Perform

i

ystems

ighly parallel
database sys-
tems are begin-
ning to displace
traditional
mainframe
computers for
the largest
database and
transaction

processing tasks. The success of

Paral IE|

Dutubase

database machine research had
focused on specialized, often
trendy, hardware such as CCD
memories, bubble memories,
head-per-track disks, and
optical disks. None of these
technologies fulfilled their
prormises; so there was a sense
that conventional CPUs, elec-
tronic RAM, and moving-head
magnetic disks would dominate
the scene for many years to
come. At that time, disk
throughput was predicted to
double while processor speeds
were predicted to increase by
much larger factors. Conse-
quently, critics predicted that
multiprocessor systerns would
soon be I/O limited unless a
solution to the I/Q bottleneck
was found.

While these predictions were
fairly accurate about the future
of hardware, the critics were
certainly wrong about the over-
all future of parallel database
systems. Over the last decade

‘Teradata, Tandem, and a host
of startup companies have suc-
cessfully developed and mar-
keted highly parallel machines.

David Dewitt
and Jim Gray

these systems refutes a 1983
paper predicting the demise of
database machines [3]. Ten
years ago the future of highly
parallel database machines
seemed gloomy, even to their
staunchest advocates. Most

COMMUNICATIONS OF THE ACM/ Junc 1992/Vol .35, No.6

Database
sSystems I

Why have parallel database sys-
tems become more than a research
curiosity? One explanation is the
widespread adoption of the rela-
tional data model. In 1983 rela-
tional database systems were just
appearing in the marketplace;
today they dominate it. Relational
queries are ideally suited to parallel
execution; they consist of uniform
operations applied to uniform
streams of data. Each operator pro-
duces a new relation, so the opera-
tors can be composed into highly
parallel dataflow graphs. By
streaming the output of one opera-
tor into the input of another opera-
tor, the two operators can work in
series giving pipelined parallelism. By
partitioning the input data among

multiple processors and memories,
an operator can often be split into
many independent operators each
working on a part of the data. This
partitioned data and execution
gives partitioned parallelism (Figure
1).

The dataflow approach to data-
base system design needs a mes-
sage-based client-server operating
system to interconnect the parallel
processes executing the relational
operators. This in turn requires a
high-speed network to interconnect
the parallel processors. Such facili-
ties seemed exotic a decade ago, but
now they are the mainstream of
computer architecture. The client-
server paradigm using high-speed
LANs is the basis for most PC,

workstation, and workgroup soft-
ware. Those same client-server
mechanisms are an excellent basis
for distributed database technol-
ogy.

Mainframe designers have found
it difficult to build machines power-
ful enough to meet the CPU and
I/O0 demands of relational data-
bases serving large numbers of si-
multaneous users or searching
terabyte databases. Meanwhile,
multiprocessors based on fast and
inexpensive microprocessors have
become widely available from ven-
dors including Encore, Intel, NCR,
nCUBE, Sequent, Tandem, Tera-
data, and Thinking Machines.
These machines provide more total
power than their mainframe coun-

Source %

o

Data #

pipeline
parallelism

partitioned data allows partitioned

parallelism

Figure 1.

The dataflow approach to relational
operators gives both pipelined and
partitioned parallelism. Relational data
operators take relations (uniform sets
of records) as input and produce rela-
tions as outputs. This allows them to
be composed in dataflow graphs that
allow pipeline parallelism (left) in which
the computation of one operator pro-
ceeds in parallel with another, and par-
titioned parallelism in which operators
(sort and scan in the diagram at the
right) are replicated for each data
source, and the replicas execute in par-
allel.

Figure 2.
Speedup and Scaleup. A speedup de-

. sign performs a one-hour job four
> > times faster when run on a four-times
larger system. A scaleup design runs a
ten-times bigger job is done in the
Speedup Batch Scaleup same time by a ten-times blgger sys-
tem.
The Good Speedup A Bad Speedup Curve A Bad Speedup Curve
Curve No Parallelism 3-Factors
glE 2|E
ol L ==
=l o| %
Ol=z 0|2
I 1 :
o [« % T
= =] . . »
E '§ Linearity
) &
Processors and Discs Processors and Discs Processors and Discs
Figure 3.

Good and bad speedup curves. The standard speedup curves. The left curve is the ideal. The middie graph shows no
speedup as hardware is added. The right curve shows the three threats to parallelism. Initial startup costs may dominate at
first. As the number of processes increase, interference can increase. Ultimately, the job is divided so finely, that the variance
in service times (skew) causes a slowdown.

June 1992/Vol.35, No.6/COMMUNICATIONS OF THE ACM

terparts at a lower price. Their
modular architectures enable sys-
tems to grow incrementally, adding
MIPS, memory, and disks either to
speedup the processing of a given
job, or to scaleup the system to pro-
cess a larger job in the same time.

In retrospect, special-purpose
database machines have indeed
failed; but parallel database systems
are a big success. The successful
parallel database systems are built
from conventional processors,
memories, and disks. They have

emerged as major consumers of

highly parallel architectures, and
are in an excellent position to ex-
ploit massive numbers of fast-cheap
commodity disks, processors, and
memories promised by
technology forecasts.

A consensus on parallel and dis-
tributed database system architec-
ture has emerged. This architec-
ture is based on a shared-nothing
hardware design [29] in which
processors communicate with one
another only by sending messages
via an interconnection network. In
such systems, tuples of each rela-
tion in the database are partitioned
(declustered) across disk storage
units' attached directly to each pro-
cessor. Partitioning allows multiple
processors to scan large relations in
parallel without needing any exotic
I/O devices. Such architectures
were pioneered by Teradata in the
late 1970s and by several research
projects. This design is now used by
Teradata, Tandem, NCR, Oracle-
nCUBE, and several other products
currently under development. The
research community has also em-
braced this shared-nothing data-
flow architecture in systems like
Arbre, Bubba, and Gamma.

The remainder of this article is
organized as follows: The next sec-
tion describes the basic architec-
tural concepts used in these parallel
database systems. This is followed
by a brief presentation of the
unique features of the Teradata,
Tandem, Bubba, and Gamma sys-
tems in the following section, enti-
tled “The State of the Art.” Several
areas for future research are de-

current

COMMUNICATIONS OF THE ACM/ June 1992/Vol.35, No.6

scribed in “Future Directuons and
Research Problems” prior to the
conclusion of this article.

Basic Techniques for Parallel
Database Machine
Implementation

Parallelism Goals and Metrics:
Speedup and Scaleup

The ideal parallel system demon-
strates two key properties: (1) linear
speedup: Twice as much hardware
can perform the task in half the
elapsed time, and (2) linear scaleup:
Twice as much hardware can per-
form twice as large a task in the
same elapsed time (see Figures 2
and 3).

More formally, given a fixed job
run on a small system, and then run
on a larger system, the speedup
given by the larger system is mea-
sured as:

small_system_elapsed_time

Speedup =
peecdup big_system_elapsed_time
Speedup is said to be linear, if an
N-times large or more expensive
system yields a speedup of N.

Speedup holds the problem size
constant, and grows the system.
Scaleup measures the ability to
grow both the system and the prob-
lem. Scaleup is defined as the ability
of an N-times larger system to per-
form an N-times larger job in the
same elapsed time as the original
system. The scaleup metric is:

Scaleup =
small_system_elapsed_time_on_small_problem

big_system_elapsed_time_on_big_problem

If this scaleup equation evaluates to
1, then the scaleup is said to be lin-
ear?. There are two distinct kinds
of scaleup, batch and transactional.
If the job consists of performing
many small independent requests
submitted by many clients and op-
erating on a shared database, then
scaleup consists of N-times as many
clients, submitting N-times as many
requests against an N-times larger
database. This is the scaleup typi-
cally found in transaction process-
ing systems and timesharing sys-
tems. This form of scaleup is used
by the Transaction Processing Per-

formance Council to scaleup their
transaction processing benchmarks
[36]. Consequently, it is called trans-
action scaleup. Transaction scaleup is
ideally suited to parallel systems
since each transaction is typically a
small independent job that can be
rumn on a SCPHTHU:‘. pI‘()CCSH()T.

A second form of scaleup, called
batch scaleup, arises when the
scaleup task is presented as a single
large job. This is typical of database
queries and is also typical of scien-
tific simulations. In these cases,
scaleup consists of using an N-times
larger computer to solve an N-times
larger problem. For database sys-
tems batch scaleup translates to the
same query on an N-times larger
database; for scientific problems,
batch scaleup translates to the same
calculation on an N-times finer grid
or on an N-times longer simulation.

The generic barriers to linear
speedup and linear scaleup are the
triple threats of:

startup: The time needed to start
a parallel operation. If thousands
of processes must be started, this
can easily dominate the actual
computation time.
interference: The slowdown each
new process imposes on all oth-
ers when accessing shared re-
sources.
skew: As the number of paraliel
steps increases, the average size
of each step decreases, but the
variance can well exceed the
mean. The service time of a job is
the service time of the slowest
step of the job. When the vari-
ance dominates the mean, in-
creased parallelism improves
elapsed time only slightly.

The

subsection “A Parallel

"The term disk is used here as a shorthand for
disk or other nonvolatile storage media. As
the decade proceeds, nonvolatile electronic
storage or some other media may replace or
augment disks.

*The execution cost of some operators in-
creases super-linearly. For example, the cost
of sorting n-tuples increases as nlog(n). When
n is in the billions, scaling up by a factor of a
thousand, causes nlog(n) to increase by 3,000
This 30% deviation from linearity in a three-
orders-of-magnitude scaleup justifies the use
of the term near-linear scaleup.

87

parallel

Dataflow Approach to SQL Soft-
ware” describes several basic tech-
niques widely used in the design of
shared-nothing parallel database
machines to overcome these barri-
ers. These techniques often achieve
linear speedup and scaleup on rela-
tional operators.

Hardware Architecture, the Trend
to Shared-Nothing Machines

The ideal database machine would
have a single infinitely fast proces-
sor with an infinite memory with
infinite bandwidth—and it would
be infinitely cheap (free). Given
such a machine, there would be no
need for speedup, scaleup, or par-
allelism. Unfortunately, technology
is not delivering such machines—
but it is coming close. Technology is
promising to deliver fast one-chip
processors, fast high-capacity disks,
and high-capacity electronic RAM.
It also promises that each of these
devices will be very inexpensive by
today’s standards, costing only hun-
dreds of dollars each.

So, the challenge is to build an infi-
nitely fast processor out of infinitely
many processors of finite speed, and to
build an infinitely large memory with
infinite memory bandwidth from infi-
nitely many storage units of finite speed.
This sounds trivial mathematically;
but in practice, when a new proces-
sor is added to most computer de-
signs, it slows every other computer
down just a little bit. If this slow-
down (interference) is 1%, then the
maximum speedup is 37 and a
1,000-processor system has 4% of
the effective power of a single-
processor system.

How can we build scaleable mui-
tiprocessor systems? Stonebraker
suggested the following simple tax-
onomy for the spectrum of designs
(see Figures 4 and 5) [29]%:

*Single Instruction stream, Multiple Data
stream (SIMD) machines such as ILLIAC IV
and its derivatives like MASSPAR and the
“old” Connection Machine are ignored here
because to date they have few successes in the
database area. SIMD machines seem to have
application in simulation, pattern matching,
and mathematical search, but they do not
seem to be appropriate for the multiuser, /O
intensive, and dataflow paradigm of database
systems.

shared-memory: All processors share
direct access to a common global
memory and to all disks. The IBM/
370, Digital VAX, and Sequent
Symmetry multiprocessors typify
this design.

shared-disks: Each processor has a
private memory but has direct
access to all disks. The IBM
Sysplex and original Digital
VAXcluster typity this design.
shared-nothing: Each memory and
disk is owned by some processor
that acts as a server for that data.
Mass storage in such an architec-
ture is distributed among the
processors by connecting one or
more disks. The Teradata, Tan-
dem, and nCUBE machines typ-
ify this design.

Shared-nothing architectures
minimize interference by minimiz-
ing resource sharing. They also
exploit commodity processors and
memory without needing an in-
credibly powerful interconnection
network. As Figure 5 suggests, the
other architectures move large
quantities of data through the in-
terconnection network. The
shared-nothing design moves only
questions and answers through the
network. Raw memory accesses and
raw disk accesses are performed
locally in a processor, and only the
filtered (reduced) data is passed to
the client program. This allows a
more scaleable design by minimiz-
ing traffic on the interconnection
network.

Shared-nothing characterizes the
database systems being used by
Teradata [33], Gamma [8, 9], Tan-
dem [32], Bubba [1], Arbre [21],
and nCUBE [13]. Significantly,
Digital's VAXcluster has evolved to
this design. DOS and UNIX work-
group systems from 3com, Bor-
land, Digital, HP, Novell, Microsoft,
and Sun also adopt a shared-noth-
ing client-server architecture.

The actual interconnection net-
works used by these systems vary
enormously. Teradata employs a
redundant tree-structured commu-
nication network. Tandem uses a
three-level duplexed network, two
levels within a cluster, and rings

connecting the clusters. Arbre,
Bubba, and Gamma are indepen-
dent of the underlying intercon-
nection network, requiring only
that the network allow any two
nodes to communicate with one
another. Gamma operates on an
Intel Hypercube. The Arbre proto-
type was implemented using IBM
4381 processors connected to one
another in a point-to-point net-
work. Workgroup systems are cur-
rently making a transition from
Ethernet to higher speed local net-
works.

The main advantage of shared-
nothing multiprocessors is that they
can be scaled up to hundreds and
probably thousands of processors
that do not interfere with one an-
other. Teradata, Tandem, and Intel
have each shipped systems with
more than 200 processors. Intel is
implementing a 2,000-node hyper-
cube. The largest shared-memory
multiprocessors currently available
are limited to about 32 processors.

These shared-nothing architec-
tures achieve near-linear speedups
and scaleups on complex relational
queries and on on-line transaction
processing workloads [9, 10, 32].
Given such results, database ma-
chine designers see little justifica-
tion for the hardware and software
complexity associated with shared-
memory and shared-disk designs.

Shared-memory and shared-disk
systems do not scale well on data-
base applications. Interference is a
major problem for shared-memory
multiprocessors. The interconnec-
tion network must have the band-
width of the sum of the processors
and disks. It is difficult to build
such networks that can scale to
thousands of nodes. To reduce net-
work traffic and to minimize la-
tency, each processor is given a
large private cache. Measurements
of shared-memory multiprocessors
running database workloads show
that loading and flushing these
caches considerably degrades pro-
cessor performance [35]. As paral-

lelism increases, interference on
shared resources limits perfor-
mance. Multiprocessor systems

June 1992/Vol.35, No.6/COMMUNICATIONS OF THE ACM

Interconnection Network

e

Figure 4.

The basic shared-nothing design. Each
processor has a private memory and
one or more disks. Processors commu-
nicate via a high-speed interconnect
network. Teradata, Tandem, nCUBE, and
the newer VAXclusters typify this de-
sign.

Figure 6.

Example of a scan of a teiephone reia-
tion to find the phone numbers of all
people named Smith.

Shared Memory Multiprocessor

Shared Disk Multiprocessor

Figure 5.

The shared-memory and shared-disk
designs. A shared-memory multiproces-
sor connects all processors to a glo-
bally shared memory. Multiprocessor
IBM/370, VAX, and Sequent computers
are typical examples of shared-memory
designs. Shared-disk systems give each
processor a private memory, but all the
processors can directly address all the
disks. Digital's VAXcluster and IBM's
Sysplex typify this design.

SELECT telephone_number
FROM telephone_book
WHERE last_name = ‘Smith’

/* the output attributel{s) */
/* the input relation */
/* the predicate */

often use an affinity scheduling
mechanism to reduce this interfer-
ence; giving each process an affin-
ity to a particular processor. This is
a form of data partitioning; it rep-
resents an evolutionary step toward
the shared-nothing design. Parti-
tioning a shared-memory system
creates many of the skew and load
balancing problems faced by a
shared-nothing machine; but reaps
none of the simpler hardware in-
terconnect benefits. Based on this
experience, we believe high-perfor-
mance shared-memory machines
will not economically scale beyond a
few processors when running data-
base applications.

To ameliorate the interference
problem, most shared-memory
multiprocessors have adopted a
shared-disk architecture. This is the
logical consequence of affinity
scheduling. If the disk interconnec-
tion network can scale to thousands
of disks and processors, then a
shared-disk design is adequate for
large read-only databases and for
databases where there is no concur-
rent sharing. The shared-disk ar-
chitecture is not very effective for
database applications that read and

COMMUNICATIONS OF THE ACM/ Junc 1992/Vol.35, No.b

write a shared database. A proces-
sor wanting to update some data
must first obtain the current copy
of that data. Since others might be
updating the same data concur-
rently, the processor must declare
its intention to update the data.
Once this declaration has been hon-
ored and acknowledged by all the
other processors, the updator can
read the shared data from disk and
update it. The processor must then
write the shared data to disk so that
subsequent readers and writers will
be aware of the update. There are
many optimizations of this proto-
col, but they all end up exchanging
reservation messages and exchang-
ing large physical data pages. This
creates processor interference and
delays. It creates heavy traffic on
the shared interconnection net-
work.

For shared database applications,
the shared-disk approach is much
more expensive than the shared-
nothing approach of exchanging
small high-level logical questions
and answers among clients and
servers. One solution to this inter-
ference has been to give data a pro-
cessor affinity; other processors

wanting to access the data send
messages to the server managing
the data. This has emerged as a
major application of transaction
processing monitors that partition
the load among partitioned servers,
and is also a major application for
remote procedure calls. Again, this
trend toward the partitioned data
model and shared-nothing archi-
tecture on a shared-disk system
reduces interference. Since the
shared-disk system interconnection
network is difficult to scale to thou-
sands of processors and disks, many
conclude that it would be better to
adopt the shared-nothing architec-
ture from the start.

Given the shortcomings of
shared-disk and shared-memory
architectures, why have computer
architects been slow to adopt the
shared-nothing approach? The
first answer is simple, high-perfor-
mance, low-cost commeodity compo-
nents have only recently become
available. Traditionally, commodity
components provided relatively low
performance and low quality.

Today, old software is the most
significant barrier to the use of par-
allelism. Old software written for
uniprocessors gets no speedup or
scaleup when put on any kind of
multiprocessor. It must be rewrit-
ten to benefit from parallel process-
ing and multiple disks. Database
applications are a unique exception
to this. Today, most database pro-
grams are written in the relational
language SQL that has been stand-
ardized by both ANSI and 1SO. Itis
possible to take standard SQL ap-
plications written for uniprocessor
systems and execute them in paral-
lel on shared-nothing database

parallel

machines. Database systems can
automatically distribute data
among multiple processors. Tera-
data and Tandem routinely port
SQL applications to their system
and demonstrate near-linear
speedups and scaleups. The follow-
ing subsection explains the basic
techniques used by such parallel
database systems.

A Parallel Dataflow Approach to
SQL Software

Terabyte on-line databases, consist-
ing of billions of records, are be-
coming common as the price of on-
line storage decreases. These data-
bases are often represented and
manipulated using the SQIL. rela-
tional model. The next few para-
graphs give a rudimentary in-
troduction to relational model
concepts needed to understand the
remainder of this article.

A relational database consists of
relations (files in COBOL terminol-
ogy) that in turn contain tuples (rec-
ords in COBOL terminology). All
the tuples in a relation have the
same set of attributes (fields in
COBOL terminology).

Relations are created, updated,
and queried by writing SQL state-
ments. These statements are syn-
tactic sugar for a simple set of oper-
ators chosen from the relational
algebra. Select-project, here called
scan, is the simplest and most com-
mon operator—it produces a row-
and-column subset of a relational
table. A scan of relation R using
predicate P and attribute list L pro-
duces a relational data stream as
output. The scan reads each tuple,
t, of R and applies the predicate P
to it. If P(t) is true, the scan discards
any attributes of ¢ not in L and in-
serts the resulting tuple in the scan
output stream. Expressed in SQL, a
scan of a telephone book relation to
find the phone numbers of all peo-
ple named Smith would be written
as shown in Figure 6. A scan’s out-
put stream can be sent to another
relational operator, returned to an
application, displayed on a termi-
nal, or printed in a report. Therein
lies the beauty and utility of the re-

lational model. The uniformity of
the data and operators allow them
to be arbitrarily composed into
dataflow graphs.

The output of a scan may be sent
to a sert operator that will reorder
the tuples based on an attribute sort
criteria, optionally eliminating du-
plicates. SQL defines several aggre-
gate operators to summarize attri-
butes into a single value, for
example, taking the sum, min, or
max of an attribute, or counting the
number of distinct values of the at-
tribute. The insert operator adds
tuples from a stream to an existing
relation. The update and delete oper-
ators alter and delete tuples in a re-
lation matching a scan stream.

The relational model defines
several operators to combine and
compare two or more relations. It
provides the usual set operators
union, intersection, difference, and
some more exotic ones like join and
division. Discussion here will focus
on the equi-join operator (here
called join). The join operator com-
poses two relations, A and B, on
some attribute to produce a third
relation. For each tuple, ta, in A, the
join finds all tuples, tb, in B whose
attribute values are equal to that of
ta. For each matching pair of tup-
les, the join operator inserts into
the output stream a tuple built by
concatenating the pair.

Codd, in a classic paper, showed
that the relational data model can
represent any form of data, and
that these operators are complete
[5]. Today, SQL applications are
typically a combination of conven-
tional programs and SQL state-
ments. The programs interact with
clients, perform data display, and
provide high-level direction of the
SQL dataflow.

The SQL data model was origi-
nally proposed to improve pro-
grammer productivity by offering a
nonprocedural database language.
Data independence was an addi-
tional benefit; since the programs
do not specify how the query is to
be executed, SQL programs con-
tinue to operate as the logical and
physical database schema evolves.

Parallelism is an unanticipated
benefit of the relational model.
Since relational queries are really
Jjust relational operators applied to
very large collections of data, they
offer many opportunities for paral-
lelism. Since the queries are pre-
sented in a nonprocedural lan-
guage, they offer considerable
latitude in executing the queries.

Relational queries can be exe-
cuted as a dataflow graph. As men-
tioned in the first section of this ar-
ticle, these graphs can use both
pipelined parallelism and parti-
tioned parallelism. If one operator
sends its output to another, the two
operators can execute in parallel
giving potential speedup of two.

The benefits of pipeline parallel-
ism are limited because of three
factors: (1) Relational pipelines are
rarely very long—a chain of length
ten is unusual. (2) Some relational
operators do not emit their first
output until they have consumed all
their inputs. Aggregate and sort
operators have this property. One
cannot pipeline these operators.
(3) Often, the execution cost of one
operator is much greater than the
others (this is an example of skew).
In such cases, the speedup obtained
by pipelining will be very limited.

Partitioned execution offers
much better opportunities for
speedup and scaleup. By taking the
large relational operators and par-
titioning their inputs and outputs, it
is possible to use divide-and-
conquer to turn one big job into
many independent little ones. This
is an ideal situation for speedup
and scaleup. Partitioned data is the
key to partitioned execution.

Data Partitioning. Partitioning a
relation involves distributing its
tuples over several disks. Data par-
titioning has its origins in central-
ized systems that had to partition
files, either because the file was too
big for one disk, or because the file
access rate could not be supported
by a single disk. Distributed data-
bases use data partitioning when
they place relation fragments at dif-
ferent network sites [23]). Data par-

June 1992/Vol.35, No.6/COMMUNICATIONS OF THE ACM

range partitioning

round-robin

titioning allows parallel database
systems to exploit the 1/0 band-
width of multiple disks by reading
and writing them in parallel. This
approach provides 1/O bandwidth
superior to RAID-style systems
without needing any specialized
hardware [22, 24].

The simplest partitioning strat-
egy distributes tuples among the
fragments in a round-robin fashion.
This is the partitioned version of
the classic entry-sequence file.
Round-robin partitioning is excel-
lent if all applications want to access
the relation by sequentially scan-
ning all of it on each query. The
problem with round-robin parti-
tioning is that applications fre-
quently want to associatively access
tuples, meaning that the applica-
tion wants to find all the tuples hav-
ing a particular attribute value. The
SQL query looking for the Smiths
in the phone book shown in Figure
6 is an example of an associative
search.

Hash partitioning is ideally suited
for applications that want only se-
quential and associative access to
the data. Tuples are placed by ap-
plying a hashing function to an attri-
bute of each tuple. The function
specifies the placement of the tuple
on a particular disk. Associative
access to the tuples with a specific
attribute value can be directed to a
single disk, avoiding the overhead
of starting queries on multiple
disks. Hash partitioning mecha-
nisms are provided by Arbre,
Bubba, Gamma, and Teradata.

Database systems pay consider-
able attention to clustering related
data together in physical storage. If
a set of tuples is routinely accessed
together, the database system at-

COMMUNICATIONS OF THE ACM/ Junc 1992/Vol 35, No.b

merge _, »
operator)

hashing

Figure 7.

The three basic partitioning schemes.
Range partitioning maps contiguous
attribute ranges of a relation to various
disks. Round-robin partitioning maps
the i'th tuple to disk i mod n. Hashed
partitioning maps each tuple to a disk
location based on a hash function.
Each of these schemes spreads data
among a collection of disks, allowing
parallel disk access and parallel pro-
cessing.

Partitioned data parallelism. A simpie relationai datafiow graph showing a reia-
tional scan (project and select) decomposed Into three scans on three partitions
of the input stream or relation. These three scans send their output to a merge

node that produces a single data stream.

—

——

—_— e
- Process Split T2
- | Merge Executing operator "

—_— Operator

—_—
Figure 9.

Merging the inputs and partitioning the output of an operator. A relational
dataflow graph showing a relational operator's inputs being merged to a sequen-
tial stream per port. The operator's output is being decomposed by a split opera-
tor in several independent streams. Each stream may be a duplicate or a parti-
tioning of the operator output stream Into many disjoint streams. With the split
and merge operators, a web of simple sequential dataflow nodes can be con-

nected to form a parallel execution plan.

tempts to store them on the same
physical page. For example, if the
Smiths of the phone book are rou-
tinely accessed in alphabetical
order, then they should be stored
on pages in that order, these pages
should be clustered together on
disk to allow sequential prefetching
and other optimizations. Clustering
is very application-specific. For ex-
ample, tuples describing nearby
streets should be clustered together
in geographic databases, tuples de-
scribing the line items of an invoice
should be clustered with the invoice
tuple in an inventory control appli-
cation.

Hashing tends to randomize data
rather than cluster it. Range parti-
tioning clusters tuples with similar
attributes together in the same par-
tition. It is good for sequential and
associative access, and is also good
for clustering data. Figure 7 shows
range partitioning based on lexico-
graphic order, but any clustering
algorithm is possible. Range parti-
tioning derives its name from the
typical SQL range queries such as

latitude BETWEEN 38° AND 39°

Arbre, Bubba, Gamma, Oracle, and
Tandem provide range partition-

mg.

parallel

The problem with range parti-
tioning is that it risks data skew,
where all the data is placed in one
partition, and execution skew in
which all the execution occurs in
one partition. Hashing and round-

robin are less susceptible o these
skew problems. Range partitioning
can minimize skew by picking non-
uniformly-distributed partitioning
criteria. Bubba uses this concept by
considering the access frequency

Tabie 1.
Sample Split Operators.
Each split operator maps tupies to a set of output streams (ports of
other processes) depending on the range value {predicate) of the
input tuple. The split operator on the left Is for the relation A scanin
Figure 10, while the table on the right Is for the relation B scan. The
tables partition the tuples among three data streams.

Relation A Scan Split Operator Relation B Scan Split Operator
Predicate Destination Process Predicate Destination Process
“A-H" {CPU #5, Process #3, "A-H" (CPU #5, Process #3,
Port #0) Port #1)
“-Q" (CPU #7, Process #8, “1-Q” (CPU #7, Process #8,
Port #0} Port #1)
“R-Z" {CPU #2, Process #2, "R-Z" {CPU #2, Process #2,
Port #0) Port #1)
C
insertinto C
select *
from A B JOIN

where A.x=B.y;

ta of

A simple SQL query and the associated relational query graph. The query specifies
that a join Is to be performed between relations A and B by comparing the x at-
tribute of each tuple from the A relation with the y attribute value of each tuple
of the B relation. For each pair of tuples that satisfy the predicate, a result tuple
is formed from all the attributes of both tuples. This result tuple is then added to
the result relation €. The associated logical query graph (as might be produced by
a query optimizer) shows a tree of operators, one for the join, one for the insert,
and one for scanning each input relation.

split each join outputinto 3 streams
47— merge the 3 join input streams

at each insert node
Perform 1/3 of the join

split each B scan output into 3 streams
erge the 3 input streams
at each join node

Figure 11.

A simple relationai datafiow graph. It shows two reiational scans (project and se-
lect) consuming two input relations, A and B and feeding their outputs to a join
operator that in turn produces a data stream C.

(heat) ot each wuple when creating
parttions of a relation; the goal
being to balance the frequency with
which each partition is accessed (its
temperature) rather than the actual
number of tuples on each disk (its
volume) [6].

While partitioning is a simple
concept that is easy to implement, it
raises several new physical database
design issues. Fach relation must
now have a partitioning strategy
and a set of disk fragments. In-
creasing the degree of partitioning
usually reduces the response time
for an individual query and in-
creases the overall throughput of
the system. For sequential scans,
the response time decreases be-
cause more processors and disks
are used to execute the query. For
associative scans, the response time
improves because fewer tuples are
stored at each node and hence the
size of the index that must be
searched decreases.

There is a point beyond which
further partitioning actually in-
creases the response time of a
query. This point occurs when the
cost of starting a query on a node
becomes a significant fraction of
the actual execution ume [6, 11].

Parallelism Within Relational Oper-
ators. Data partitioning is the first
step in partitioned execution of re-
lational dataflow graphs. The basic
idea is to use parallel data streams
instead of writing new parallel op-
erators (programs). This approach
enables the use of unmodified, ex-
isting sequential routines to execute
the relational operators in parallel.
Each relational operator has a set of
input ports on which input wples
arrive and an oeutput port to which
the operator’s output stream is sent.
The parallel dataflow works by par-
titioning and merging data streams
into these sequential ports. This
approach allows the use of existing
sequential relational operators to
execute in parallel.

Consider a scan of a relation, A,
that has been partitioned across
three disks into fragments A0, Al,
and A2. This scan can be imple-

June 1992/Vol. 35, No.6/COMMUNICATIONS OF THE ACM

mented as three scan operators that
send their output to a common
merge operator. The merge opera-
tor produces a single output data
stream to the application or to the
next relational operator. The paral-
lel query executor creates the three
scan processes shown in Figure 8
and directs them to take their in-
puts from three different sequen-
ual input streams (A0, Al, A2). It
also directs them to send their out-
puts to a common merge node.
Each scan can run on an indepen-
dent processor and disk. So the first
basic parallelizing operator is a
merge that can combine several par-
allel data streams into a single se-
quential stream.

The merge operator tends to
focus data on one spot. If a multi-
stage parallel operation is to be
done in parallel, a single data
stream must be split into several
independent streams. A split opera-
tor is used to partition or replicate
the stream of tuples produced by a
relational operator. A split operator
defines a mapping from one or
more attribute values of the output
tuples to a set of destination pro-
cesses (see Figure 9).

As an example, consider the two
split operators shown in Table 1 in
conjunction with the SQL query
shown in Figure 10. Assume that
three processes are used to execute
the join operator, and that five
other processes execute the two
scan operators—three scanning
partitions of relation A while two
scan partitions of relation B. Each
of the three relation A scan nodes
will have the same split operator,
sending all tuples between “A-H” to
port 1 of join process 0, all between
“I-QQ” to port 1 of join process 1,
and all between “R-Z” to port 1 of
join process 2. Similarly the two re-
lation B scan nodes have the same
split operator except that their out-
puts are merged by port 1 (not port
0) of each join process. Each join
process sees a sequential input
stream of A tuples from the port 0
merge (the left-scan nodes) and
another sequential stream of B tup-
les from the port 1 merge (the

COMMUNICATIONS OF THE ACM/ June 1992/Vol.35, No.6

right-scan nodes). The outputs of

each join are, in turn, split into
three streams based on the part-
tioning criterion of relation C.

To clarify this example, consider
the first join process in Figure 11
(processor 5, process 3, ports 0 and
1 in Table 1). It will receive all the
relation A “A-H” tuples from the
three relation A scan operators
merged as a single stream on port
0, and will get all the “A-H" tuples
from relation B merged as a single
stream on port 1. It will join them
using a hash-join, sort-merge join,
or even a nested join if the tuples
arrive in the proper order.

If each of these processes is on an
independent processor with an in-
dependent disk, there will be little
interference among them. Such
dataflow designs are a natural ap-
plication for shared-nothing ma-
chine architectures.

The split operator in Table 1 is
just an example. Other split opera-
tors might duplicate the input
stream, or partition it round-robin,
or partition it by hash. The parti-
tioning function can be an arbitrary
program. Gamma, Volcano, and
Tandem use this approach [14]. It
has several advantages including
the automatic parallelism of any
new operator added to the system,
plus support for many kinds of par-
allelism.

The split and merge operators
have flow control and buffering
built into them. This prevents one
operator from getting too far ahead
in the computation. When a split-
operator’s output buffers fill, it
stalls the relational operator until
the data target requests more out-

put.

For simplicity, these examples
have been stated in terms of an
operator per process. But it is en-
tirely possible to place several oper-
ators within a process to get coarser
grained parallelism. The funda-
mental idea though is to build a
self-pacing dataflow graph and dis-
tribute it in a shared-nothing ma-
chine in a way that minimizes inter-
ference.

Specialized Parallel Relational Op-
erators. Some algorithms for rela-
tional operators are especially ap-
propriate for parallel execution,
either because they minimize data
flow, or because they better tolerate
data and execution skew. Improved
algorithms have been found for
most of the relational operators.
The evolution of join operator al-
gorithms is sketched here as an ex-
ample of these improved algo-
rithms.

Recall that the join operator
combines two relations, A and B, to
produce a third relation containing
all tuple pairs from A and B with
matching attribute values. The con-
ventional way of computing the join
is to sort both A and B into new re-
lations ordered by the join attri-
bute. These two intermediate rela-
tions are then compared in sorted
order, and matching tuples are in-
serted in the output stream. This
algorithm is called sort-merge join.

Many optimizations of sort-
merge join are possible, but since
sort has execution cost nlog(n), sort-
merge join has an nlog(n) execution
cost. Sort-merge join works well in a
parallel dataflow environment un-
less there is data skew. In case of
data skew, some sort partitions may
be much larger than others. This in
turn creates execution skew and
limits speedup and scaleup. These
skew problems do not appear in
centralized sort-merge joins.

Hash-join is an alternative to sort-
merge join. It has linear execution
cost rather than nlog(n) execution
cost, and it 1s more resistant to data
skew. It is superior to sort-merge
join unless the input streams are
already in sorted order. Hash join
works as follows. Each of the rela-
tions A and B are first hash parti-
tioned on the join attribute. A hash
partition of relation A is hashed
into memory. The corresponding
partition of table relation B is
scanned, and each tuple is com-
pared against the main-memory
hash table for the A partition. If
there is a match, the pair of tuples
are sent to the output stream. Each
pair of hash partitions is compared

paralel

in this way.

The hash join algorithm breaks a
big join into many little joins. If the
hash function i1s good and if the
data skew is not too bad, then there
will be litde variance in the hash
bucket size. In these cases hash-join
is a linear-time join algorithm with
linear speedup and scaleup. Many
optimizations of the parallel hash-
join algorithm have been discov-
ered over the last decade. In patho-
logical skew cases, when many or all
tuples have the same attribute
value, one bucket may contain all
the tuples. In these cases no algo-
rithm is known to speedup or
scaleup.

The hash-join example shows
that new parallel algorithms can
improve the performance of rela-
tional operators. This is a fruitful
research area (4, 8, 18, 20, 25, 26,
38, 39]. Although parallelism can
be obtained from conventional se-
quential relational algorithms by
using split and merge operators, we
expect that many new algorithms
will be discovered in the future.

The State of the Art

Teradata

Teradata quietly pioneered many
of the ideas presented in this arti-
cle. Since 1978 they have been
building shared-nothing highly-
parallel SQL systems based on com-
modity microprocessors, disks, and
memories. Teradata systems act as
SQL servers to client programs
operating on conventional comput-
ers.

Teradata systems may have over
1,000 processors and many thou-
sands of disks. The Teradata proc-
essors are functionally divided into
two groups: Interface Processors
(IFPs) and Access Module Proces-
sors (AMPs). The IFPs handle com-
munication with the host, query
parsing and optimization, and co-
ordination of AMPs during query
execution. The AMPs are responsi-
ble for executing queries. Each
AMP typically has several disks and
a large memory cache. IFPs and
AMPs are interconnected by a dual
redundant, tree-shaped intercon-

nect called the Y-net [33].

Each relation is hash partitioned
over a subset of the AMPs. When a
tuple is inserted into a relation, a
hash function is applied to the pri-
mary key of the tuple to select an
AMP for storage. Once a tuple ar-
rives at an AMP, a second hash
function determines the tuple’s
placement in its fragment of the
relation. The tuples in each frag-
ment are in hash-key order. Given a
value for the key attribute, it is pos-
sible to locate the tuple in a single
AMP. The AMP examines its cache,
and if the tuple is not present,
fetches it in a single disk read. Hash
secondary indices are also sup-
ported.

Hashing is used to split the out-
puts of relational operators into in-
termediate relations. Join operators
are executed using a parallel sort-
merge algorithm. Rather than
using pipelined parallel execution,
during the execution of a query,
each operator is run to completion
on all participating nodes before
the next operator is initiated.

Teradata has installed many sys-
tems containing over 100 proces-
sors and hundreds of disks. These
systems demonstrate near-linear
speedup and scaleup on relational
queries, and far exceed the speed
of traditional mainframes in their
ability to process large (terabyte)
databases.

Tandem NonStop 5QL

The Tandem NonStop SQL system
is composed of processor clusters
interconnected via 4-plexed fiber-
optic rings. Unlike most other sys-
tems discussed in this article, the
Tandem systems run the applica-
tions on the same processors and
operating system as the database
servers. There is no front-end/
back-end distinction between pro-
grams and machines. The systems
are configured at a disk per MIPS,
so each 10-MIPS processor has
about 10 disks. Disks are typically
duplexed [2]. Each disk is served by
a set of processes managing a large
shared RAM cache, a set of locks,
and log records for the data on that

disk pair. Considerable effort is
spent on optimizing sequential
scans by prefetching large units,
and by filtering and manipulating
the tuples with SQL predicates at
these disk servers. This minimizes
traffic on the shared interconnec-
tion network.

Relations may be range part-
tioned across multiple disks. Entry-
sequenced, relative, and B-tree or-
ganizations are supported. Only
B-tree secondary indices are sup-
ported. Nested join, sort-merge
join, and hash join algorithms are
provided. Parallelization of opera-
tors in a query plan is achieved by
inserting split and merge operators
between operator nodes in the
query tree. Scans, aggregates, joins,
updates, and deletes are executed
in parallel. In addition, several util-
ities use parallelism (e.g., load, re-
organize, . . .) [31, 39].

Tandem systems are primary
designed foron-line transaction pro-
cessing (OLTP)—running many
simple transactions against a large
shared database. Beyond the paral-
lelism inherent in running many
independent transactions in paral-
lel, the main parallelism feature for
OLTP is parallel index update.
SQL. relations typically have five
indices on them, although it is not
uncommon to see 10 indices on a
relation. These indices speed reads,
but slow down inserts, updates, and
deletes. By doing the index mainte-
nance in parallel, the maintenance
time for multiple indices can be
held almost constant if the indices
are spread among many processors
and disks.

Overall, the Tandem systems
demonstrate near-linear scaleup on
transaction processing workloads,
and near-linear speedup and ,
scaleup on large relational queries
[10, 31].

Gamma

The current version of Gamma
runs on a 32-node Intel iPSC/2
Hypercube with a disk attached to
each node. In addition to round-
robin, range and hash partitioning,
Gamma also provides hybrid-range

June 1992/Vol.35, No.6/ COMMUNICATIONS OF THE ACM

partitioning that combines the best
features of the hash and range par-
titioning strategies [12]. Once a re-
lation has been partitioned, Gamma
provides both clustered and
nonclustered indices on either the
partitioning or nonpartitioning at-
tributes. The indices are imple-
mented as B-trees or hash tables.

Gamma uses split and merge
operators to execute relational al-
gebra operators using both paral-
lelism and pipelining [9]. Sort-
merge and three different hash join
methods are supported [7]. Near-
linear speedup and scaleup for re-
lational queries has been measured
on this architecture [9, 25, 26].

The Super Database Computer
The Super Database Computer
(SDC) project at the University of
Tokyo presents an interesting con-
trast to other database systems [16,
20]. SDC takes a combined hard-
ware and software approach to the
performance problem. The basic
unit, called a processing module
(PM), consists of one or more proc-
essors on a shared memory. These
processors are augmented by a spe-
cial-purpose sorting engine that
sorts at high speed (3MB/second at
present), and by a disk subsystem
[19]. Clusters of processing mod-
ulcs are connected via an Omega
network that provides both non-
blocking NxN
some dynamic routing minimize
skewed data distribution during
hash joins. The SDC is designed to
scale to thousands of PMs, and so
considerable attention is paid to the
problem of data skew.

Data is partitioned among the
PMs by hashing. The SDC software
includes a unique operating system,
and a relational database query
executor. The SDC is a shared-
nothing design with a software
dataflow architecture. This is con-
sistent with our assertion that cur-
rent parallel database machines sys-
tems use conventional hardware.
But the special-purpose design of
the omega network and of the
hardware sorter clearly contradict
the thesis that special-purpose

interconnect and

COMMUNICATIONS OF THE ACM/ Junc 1992/Vol 35, Nu.b

hardware 1s not a good investment
of development resources. Time
will tell whether these special-
purpose components offer better
price performance or peak perfor-
mance than shared-nothing designs
built of conventional hardware.

Bubba

The Bubba prototype was imple-
mented using a 40-node FLEX/32
multiprocessor with 40 disks [4].
Although this is a shared-memory
multiprocessor, Bubba was de-
signed as a shared-nothing system
and the shared-memory is only
used for message passing. Nodes
are divided into three groups: In-
terface Processors for communicat-
ing with external host processors
and coordinating query execution;
Intelligent Repositories for data
storage and query execution; and
Checkpoint/Logging Repositories.
While Bubba also uses partitioning
as a storage mechanism (both range
and hash partitioning mechanisms
are provided) and dartaflow pro-
cessing mechanisms, Bubba is
unique in several ways. First, Bubba
uses FAD rather than SQL as its
interface language. FAD is an ex-
tended-relational persistent pro-
gramming language. FAD provides
support for complex objects via sev-
eral type constructors including
shared subobjects, set-oriented data
manipulation primitives, and more
traditional language constructs.
The FAD compiler is responsible
tor detecting operations that can be
executed in parallel according to
how the data objects being accessed
are partitioned. Program execution
is performed using a datatlow exe-
cution paradigm. The task of com-
piling and parallelizing a FAD pro-
gram is significantly more difficult
than parallelizing a relational
query. Another Bubba feature is its
use of a single-level store mecha-
nism in which the persistent data-
base at each node is mapped to the
virtual memory address space of
each process executing at the node.
This is in contrast to the traditional
approach of files and pages. Similar
mechanisms are used in IBM’s

AS400 mapping of SQL. databases
into virtual memory, HP’s mapping
of the Image Database into the op-
erating system virtual address
space, and Mach’s mapped file [34]
mechanism. This approach simpli-
tied the implementation of the
upper levels of the Bubba software.

Other Systems

Other parallel database system pro-
totypes include XPRS [30], Volcano
[14], Arbre [21], and the PERSIST
project under development at IBM
Research Labs in Hawthorne and
Almaden. While both Volcano and
XPRS are implemented on shared-
memory multiprocessors, XPRS is
unique in its exploitation of the
availability of massive shared-
memory in its design. In addition,
XPRS is based on several innovative
techniques for obtaining extremely
high performance and availability.

Recently, the Oracle database
system has been implemented atop
a 64-node nCUBE shared-nothing
system. The resulting system is the
first to demonstrate more than
1,000 transactions per second on
the industry-standard TPC-B
benchmark. This is far in excess of
Oracle’s performance on conven-
tional mainframe systems—both in
peak performance and in price/
performance [13].

The NCR Corporation has an-
nounced the 3600 and 3700 prod-
uct lines that employ shared-noth-
ing architectures running System V
R4 of Unix on Intel 486 and 586
processors. The interconnection
network for the 3600 product line
uses an enhanced Y-Net licensed
from Teradata while the 3700 is
based on a new multistage intercon-
nection network being developed
jointly by NCR and Teradata. Two
software offerings have been an-
nounced. The first, a port of the
Teradata software to a Unix envi-
ronment, is targeted toward the
decision-support marketplace. The
second, based on a parallelization
of the Sybase DBMS, is intended
primarily for transaction process-
ing workloads.

Parallel

Database Machines and
Grosch’s Law

Today shared-nothing database ma-
chines have the best peak perfor-
mance and best price performance
available. When compared to tradi-
tional mainframes, the Tandem
system scales linearly well beyond
the largest reported mainframes on
the TPC-A transaction processing
benchmark. Its price/performance
on these benchmarks is three times
cheaper than the comparable main-
frame numbers. Oracle on an
nCUBE has the highest reported
TPC-B numbers, and has very com-
petitive price performance [13, 36].
These benchmarks demonstrate
linear scaleup on transaction pro-
cessing benchmarks.

Gamma, Tandem, and Teradata
have demonstrated linear speedup
and scaleup on complex relational
database benchmarks. They scale
well beyond the size of the largest
mainframes. Their performance
and price performance is generally
superior to mainframe systems.

These observations dety Grosch’s
law. In the 1960s, Herb Grosch ob-
served that there is an economy-of-
scale in computing. At that time,
expensive computers were much
more powerful than inexpensive
computers. This gave rise to super-
linear speedups and scaleups. The
current pricing of mainframes at
$25,000/MIPS and $1,000/MB of
RAM reflects this view. Meanwhile,
microprocessors are selling for
$250/MIPS and $100/MB of RAM.

By combining hundreds or thou-
sands of these small systems, one
can build an incredibly powerful
database machine for much less
money than the cost of a modest
mainframe. For database problems,
the near-linear speedup and
scaleup of these shared-nothing
machines allows them to outper-
form current shared-memory and
shared disk mainframes.

Grosch’s law no longer applies to
database and transaction process-
ing problems. There is no economy
of scale. At best, one can expect lin-
ear speedup and scaleup of perfor-
mance and price/performance.
Fortunately, shared-nothing data-

base architectures achieve this

near-linear performance.

Future Directions and
Research Problems
Mixing Batch and OLTP Queries
The second section of this article,
“Basic Techniques for Parallel
Database Machine Implementa-
tion”, concentrated on the basic
techniques used processing
complex relational queries in a par-
allel database system. Concurrently
running a mix of both simple and
complex queries concurrently pre-
sents several unsolved problems.

One problem is that large rela-
tional queries tend to acquire many
locks and tend to hold them for a
relatively long time. This prevents
concurrent updates of the data by
simple on-line transactions. Two
solutions are currently offered:
give the ad-hoc queries a fuzzy pic-
ture of the database, not locking
any data as they browse it. Such a
“dirty-read” solution is not accept-
able for some applications. Several
systems offer a versioning mecha-
nism that gives readers a consistent
(old) version of the database while
updators are allowed to create
newer versions of objects. Other,
perhaps better, solutions for this
problem may also exist.

Priority scheduling is another
mixed-workload problem. Batch

for

jobs have a tendency to monopolize

the processor, flood the memory
cache, and make large demands on
the 1/0O subsystem. It is up to the
underlying operating system to
quantize and limit the resources
used by such batch jobs to ensure
short response times and low vari-
ance in response times for short
transactions. A particularly difficult
problem is the priority inversion prob-
lem, in which a low-priority client
makes a request to a high-priority
server. The server must run at high
priority because it is managing criti-
cal resources. Given this, the work
of the low-priority client is effec-
tively promoted to high priority
when the low-priority request is
serviced by the high-priority server.
There have been several ad-hoc at-
tempts at solving this problem, but

considerably more work is needed.

Parallel Query Optimization
Current database query optimizers
do not consider all possible plans
when optimizing a relational query.
While cost models for relational
queries running on a single proces-
sor are now well-understood [27]
they still depend on cost estimators
that are a guess at best. Some dy-
namically select from among sev-
eral plans at run time depending
on, for example, the amount of
physical memory actually available
and the cardinalities of the inter-
mediate results [15]. To date, no
query optimizers consider all the
parallel algorithms for each opera-
tor and all the query tree organiza-
tions. More work is needed in this
area.

Another optimization problem
relates to highly skewed value dis-
tributions. Data skew can lead to
high variance in the size of interme-
diate relations, leading to both poor
query plan cost estimates and sub-
linear speedup. Solutions to this
problem are an area of active re-
search [17, 20, 37, 38].

Application Program Parallelism

The parallel database systems offer
parallelism within the database sys-
tem. Missing are tools to structure
application programs to take ad-
vantage of parallelism inherent in
these parallel systems. While auto-
matic parallelization of applications
programs written in COBOL may
not be feasible, library packages to
facilitate explicitly parallel applica-
tion programs are needed. Ideally
the SPLIT and MERGE operators
could be packaged so that applica-
tions could benefit from them.

Physical Database Design

For a given database and workload
there are many possible indexing
and partitioning combinations.
Database design tools are needed to
help the database administrator se-
lect among these many design op-
tions. Such tools might accept as
input a description of the queries
comprising the workload, their fre-
quency of execution, statistical in-
formation about the relations in the
database, and a description of the

June 1992/Vol.35, No.6/ COMMUNICATIONS OF THE ACM

processors and disks. The resulting
output would suggest a partitioning
strategy for each relation plus the
indices to be created on each rela-
tion. Steps in this direction are be-
ginning to appear.

Current algorithms partition re-
lations using the values of a single
attribute. For example, geographic
records could be partitioned by lon-
gitude or latitude. Partitioning on
longitude allows selections for a
longitude range to be localized to a
limited number of nodes, selections
on latitude must be sent to all the
nodes. While this is acceptable in a
small configuration, it is not accept-
able in a system with thousands of
processors. Additional research is
needed on multidimensional parti-
tioning and search algorithms.

On-line Data Reorganization
and Utilities

Loading, reorganizing, or dumping
a terabyte database at a megabyte
per second takes over 12 days and
nights. Clearly parallelism is need-
ed if utilities are to complete within
a few hours or days. Even then, it
will be essential that the data be
available while the utilities are op-
crating. In the SQL world, typical
utilities create indices, add or drop
attributes, add constraints, and
physically reorganize the data,
changing its clustering.

One unexplored and difficult
problem is how to process database
utility commands while the system
remains operational and the data
remains available for concurrent
reads and writes by others. The
fundamental properties of such
algorithms are that they must be on-
line (operate without making data
unavailable), incremental (operate
on parts of a large database), paral-
lel (exploit parallel processors), and
recoverable (allow the operation to
be canceled and return to the old
state).

summary and Conclusions

Like most applications, database
systems want cheap, fast hardware.
Today that means commodity proc-
essors, memories, and disks. Conse-
quently, the hardware concept of a
database machine built of exotic

COMMUNICATIONS OF THE ACM/ June 1992/Vol.35, No.6

hardware is inappropriate for cur-
rent technology. On the other
hand, the availability of fast micro-
processors, and small inexpensive
disks packaged as standard inex-
pensive but fast computers is an
ideal platform for parallel database
systems. A shared-nothing architec-
ture is relatively straightforward to
implement and, more importantly,
has demonstrated both speedup
and scaleup to hundreds of proces-
sors. Furthermore, shared-nothing
architectures actually simplify the
software implementation. If the
software techniques of data parti-
tioning, dataflow, and intra-
operator parallelism are employed,
the task of converting an existing
database management system to a
highly parallel one becomes rela-
tively straightforward. Finally,
there are certain applications (e.g.,
data mining in terabyte databases)
that require the computational and
1/O resources available only from a
parallel architecture.

While the successes of both com-
mercial products and prototypes
demonstrate the viability of highly
parallel database machines, several
research issues remain unsolved
including techniques for mixing
ad-hoc queries with on-line transac-
tion processing without seriously
limiting transaction throughput,
improved optimizers for parallel
queries, tools for physical database
design, on-line database reorgani-
zation, and algorithms for handling
relations with highly skewed data
distributions. Some application
domains are not well supported by
the relational data model. It ap-
pears that a new class of database
systems based on an object-oriented
data model is needed. Such systems
pose a host of interesting research
problems that require further ex-
amination. @

References

1. Alexander, W., et al. Process and
dataflow control in distributed
data-intensive systems. In Proceed-
ings of ACM SIGMOD Conference
(Chicago, Ill., June 1988) ACM,
NY, 1988.

2, Bitton, D. and Gray,]. Disk shad-
owing. In Proceedings of the Four-

10.

11.

12.

13.

14.

. Copeland, G,

teenth International Conference on Very
Large Data Bases (Los Angeles,
Calif., August, 1988).

. Boral, H. and DeWirtt, D. Database

machines: An idea whose time has
passed? A critique of the future of
database machines. In Proceedings of
the 1983 Workshop on Database Ma-
chines. H.-O. Leilich and M. Mis-
sikoff, Eds., Springer-Verlag, 1983.

. Boral, H. et al. Prototyping Bubba:

A highly parallel database system.
IEEE Knowl, Data Eng. 2, 1, (Mar.
1990).

. Godd, E.F. A relational model of

data for large shared databanks.
Commun. ACM 13, 6 (June 1970).
Alexander, W,
Boughter, E., and Keller, T. Data
placement in Bubba. In Proceedings
of ACM-SIGMOD International Con-
ference on Management of Data (Chi-
cago, May 1988).

. DeWitt, D.J., Katiz, R.,, Olken, F,

Shapiro, D., Stonebraker, M. and
Wood, D. Implementation tech-
niques for main memory database
systems. In Proceedings of the 1984
SIGMOD Conference, (Boston, Mass.,
June, 1984},

. DeWitt, D., et al. GAMMA —A high

performance’ dataflow database
machine. In Proceedings of the 1986
VLDB Conference (Japan, August
1986).

. DeWitt, D., et al. The Gamma data-

base machine project. IEEE Knowl.
Data Eng. 2, 1 (Mar. 1990).
Engelbert, S, Gray, J., Kocher, T,
and Stah, P. A benchmark of non-
stop SQL Release 2 demonstrating
near-linear speedup and scaleup on
large databases. Tandem Comput-
ers, Technical Report 89.4, Tandem
Part No. 27469, May 1989.
Ghandeharizadeh, S., and DeWitt,
D.J. Performance analysis of alter-
native declustering strategies. In
Proceedings of the Sixth International
Conference on Data Engineering (Feb.
1990).

Ghandeharizadeh, S., and Dewitt,
D.J. Hybrid-range partitioning
strategy: A new declustering strat-
egy for multiprocessor database
machines. In Proceedings of the Sixth
International Conference on Very Large
Data Bases, (Melbourne, Australia,
Aug. 1990).

Gibbs, J. Massively parallel systems,
rethinking computing for business
and science. Oracle 6, 1 (Dec. 1991).
Graefe, G. Encapsulation of paral-
lelism in the Volcano query process-
ing system. In Proceedings of 1990

97

Parallel

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Database
sSystems

ACM-SIGMOD International Confer-
ence on Management of Data (May
1990).

Graefe, G., and Ward, K. Dynamic
query evaluation plans. In Proceed-
ings of the 1989 SIGMOD Conference,
(Portland, Ore., June 1989).
Hirano, M.S. et al. Architecture of
SDC, the super database computer.
In Proceedings of JSPP 90. 1990.
Hua, K.A. and Lee, C. Handling
data skew in multiprocessor data-
base computers using partition tun-
ing. In Proceedings of the Seventeenth
International Conference on Very Large
Data Bases. (Barcelona, Spain, Sept
1991).

Kitsuregawa, M., Tanaka, H., and
Moto-oka, T. Application of hash te
data base machine and its architec-
ture. New Generation Computing 1, 1
(1983).

Kitsuregawa, M., Yang, W., and
Fushimi, 8. Evaluation of 18-stage
pipeline hardware sorter. In Pro-
ceedings of the Third International
Conference on Data Engineering (Feb.
1987).

Kitsuregawa, M., and Ogawa, Y. A
new parallel hash join method with
robustness for data skew in super
database computer (S§DC). In Pro-
ceedings of the Sixteenth International
Conference on Very Large Data Bases.
(Melbourne, Australia, Aug. 1990).
Lorie, R., Daudenarde,]., Hall-
mark, G., Stamos, |., and Young, H.
Adding intra-transaction parallel-
ism to an existing DBMS: Early
experience. IEEE Data Engineering
Newsletter 12, 1 (Mar. 1989).
Patterson, D. A., Gibson, G. and
Katz, R. H. A case for redundant
arrays of inexpensive disks (RAID}.
In Proceedings of the ACM-SIGMOD
International Conference on Manage-
ment of Data. (Chicago, May 1988).
Ries, D. and Epstein, R. Evaluation
of distribution criteria for distrib-
uted database systems. UBC/ERL
Technical Report M78/22, UC
Berkeley, May, 1978.

Salem, K. and Garcia-Molina, H.
Disk-striping. Department of Com-
puter Science, Princeton University
Technical Report EEDS-TR-322-
84, Princeton, N.J., Dec. 1984.
Schneider, D. and DeWiu, D. A
performance evaluation of four
parallel join algorithms in a shared-
nothing multiprocessor environ-
ment. In Proceedings of the 1989 SIG-
MOD Conference (Portland, Ore.,
June 1989).

26

27.

28.

29,

30.

31.

32.

33.

34,

35.

36.

37.

. Schneider, D. and DeWint, D,
Tradeoffs in processing complex
join queries via hashing in multi-
processor database machines. In
Proceedings of the Sixteenth Interna-
tional Conference on Very Large Data
Bases. (Melbourne, Australia, Aug.,
1990).

Selinger P. G., et al. Access path se-
lection in a relational database man-
agement system. In Proceedings of the
1979 SIGMOD Ceonference (Boston,
Mass., May 1979).

Stonebraker, M. Muffin: A distrib-
uted database machine. ERL Tech-
nical Report UCB/ERL M79/28,
University of California at Berke-
ley, May 1979.

Stonebraker, M. The case for
shared nothing. Database Eng. 9, |
(1986).

Stonebraker, M., Katz, R., Pauer-
son, D, and Ousterhout, J. The
design of XPRS. In Proceedings of the
Fourteenth International Conference on
Very Large Data Bases. (Los Angeles,
Calif., Aug. 1988).

Tandem Database Group. NonStop
SQL, a distributed, high-perfor-
mance, high-rehiability implementa-
tion of SQL. Workshop on High
Performance Transaction Systems,
Asilomar, CA, Sept. 1987.
Tandem Performance Group. A
benchmark of non-stop SQL on the
debit credit transaction. In Proceed
ings of the 1988 SIGMOD Conference
(Chicago, 1L, June 1988).
Teradata Corporation. DBC/1012
Data Base Computer Concepts &
Facilities. Document No. C02-0001-
00, 1983.

Tevanian, A, etal. A Unix interface
for shared memory and memory
mapped files under Mach. Dept. of
Computer Science Technical Re-
port, Carnegie Mellon University,
July, 1987.

Thakkar, 8.S. and Sweiger, M. Per-
formance of an OLTP application
on symmetry multiprocessor sys-
tem. In Proceedings of the Seventeenth
Annual International Sympostum on
Computer Architecture. (Seattle,
Wash., May, 1990).

The Performance Handbook for Data-
base and Transaction Processing Sys-
tems. J. Gray, Ed., Morgan Kauf-
mann, San Mateo, Ca., 1991.
Walton, C.B., Dale, A.G., and
Jenevein, RM. A taxonomy and
performance model of data skew
effects in parallel joins. In Proceed-
ings of the Seventeenth International

Conference on Very Large Data Bases.
(Barcelona, Spain, Sept. 1991).
Wolf, J.L., Dias, D.M., and Yu, P.5.
An effective algorithm for paral-
lelizing sort-merge joins in the pres-
ence of data skew. In Proceedings of
the Second International Sympostum on
Parailel and Distributed Systems. (Dub-
lin, Ireland, July, 1990).

Zeller, H.J. and Gray,]. Adaptive
hash joins for a multiprogramming
environment. In Proceedings of the
1990 VLDB Conference (Australia,
Aug. 1990).

CR Categories and Subject Descrip-
tors: B.5.1 [Register-Transfer-Level
Implementation]: Design-style (e.g.,
parallel, pipelined, special-purpose);
C.1.2 [Computer Systems Organiza-
tion|: Processor Architectures—Multiple
Data Stream Architectures (Multiprocessors};
F.1.2 [Computation by Abstract De-
vices]: Modes of Computation—
Parallelism; H.2.1 [Information Sys-
tems]: Database Management—Logical
design; H.2.8 [Information Systems]:
Database Management—Database Appli
cations; H.3 [Information Systems]: In-
formation Storage and Retrieval

General Terms: Design, Measure-
ment

Additional Keywords and Phrases:
Parallelism, parallel database systems,
parallel processing systems.

About the Authors:

DAVID DEWITT is a professor in the
Computer Sciences Department at the
University of Wisconsin. His current
research interests include parallel data-
base systems, object-oriented database
systems, and database performance
evaluation. Author’s Present Address:
Computer Sciences Department, Uni-
versity of Wisconsin, 1210 West Dayton
Street, Madison, WI 53706; emal:
dewitt@cs.wisc.edu

JIM GRAY is a staff member with the
Digital Equipment Corporation. His
current research interests include data-
bases, transaction processing, and com-
puter architecture. Author’s Present
Address: San Francisco Systems Center,
Digital Equipment Corporation, 455
Market Street—7th Floor, San Fran-
cisco, CA 94105-2403; email: gray(@
stbay.enet.dec.com

38.

39.

This research was partially supported by the
Defense Advanced Research Projects Agency
under contract NO0039-86-C-0578, by the
National Science Foundation under gram
DCR-8512862, and by research grants from
Digital Equipment Corporation, IBM, NCR,
Tandem, and Intel Scientific Computers.

© ACM 0002-0782/92/0600-085 §1.50

June 1992/Vol 35, No.6/COMMUNIGATIONS OF THE ACM

