not violated, as done in the hy-
brid algorithm . The joint optimization strategy has faster
convergence of the LagOver network than optimizing with
respect to latency alone, and can deal with adversarial work-
loads that optimization of only latency can not deal with.

Secondly, somewhat counter-intuitively, in order to do
the aforementioned joint optimization, it is sufficient to find



random nodes based on only the latency constraint (Oracle
Random-Delay). Indeed, even the capacity saturation of in-
dividual nodes does not matter, since the LagOver network
can potentially be reconfigured. Using this partial informa-
tion significantly improves the performance with respect to
the scenario where no information is used (Oracle Random).

Using more information, based on both delay and avail-
ability of unused fanout (Oracle Random-Delay-Capacity)
may at a first glance seem to be a smarter strategy, but
this disallows interactions where reconfigurations are pos-
sible, seriously impeding the convergence. Depending on
the workload, the performance can be even worse than the
case where no information is used.

5.1 Variation in the rate of convergence

For the same workload (topological constraint, peer pop-
ulation and choice of oracle), each variant of the LagOver
construction algorithm has a high variation in the time re-
quired to converge. This is shown in Figure 2 for the execu-
tion of the Greedy algorithm using Oracle Random-Delay
for various workloads. Similar behavior was observed for
other Oracles for both the algorithms.
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straint violated; BiCorr

Figure 2. Variation in convergence of greedy
algorithm (using Oracle Random-Delay) with-
out churn

Thus, for the rest of the paper, typically experiments
were repeated 5 times and the median performance was cho-
sen as the representative for the specific experiment setting.

5.2 Impact of Oracles on the convergence

We conduct simulations with 120 peers in each case for
Tf1, Rand, BiUnCorr and BiUnCorr topological con-
straints under no churn, in order to determine the impact of
Oracles on the (greedy) algorithm’s performance. We ob-
serve in Figure 3 that Oracle Random-Delay has the best
performance in many of the settings, and has good per-
formance overall. Similar behavior of better performance
using Oracle Random-Delay was observed for experiments
conducted with the Hybrid LagOver construction algorithm.
The behavior of the different Oracles, and the practical im-
plications may be explained as follows.

Oracle Random provides any random peer, which may
however not satisfy the latency constraint, nor have free

capacity. Note that this is the case where no global infor-
mation is being used. For diverse workloads, the LagOver
converges but incurs longer latencies.

Oracle Random-Capacity would, at a first glance seem
to provide a suitable match since it provides a peer with
free capacity. Random-Delay-Capacity provides even more
precise matches, with peers also satisfying the latency con-
straint. While this may seem to help - in fact it can be detri-
mental, because it may so happen that at a time instant there
is no more peer left which has free capacity and would sat-
isfy time constraint, but only reconfigurations can lead to
addition of new peers in the LagOver. Which is why using
Random-Capacity and Random-Delay-Capacity often not
only take long time, but sometimes simply does not con-
verge, since they fail to provide any interaction partner at
all. This shows that misusing global information may in
fact even be counter productive.

In contrast, Oracle Random-Delay does not care about
whether fanout of a peer is fully used or not, and provides
any peer which will satisfy the latency constraint. Thus,
during the interactions, reconfigurations may be possible.
As shown by our simulation results, Oracle Random-Delay
not only achieves better performance, but also converges in
the absence of churn and as long as the sufficiency criterion
(Section 3.3) is met. For the rest of the experiments we use
Oracle Random-Delay.
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Figure 3. Greedy algorithm performance for
various Oracles and topological constraints
without churn. Oracles: Random (O1), Random-
Capacity (O2a), Random-Delay-Capacity (O2b),
Random-Delay (O3).

5.3 Construction under churn

In P2P networks some peers leave while some (re-)join.
This is called churn. We study the dynamic resilience of the
system in the presence of churn, comparing the construction



algorithms. For the experiments, it is assumed that initially
all peers are online. In each time step, online peers leave the
network with a probability 0.01, while offline peers re-join
with a probability 0.2. Figure 4 shows the performance of
the algorithms without and with churn for peers with corre-
lated bimodal latency and fanout constraints.
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Figure 4. Greedy vs. Hybrid algorithm: Bi-
modal correlated latency and fanout

We again observe that both without and under churn, for
various workloads, the Hybrid algorithm outperforms the
Greedy algorithm. These results suggest that the Hybrid al-
gorithm is effective even in the absence of prior knowledge
of the workload and environment.

In real life, synchronization of peer interactions is unre-
alistic. We conducted further experiments where peers in-
teracted asynchronously, i.e. different peers need different
amount of time to complete the interactions. Asynchrony
slowed down the overlay construction, but interestingly did
not affect the eventual convergence to a LagOver [5].

6 Related work

There is a huge body of work focusing on various as-
pects of content distribution and QoS multicast routing [3].
But most of these do not address the specific problems aris-
ing in RSS style systems - including source supporting pull
based content access, irregular and small content updates,
and diverse user constraints or preferences of tolerating de-
lay in being notified the updates. dissemination of small up-
dates occurring at possibly unpredictable times is also dif-
ferent from typical distribution problem addressed by Bit-
Torrent [4] and other networks.

The FeedTree [11] approach proposes feed dissemina-
tion using P2P communication among feed consumers. It is
built on top of the Scribe [2] system. It assumes consumers
of all different feeds participate in a single distributed hash
table (DHT) based overlay network. This underlying DHT
is then exploited to discover other peers interested in the
same feed. Our use of Oracle, possibly using a DHT ser-
vice is on similar lines. In FeedTree, an overlay multicast
tree per feed is established on top of the DHT overlay. It
thus needs to deal with churn of both the underlying DHT
as well as the multicast trees for feeds, apart involving peers
uninterested in a feed in multicasting the same.

7 Conclusion

We introduced the concept of a latency gradated over-
lay (LagOver) network - a novel genre of dissemination
tree which meets individual user’s differential latency and
fanout constraints. We also proposed heuristic algorithms
to construct such an overlay without coordination, using
easily obtainable partial global information. We evaluate
the algorithms based on simulations. Though the design
of LagOver was motivated by RSS content dissemination,
because of the generic treatment we hope that there will
be other elastic real-time applications which will find the
properties of LagOver useful, and use it as a substrate. One
promising application is that of peer-to-peer video delivery
based on multipath routing [8], where each peer participates
in multiple LagOvers with different time constraints - one
LagOver for each of the multiple paths. In the presented
work one LagOver is established to disseminate content
from one source. Reusing part of the LagOver for multi-
ple sources by exploiting intersecting consumers, as well as
building the LagOver based on locality contexts, like clients
within same domain, ISP or timezone forming the overlay
may substantially improve the global performance and re-
source usage, and are interesting potential future work.
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