
HYRISE—A Main Memory Hybrid Storage Engine

Martin Grund
Hasso-Plattner-Institute

Jens Krüger
Hasso-Plattner-Institute

Hasso Plattner
Hasso-Plattner-Institute

Alexander Zeier
Hasso-Plattner-Institute

Philippe Cudre-Mauroux
MIT CSAIL

Samuel Madden
MIT CSAIL

ABSTRACT
In this paper, we describe a main memory hybrid database system
called HYRISE, which automatically partitions tables into vertical
partitions of varying widths depending on how the columns of the
table are accessed. For columns accessed as a part of analytical
queries (e.g., via sequential scans), narrow partitions perform better,
because, when scanning a single column, cache locality is improved
if the values of that column are stored contiguously. In contrast, for
columns accessed as a part of OLTP-style queries, wider partitions
perform better, because such transactions frequently insert, delete,
update, or access many of the fields of a row, and co-locating those
fields leads to better cache locality. Using a highly accurate model of
cache misses, HYRISE is able to predict the performance of different
partitionings, and to automatically select the best partitioning using
an automated database design algorithm. We show that, on a realistic
workload derived from customer applications, HYRISE can achieve
a 20% to 400% performance improvement over pure all-column or
all-row designs, and that it is both more scalable and produces bet-
ter designs than previous vertical partitioning approaches for main
memory systems.

1. INTRODUCTION
Traditionally, the database market divides into transaction pro-

cessing (OLTP) and analytical processing (OLAP) workloads. OLTP
workloads are characterized by a mix of reads and writes to a few
rows at a time, typically through a B+Tree or other index structures.
Conversely, OLAP applications are characterized by bulk updates
and large sequential scans spanning few columns but many rows of
the database, for example to compute aggregate values. Typically,
those two workloads are supported by two different types of database
systems – transaction processing systems and warehousing systems.

This simple categorization of workloads, however, does not en-
tirely reflect modern enterprise computing. First, there is an in-
creasing need for “real-time analytics” – that is, up-to-the-minute
reporting on business processes that have traditionally been handled
by warehousing systems. Although warehouse vendors are doing as
much as possible to improve response times (e.g., by reducing load

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/11... $ 10.00.

times), the explicit separation between transaction processing and
analytics systems introduces a fundamental bottleneck in analytics
response times. For some applications, directly answering analyt-
ics queries from the transactional system is preferable. For exam-
ple “available-to-promise” (ATP) applications process OLTP-style
queries while aggregating stock levels in real-time using OLAP-style
queries to determine if an order can be fulfilled.

Unfortunately, existing databases are not optimized for such
mixed query workloads because their storage structures are usu-
ally optimized for one workload or the other. To address such
workloads, we have built a main memory hybrid database system,
called HYRISE, which partitions tables into vertical partitions of
varying widths depending on how the columns of the tables are ac-
cessed (e.g., transactionally or analytically).

We focus on main memory systems because, like other re-
searchers [22, 7], we believe that many future databases – partic-
ularly those that involve enterprise entities like customers, outstand-
ing orders, products, stock levels, and employees – will fit into the
memory of a small number of machines. Commercially available
systems already offer up to 1 TB of main memory (e.g., the Fujitsu
RX600 S5).

Main memory systems present a unique set of challenges and op-
portunities. Due to the architecture of modern CPUs and their com-
plex cache hierarchy, comparing the performance of different main
memory layouts can be challenging. In this paper, we carefully pro-
file the cache performance of a modern multi-core machine and de-
velop a cost model that allows us to predict the layout-dependent per-
formance of a mixed OLTP/OLAP query workload on a fine-grained
hybrid row/column database.

Our model captures the idea that it is preferable to use narrow par-
titions for columns that are accessed as a part of analytical queries,
as is done in pure columnar systems [5, 6]. In addition, HYRISE
stores columns that are accessed in OLTP-style queries in wider
partitions, to reduce cache misses when performing single row re-
trievals. Though others have noted the importance of cache locality
in main memory systems [6, 3, 12, 25], we believe we are the first to
build a dedicated hybrid database system based on a detailed model
of cache performance in mixed OLAP/OLTP settings. Our work is
closest in spirit to Data Morphing [12], which also proposes a hybrid
storage model, but we have extended their approach with a more
accurate model of cache and prefetching performance for modern
processors that yields up to 60% fewer cache misses compared to
the layouts proposed by Data Morphing. Furthermore, the layout
algorithms described in the Data Morphing paper are exponential
(2n) in the number of attributes in the input relations, and as such
do not scale to large relations. Our algorithms scale to relations with
hundreds of columns, which occur frequently in real workloads.

We note that several analytics database vendors have announced
support for hybrid storage layouts to optimize performance of par-

105

ticular workloads. For example, Vertica introduced FlexStore, which
allows columns that are accessed together to be physically stored to-
gether on disk. VectorWise, Oracle, and GreenPlum have made sim-
ilar announcements. None of these vendors have released detailed
information about how their hybrid schemes work, and they do not
appear to have database designers such as ours that can automate
hybrid partitioning, but these products acknowledge the importance
of hybrid designs such as those we explore in this paper.

In summary, we make several contributions in this paper:
1. We develop a detailed cache performance model for layout-

dependent costs in hybrid main memory databases.
2. We develop an automated database design tool that, given a

schema, a query workload, and using our analytical model,
recommends an optimal hybrid partitioning.

3. We show that our system, running on a customer-derived
benchmark (which we describe in detail), is 20% to 400%
faster than either a pure-row or a pure-column store running
on the same data. We also show that our designs are better
than previous hybrid storage schemes.

Before describing the details of our model and design algorithms,
we provide a brief overview of the architecture of HYRISE.

2. HYRISE ARCHITECTURE
The following section describes the architecture of HYRISE. The

main architectural components are shown in Figure 1. The storage
manager is responsible for creating and maintaining the hybrid con-
tainers storing the data. The query processor receives user queries,
creates a physical query plan for each query, and executes the query
plan by calling the storage manager. The layout manager analyzes
a given query workload and suggests the best possible layout (parti-
tioning) for this workload to the storage manager.

Q
ue

ry
 P

ro
ce

ss
or Layout Manager

Layouter Workload
Data

In-Memory Storage
Manager Data Container

Attribute
Groups

Attribute
Groups

R

R

R

● ● ●

Figure 1: HYRISE architecture
We have built a prototype of this architecture. Our prototype ex-

ecutes hand-coded queries based on the query processor API and
currently lacks support for transactions and recovery. We omit these
features because we believe they are orthogonal to the question of
which physical design will perform best for a given workload. How-
ever, to minimize the impact of transactions in HYRISE, in addition
to normal write operations, we use non-temporal writes, which make
it possible to write directly back to main memory without loading the
written content into the CPU cache (see Appendix E.) Even though
our prototype currently executes one query at a time only, we use
thread-safe data structures that include latch acquisition costs to sup-
port later query parallelization.

We give an overview of both the storage manager and the query
processor below. The approach used by the layout manager to select
good layouts is described in detail in Section 4.

2.1 Storage Manager
Our HYRISE prototype supports a fine-grained hybrid storage

model, which stores a single relation as a collection of disjoint ver-
tical partitions of different widths. Each partition is represented by
a data structure we call container. Each attribute is mapped to one
and only one container. A container provides methods to access the
various values it holds. Containers are physically stored as a list

of large contiguous blocks of memory. Data types are dictionary-
compressed into fixed-length fields to allow direct access (offsetting)
to any given position (exploring further compression schemes is an
area of future work.) Position offsets typically come from another
container or from a value-index lookup.

Figure 2 shows an example of a relation r with eight attributes
partitioned into three containers. In this example, the first container
contains one attribute only. The second and third containers contain
five and two attributes respectively.

C1 (a1) C2 (a2 .. a6) C2 (a7 .. a8)
r = (a1 ... a8)

Figure 2: Partitioning example
Since our findings in enterprise software show that historic data

must be kept for legal reasons [18] our system currently focuses on
selections and insertions. In order to keep track of all data changes,
we handle updates and deletions using validity timestamps as de-
scribed in [23].

2.2 Query Processor
The HYRISE query processor creates a query plan, consisting of a

tree of operators, for every query it receives. HYRISE currently im-
plements projection, selection, join, sorting, and group by operators.
For joins HYRISE includes hash and nested loops join algorithms.
Most of our operators support both early and late materialization,
meaning that HYRISE provides both position or value-based opera-
tors [1]. In late materialization, filters are evaluated by determining
the row indexes (“positions”) that satisfy predicates, and then those
positions are looked up in the columns in the SELECT list to deter-
mine values that satisfy the query (as opposed to early materializa-
tion, which collects value lists as predicates are evaluated.)

Non-join queries are executed as follows: index-lookups and
predicates are applied first in order to create position lists. Position
lists are combined (e.g., ANDed) to create result lists. Finally, results
are created by looking-up values from the containers using the result
lists and are merged together to create the output tuples. For join
plans, predicates are first applied on the dimension tables. Then,
foreign-key hash-joins are used to build position lists from the fact
tables. Additional predicates can then be applied on the fact tables
to produce additional position lists. All position lists are combined
with the output of the joins, and the final list of positions is used to
create the final results. Query execution is currently single-threaded
and handles one operator at a time only; we are extending HYRISE
to support efficient parallel execution for multi-core processors.

3. HYBRID MODEL
In this section, we derive a cost model for the most important op-

erations performed in HYRISE. This cost model will be used in Sec-
tion 4 to compare the performance of various hybrid layouts given a
query workload.

We distinguish between layout-dependent and layout-independent
costs. Layout-dependent operations access the data from its primary
physical representation—the costs of these operators vary depend-
ing on the physical storage structures used. Layout-independent
operations occur when accessing intermediate results that are cre-
ated as a result of query processing. The cost of such operators
does not vary when the physical storage layout changes. The mag-
nitude of layout-independent costs depends on the materialization
strategy, since early materialization will result in more intermediate
results. We focus on layout-dependent operations in the following
since these are the only operations that benefit from changes of the
physical layout.

106

C.o a1 a2 a3 a4 a5
r0

r3
r2
r1

L.w

C.w

π.w

Figure 4: A projection projecting the first two attributes of a
5-attribute container

Most of the layout-dependent costs incurred in a main-memory
system like HYRISE originate from CPU stalls—typically caused
by cache misses when moving data from main memory; those CPU
stalls are known to account for a significant fraction of the total cost
of a query (see [4]). Our experiments in Section 5 show that cache
misses are a good predictor of query runtime.

Our model is based on a detailed analysis of such costs, taking
into account the cache misses for different cache levels (e.g., L1 and
L2 cache). Unlike previous cache-aware cost models (Manegold et
al. [16] and Boncz et al. [6]), which focused on column-oriented
designs only, we analyze sets of hybrid data containers that can store
an arbitrary number of columns or rows. We choose this level of
detail so that our cost model can be reused in a cost-based optimizer.

To illustrate our model, we provide the cache misses and CPU
cycles for different operations as measured in our system. All mea-
surements were executed using an Intel E5450 quad-core CPU with
32KB per core L1 data and instruction cache (8-way associative, 64
byte cache lines), a shared 6MB L2 cache (24-way associative, 64
byte cache lines), and 64 GB of PC2 5300 CL2 RAM.

3.1 Notation
We consider a database DB, consisting of a list of relations r ∈
R. Each relation r is defined by a list of attributes (a1r , . . . , amr)
and contains a certain number of tuples r.n. Each relation is decom-
posed into a set of containers C1r , . . . , Cnr . Each container stores a
subset of the attributes of r: Cir = (akr , . . . , alr) (in the remainder
of this section, we omit the subscript r for readability). We say that
each container stores a contiguous list of tuple fragments. We write
Ci.w to denote the width of the container in bytes, and Ci.n for the
number of rows in the container.

In the following, we evaluate the number of cache misses for the
main operations supported by our system. We write Li.w to express
the length (in bytes) of a cache line for cache level i, and Li.n to
indicate the number of cache lines available for cache level i. The
total size of the cache for level i is thus Li.n × Li.w. Loading a
cache line through the cache hierarchy causes the CPU to stall. We
write Li.cpu to express the number of CPU cycles spent to load a
line from cache level i to cache level i− 1.

3.2 Partial Projections
We start by evaluating the number of cache misses that occur when

performing a projection π on a container C. Initially, we restrict the
projections to a series of contiguous attributes in C, starting at an
offset π.o from the beginning of the container and retrieving π.w
bytes of attributes. A simple example is depicted in Figure 4 for a 5-
attribute container and a projection retrieving the first two attributes
of the container (π.o = 0 and π.w = 8 bytes considering 4-byte
attributes).

Projections are executed by reading the relevant portions of the
containers. If the data is not already cached, the system reads it from
RAM and loads it into the cache hierarchy—assuming an inclusive
cache hierarchy (as in Intel Processors)—one cache line and level at
a time. Two cases can occur depending on the width of the container,
the projection, and the cache line. In the first case, when

C.w − π.w < Li.w (1)
the entire container must be read, resulting in a full scan. This hap-

pens whenever the non-projected segments of the container (C.w −
π.w for each container row) are strictly smaller than a cache line
and can never be skipped when retrieving the projected pieces. The
number of cache misses incurred by a full scan is:

Missi(C, π) =

⌈
C.w × C.n+ C.o

Li.w

⌉
(2)

Here, C.o denotes the offset (in bytes) between the beginning of the
container and the first preceding address that can be mapped to the
beginning of a cache line. In this case, the number of cache misses
corresponds to the number of cache lines needed to read the entire
container (C.w × C.n), plus any additional accesses if the address
of the beginning of the container is not aligned to the beginning of a
cache line (i.e., C.o 6= 0).

If the condition in equation 1 does not hold, parts of the container
can be skipped when executing the projection. The number of cache
misses incurred by such a partial projection depends on the align-
ment of each row r with respect to the cache lines. We first determine
the offset r.o from the start of the container to the start of the r-th
row of the container:

r.o = C.w × r. (3)
The offset between the beginning of the projection of the r-th row
and the beginning of the nearest previous cache line is:

lineoffseti(r, π) = (C.o+ r.o+ π.o) mod Li.w. (4)
To retrieve the projected attributes for the r-th row, the system has
to read π.w bytes, in addition to the lineoffseti(r, π) bytes implicitly
read by the cache because of the misalignment between the cache
line and the projected segment. The number of cache lines required
to read the r-th row is thus:

Missi(r, π) =

⌈
lineoffseti(r, π) + π.w

Li.w

⌉
(5)

Finally, the total number of cache misses incurred by the partial pro-
jection is:

Missi(C, π) =

C.n−1∑
r=0

Missi(r, π). (6)

Due to the high number of iterations to calculate the total cache
misses, we would like to replace equation 6 with an exact calculation
(compared to the average calculation in [16]). The key observation
is that the value of lineoffseti(r, π) follows a repeating pattern, de-
pending on the value of Li.w and C.w. In general, the number of
distinct values of lineoffseti(r, π) is known as the additive order of
C.w mod Li.w [14], and has v distinct values:

v = Li.w/gcd(C.w,Li.w) (7)
where gcd(C.w,Li.w) is the greatest common divisor of C.w and
Li.w. Hence, it is enough to evaluate equation 6 for the first v rows,
and then multiply the result by C.n/v; that is:

Missi(π,C) =
C.n

v

v∑
r=0

Missi(r, π). (8)

To illustrate this model, we compare the number of cache misses
for different layouts. Figure 3(a) shows the results of an experiment
on two different layouts, one with 100 narrow one-attribute contain-
ers, and the other one with only one wide 100-attribute container (all
attributes are 4 byte long). Both layouts have the same total width.
The figure reports the total number of L2 cache misses for partial
projections ranging from one to 100 attributes, as well as the num-
ber of misses predicted by our model (note that the lines completely
overlap.) Figure 3(b) further shows that there is a relation between
the number of cache misses and the number of CPU cycles for these
operations. Cache misses are highly correlated with—and a good
predictor of—total CPU cycles in database access methods because
the primary action of these operators is to retrieve values from mem-
ory, and cache misses tend to dominate these memory access costs
for memory-bound operations.

107

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f L
2

C
ac

he
 M

is
se

s

Number of Attributes in Projection

100 x 1 attribute container
1 x 100 attributes container

1 x 100 attributes container (model)
100 x 1 attribute container (model)

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f C
PU

 C
yc

le
s

Number of Attributes in Projection

100 x 1 attribute container
1 x 100 attributes container

Figure 3: Modeled vs Measured L2 misses (a); CPU cycles (prefetcher off) (b); L2 Misses Row/Column Containers and Varying
Selectivity (c)

3.3 Combining Partial Projections
The previous section discussed the projection of contiguous at-

tributes from a container. However, query plans often need to project
non-contiguous sets of attributes. Non-contiguous projections can
be rewritten as a set of partial projections {π1, . . . , πk}, each of
which retrieves a list of contiguous attributes in C. Such projec-
tions define a set of gaps {γ1, . . . , γl}, i.e., contiguous attributes
groups that are not projected. For instance, a projection on the first
and third attribute of a five-attribute container is equivalent to two
partial projections—one on the first and one on the third attribute.
The projection defines two gaps, one on the second attribute, and a
second one on the fourth and fifth attributes. Two cases can occur
depending on the width γ.w of the gaps:

Full-scan: if ∀γi ∈ {γ1, . . . , γl}, γi.w < Li.w, all gaps are strictly
smaller than a cache line and cannot be skipped. Thus, the projection
results in a full scan of the container.

Independent projections: if ∃γi ∈ {γ1, . . . , γl} | γi.w ≥ Li.w,
there exist portions of the container that might potentially be skipped
when executing the projection. The projection is then equivalent to
a set of 1 +

∑l
i=1 1γi.w≥Li.w partial projections defined by the gap

boundaries (where 1 is an indicative function used to express the
gaps that are greater than the cache line). Writing Γi to express the
i-th largest gap whose width Γi.w ≥ Li.w, the equivalent partial
projections can be defined as

πeqi .o = Γi.o. (9)
and

πeqi .w = Γi+1.o− (Γi.o+ Γi.w) (10)

Similarly, we can merge the first and last projections by taking into
account the fact that the last bytes of a row are stored contiguously
with the first bytes of the following row. Hence, we merge the first
and last projections when the gap Γrow between them is smaller than
a cache line, i.e., when

Γrow = (πeqfirst.o+ C.w)− (πeqlast.o+ πeqlast.w) < Li.w. (11)

The final projection πeq is in that case defined as follows: πeq.o =
πeqlast.o and πeq.w = πeqfirst.w + πeqlast.w + Γrow.

Using this framework, we can model the impact of complex
queries involving the projection of an arbitrary set of attributes from
a container without erroneously counting misses twice.

3.4 Selections
In this subsection, we consider projections that only retrieve a spe-

cific subset S of the rows in a container. We assume that we know the
list of rows ri ∈ S that should be considered for the projection (e.g.,
from a position lookup operator). The selectivity of the projection
π.s represents the fraction of rows returned by the projection. Our
equations in this section must capture the fact that highly selective
projections touching a few isolated rows can generate more cache
misses per result than what full-scans would do.

Two cases can also occur here, depending on the relative sizes of
the container, the projection, and the cache line:

Independent selections: whenever C.w − π.w − 1 ≥ Li.w, the
gaps between the projected segments cause each row to be retrieved
independently of the others. In that case, the cache misses incurred
by each row retrieval are independent of the other row retrievals.
The total number of cache misses incurred by the selection is the
sum of all the misses incurred when independently projecting each
row r ∈ S from the set of selected rows:

Missi(C, π)sel =

C.n−1∑
r=0

Missi(r, π) π.s. (12)

This number of misses can be efficiently computed using the additive
order approach described above.
Overlapping selections: when C.w − π.w − 1 < Li.w, retriev-
ing the projection for a given row may retrieve parts of the projec-
tion for a different row. This effect is particularly apparent for low-
selectivity projections on narrow containers, for which several rows
can fit on a single cache line. The average number of rows that can fit
in one cache line is equal to Li.w/C.w. For each cache line fetched
to retrieve a selected row, there are on average

totalCachedRows = 1 + π.s

(
Li.w

C.w
− 1

)
(13)

selected rows cached, assuming that the rows are selected indepen-
dently of each other. The average number or misses is thus

Missi(C, π)sel ∼=
π.s

totalCachedRows
Missi(C, π). (14)

Figure 3(c) compares the measured and modeled number of cache
misses for selections on two layouts: one consisting of 16 one-
attribute containers and a second one consisting of one 16-attribute
wide container. Both layouts have the same total width and both
have 2M tuples. For low selectivities, using wider containers results
in fewer cache misses, since each (whether narrow or wide) con-
tainer generates at least one cache miss per tuple fragment retrieved
for very selective projections.

3.5 Joins and Aggregates
Our system currently uses late-materialization based hash joins

and hash-based GROUP BYs. These operations can both be mod-
eled as partial projections and selections. For a join of tables R
and S, where R is the table that is to be hashed, R is filtered via a
partial projection and a position lookup (using positions from early
operators in the plan). The resulting hash table is then probed with
a similarly filtered version of S. For GROUP BYs, the grouping
column is also filtered via a partial projection and position lookup.

3.6 Padded Containers and Reconstruction
Padding and Alignment: For partial projections it is possible to
reduce the total number of cache misses by performing narrow row-
padding such that the beginning of each row coincides with the be-
ginning of a cache line. For a padded container C, the padding
(empty space) ρ.w to insert at the end of each row to achieve such an
effect is C.w mod Li.w bytes wide for a given cache level. The
expressions given above to compute the number of cache misses can
be used on padded containers by replacing the width of the container

108

C.w and the width of the row r.w by their corresponding expressions
taking into account padding, namely C.w + ρ.w and r.w + ρ.w re-
spectively. As an example: For a 90-attribute container, where each
attribute is 4 bytes, an additional 24 bytes of padding is added per
tuple. This increases access performance in 87% of all simple pro-
jections with an average speedup of ≈ 7%.

Depending on the associativity of the L1 cache and the imple-
mented replacement policy for cache lines, HYRISE applies a spe-
cial alignment policy to avoid early evictions due to cache set colli-
sions (for details, see Appendix A).
Tuple Reconstruction: If the final result is materialized into one
result set, output tuples must be built from multiple containers. In the
rare case that the width of an output tuple is wider than the available
cache size at a given level (e.g., 32KB for L1, 6MB for L2), evictions
will occur before the last attribute of the tuple is written, triggering
additional cache misses. To avoid these misses, the output must be
written one container at a time instead of one tuple at a time.

4. LOGICAL DATABASE DESIGN
There are a very large number of possible hybrid physical designs

(combinations of non-overlapping containers containing all of the
columns) for a particular table. For a table of n attributes, there exist
a(n) possible hybrid designs, where

a(n) = (2n− 1)a(n− 1)− (n− 1)(n− 2)a(n− 2) (15)
where a(0) = a(1) = 1. This corresponds to the number of parti-
tions of {1, . . . , n} into any number of ordered subsets.

There are for instance 3,535,017,524,403 possible layouts for a
table of 15 attributes. Most previous hybrid database systems do
not automatically suggest designs to the database administrator (see
Section 6) — the only automated hybrid designer we are aware of,
the HillClimb Data Morphing algorithm [12], does not work for wide
tables in practice since it scales exponentially (2n) with the number
of attributes in both time and space. We propose two new algorithms
that can efficiently determine the most appropriate physical design
for tables of many tens or hundreds of attributes given a database
and a query workload. Our first algorithm has a worst-case running
time that is exponential in the problem size, but incorporates several
pruning steps that allows it to scale to wide tables in practice. Our
second algorithm includes a partitioning step and can scale to larger
problems, while introducing bounded sub-optimality.

4.1 Layouts
We start by extending the model described in Section 3.1. We

consider a query workloadW , consisting of a set of queries qi: W =
{q1, . . . , qm} that are regularly posed against the database. Each
query has a weight w1, . . . , wm that captures the relative frequency
of the query. Furthermore, each query has a cost, representing the
time required by the database to answer the query. The time needed
to answer all queries of a given workload W is thus proportional to:

CostDB(W) ∼
m∑
i=1

wi CostDB(qi) (16)

where CostDB(qi) is the cost (i.e., total number of cache misses
weighted by the correct value of Li.cpu for each cache level) asso-
ciated with the operations performed as part of qi as described in the
preceding section. The containers implicitly split the relations into
sets of partitions P1, . . . , Pn with:

∀ai ∈ R ∃Pi | ai ∈ Pi ∧ ai /∈ Pj∀Pj 6= Pi. (17)

We call the sets of partitions following the preceding condition lay-
outs λ ∈ Λ. Note that layouts consist of unordered sets of parti-
tions, such that the layouts λ1 = {(a1, a2), (a3, a4)} and λ2 =
{(a3, a4), (a1, a2)} are considered identical.

We write λ = (λR1 , . . . , λRr) to express the list of layouts by
which relations R1, . . . , Rr are stored in the system. The rest of

this section is devoted to the determination of good layouts that will
minimize the query response time. Formally, given a database DB
and a workload W , our goal is to determine the list of layouts λopt
minimizing the workload cost:

λopt = argmin
λ

(CostDB(W)) . (18)

4.2 Layout Selection
We use the model defined in the previous section to automatically

determine good hybrid layouts given a databaseDB and a workload
W . Based on the model, we make two observations: First, projec-
tions retrieving π.w bytes out of aC.w-wide container often incur an
overhead. This overhead is caused by loading attributes into cache
that are not used by the projection. This overhead is proportional to
C.w − π.w for full scans, and can vary for partial projections and
selections depending on the exact alignment of the projection and
the cache lines. We call this overhead container overhead cost.

Second, when the output tuples can be reconstructed without any
cache eviction (Section 3.6), the cost expression distributes over the
set of queries, in the sense that each cost can be decomposed and
computed separately for each partition and the corresponding subsets
of the queries {qi, . . . , qj} accessing the partition:

CostDB({q1, . . . , qm}) =
∑
P∈λ

CostP ({qi, . . . , qj}) (19)

Based on our model and the above observations our layout algo-
rithm works in three phases called candidate generation, candidate
merging, and layout generation phases. An example is described in
detail in Appendix B.

Candidate Generation: The first phase of our layout algorithm de-
termines all primary partitions for all participating tables. A pri-
mary partition is defined as the largest partition that does not incur
any container overhead cost. For each relation R, we start with the
complete set of attributes {a1, . . . , am} in R. Each operation opj
implicitly splits this set of attributes into two subsets: the attributes
that are accessed by the operation, and those that are ignored. The
order in which we consider the operations does not matter in this
context. By recursively splitting each set of attributes into subsets
for each operation opj , we end up with a set of |P | primary par-
titions {P 1

1 , . . . , P
1
|P |}, each containing a set of attributes that are

always accessed together. The cost of accessing a primary partition
is independent of the order in which the attributes are laid out, since
all attributes are always queried together in a primary partition.

Candidate Merging: The second phase of the algorithm inspects
permutations of primary partitions to generate additional candidate
partitions that may ultimately reduce the overall cost of the work-
load. Our cost model shows us that merging two primary partitions
P 1
i and P 1

j is advantageous for wide, random access to attributes
since corresponding tuple fragments are co-located inside the same
partition; for projections, the merging process is usually detrimen-
tal due to the additional access overhead (which occurs unless both
primary partitions are perfectly aligned to cache lines.)

This tension between reduced cost of random accesses and penal-
ties for large scans of a few columns allows us to prune many of the
potential candidate partitions. To do this, we compute the cost of the
workloadW ,CostPn

i
(W) on every candidate partitionPni obtained

by merging n primary partitions (P 1
1 , . . . , P

1
n), for n varying from 2

to |P |. If this cost is equal to or greater than the sum of the individual
costs of the partitions (due to the container overhead), then this can-
didate partition can be discarded: In that case, the candidate partition
can systematically be replaced by an equivalent or more optimal set
of partitions consisting of the n primary partitions P 1

1 , . . . , P
1
n since

CostPn
i
({qi, . . . , qj}) ≥

n∑
m=1

CostP1
m
({qi, . . . , qj}) (20)

109

and since the other terms of the total layout cost (Equation 19) are not
affected by this substitution. If a candidate partition is not discarded
by this pruning step, it is added to the current set of partitions and
will be used to generate valid layouts in the following phase.

Layout Generation: The third and last part of our algorithm gen-
erates the set of all valid layouts by exhaustively exploring all pos-
sible combinations of the partitions returned by the second phase.
The algorithm evaluates the cost of each valid layout consisting of
a covering but non-overlapping set of partitions, discarding all but
the physical layout yielding the lowest cost. This last layout is the
optimal layout according to our cost model, since all potentially in-
teresting permutations of attributes are examined by our algorithm
(only irrelevant permutations, such as subsets of primary partitions
or suboptimal merges from Section 4.2, are discarded).

The worst-case space complexity of our layout generation algo-
rithm is exponential with the number of candidates partitions |P |.
However, it performs very well in practice since very wide rela-
tions typically consist of a small number of sets of attributes that
are frequently accessed together (thus, creating a small number of
primary partitions) and since operations across those partitions are
often relatively infrequent (thus, drastically limiting the number of
new partitions generated by the second phase above).

4.3 Divide and Conquer Partitioning
For large relations and complex workloads involving hundreds of

different frequently-posed queries, the running time of the above al-
gorithm may still be high. In this section, we propose an approxi-
mate algorithm that clusters the primary partitions that are often co-
accessed together, generating optimal sub-layouts for each cluster of
primary partitions, and finally combining the optimal sub-layouts.

We start by generating a |P |×|P |matrixM , storing in each entry
M(i, j) the number of times the two primary partitions {P 1

i , P
1
j }

are accessed together. Computing this number is done using our cost
model to estimate how many rows are accessed by each query in
each primary partition. This matrix is symmetric and can be seen as
a graph where each vertex is a primary partition, and the weight be-
tween two vertices i and j (M(i, j)) represents the co-access affinity
between the two primary partitions P 1

i , P 1
j .

We partition this graph in order to obtain a series of min-cut sub-
graphs each containing at most K primary partitions, where K is a
constant. These cuts seek to minimize the total cost (weight) of all
edges that must be removed. This is a very well studied problem
in the theory community, and there exist practical implementations
of these algorithms; in our system, we use metis, an efficient and
approximate multilevel k-way partitioner [15].

At this point, each subgraph contains a set of primary partitions
that are accessed together, and which thus represent excellent candi-
dates for our merging phase (Section 4.2). We determine the optimal
layout of each subgraph separately using the algorithm described
above (Section 4.1), which is in the worst-case exponential with the
maximum number of primary partitions in a subgraph (K).

Finally, we combine the sub-layouts obtained in the previous step:
we incrementally combine pairs of partitions Pi and Pj belonging to
two different sub-layouts and yielding the most savings according to
our cost model, until no further cost-reduction is possible. This final
step requires O(|P | ∗

(|P |
2

)
) partition evaluations in the worst-case

(here |P | is the total number of partitions in all sub-layouts), but is
much faster in practice since the most similar primary partitions are
already clustered together in the same subgraph, and since narrow
partitions yielding many different combinations are trivial to evalu-
ate as they contain few attributes.

This approximate algorithm is very effective in practice (it al-
ways finds the optimal layouts for our workload and for K > 3,

for instance). The only times it generates suboptimal layouts is
when a complex combination of partitions belonging to different
sub-layouts yields a smaller cost than the one found using our greedy
algorithm. The penalty incurred is in any case never greater than
2 ∗
∑
cutM(i, j) (where

∑
cutM(i, j) represents the set of edges

removed during the graph-partitioning phase), which is the maximal
penalty incurred by the partitioning phase. It is also very efficient
for relatively small values of K (see Appendix F for details).

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of HYRISE on a work-

load derived from a customer application. Our goal is to compare
the performance of an all-row or all-column database design against
our hybrid approach, and to validate the cost model and database
designer described above. To increase the execution performance
we performed several additional optimizations, including memory
alignment, narrow-row padding and cache-set collision avoidance,
as described in Appendix A.

To evaluate our model we choose a set of queries derived from
an SAP enterprise resource planning (ERP) application that includes
several analytical queries that model reporting over the recent history
of these transactions. To show the robustness of our approach we ex-
ecute one analytical query in two different versions (Q11 and Q12),
with a layout-dependent selectivity of 2% (Q11) and 50% (Q12).

We built our own application-derived workload because real en-
terprise applications (such as those we have encountered at SAP) ex-
hibit significant differences in terms of number of attributes per table
from benchmarks like TPC-C, TPC-E, and TPC-H. For example, in
TPC-E (the most complex of these three benchmarks) the maximum
number of attributes per relation is about 25; in SAP’s enterprise
applications it is not uncommon to see tables with 200 attributes or
more. A second reason for creating our own benchmark is that we
wanted to execute both OLTP-style and analytical-style queries on
the same data, and is not easy to retrofit an existing benchmark like
TPC-C or TPC-H to support both analytical and transactional queries
without substantailly changing benchmark. A detailed description of
the benchmark and its queries are given in Appendix C.

5.1 Schema and Query Selection
The schema for our workload is based on a CRM application. The

main tables represents sales orders (VBAK) and sales order line items
(VBAP). The schema also contains tables for materials (MARA), ma-
terial texts (MAKT), business partners (KNA1), business partner ad-
dresses (ADRC), and the material hierarchy table (MATH).

When running queries, we populated tables with sizes obtained
from interviews with consultants familiar with the application.
Specifically, the sales order header table (VBAK) contains 3.6M
entries and the sales order line item table (VBAP) 144M items.
Each sales order has between 3 and 5 items. The sizes of the addi-
tional tables are 600, 000 materials (MARA), 600, 000 material texts
(MAKT), 180, 000 addresses, 144, 000 business partners (ADRC)
and 1M elements in the material hierarchy. The selectivity of the
queries is matched to the results from the actual application deploy-
ment. The total system size in memory is about 28 GB.

As an example, we show the result that our layout generator pro-
duced for the VBAP sales order line-item table. In the following
notation 4_block represents an attribute which is 4 blocks wide,
normalized to the width of 4 bytes per block.

1. ((’VBELN’)
2. (’MATNR’)
3. (’KWMENG’,’AEDAT’)
4. (’94 block’)
5. (’1 block’, ’1 block’, ’4 block’,

’70 block’, ’39 block’,’NETWR’))

110

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Total
R 56770 24030 27050 15250 96780 90 13890.3 52301.5 5431.5 32297.6 29687.8 117471.1 4899.2 475949

C 9050 3510 11220 11930 30940 260 2154.8 9416.0 795.5 6032.4 6744.1 45468.6 2939.8 140461.2

H 9290 2910 4010 12810 11660 100 1795.3 7114.8 723.2 6243.5 6852.6 45751.1 2517.7 111778.2

Figure 5: Benchmark Results; graphs at the top show normalized (slowest system=1.0) CPU cycles (left) and normalized L2 cache
misses (right); table shows absolute CPU cycles / 100k

Each item represents one vertical partition in the table. While
there is no particular order for the partitions, all attributes inside the
partition are stored in order. We chose this table as an example since
it is accessed by most of the queries and is partitioned to optimize for
the competing needs of several queries. Since the sales order num-
ber (VBELN) and the related material (MATNR) columns are often
scanned in their entirety (e.g., by Q6 and Q8) the layouter chooses
to store them as single columns. The amount KWENG and the deliv-
ery data AEDAT columns are always accessed together (Q11,Q12)
and thus are stored as a group of two attributes. The rest of the at-
tributes are merged by the layout algorithm to achieve best possible
performance on SELECT* queries.

5.2 Performance
For each of the all-rows, all-columns, and optimal HYRISE de-

signs, we used our cost model to estimate the total cost and also
executed them in the HYRISE query executor. For all queries we
captured the complete query execution time both in CPU cycles and
last level cache misses (in our case L2 cache misses). For this bench-
mark we choose late materializing plan operators (e.g., joins and
aggregates that compute final results by going back to underlying
physical representation) so that the performance of all plan oper-
ators is directly affected by the physical representation. We tried
other (early materialization) plans and found them to be slower for
these queries. Of course, in some settings early materialization-
based operators may perform better than late materialization, but in
these cases the performance of the operators will be unaffected by
our choice of storage layouts.

The results for all of the queries are shown in Figure 5. The ta-
ble shows the absolute number of CPU cycles for each of the three
designs. The graphs compare the normalized performance of each
system in terms of the number of CPU cycles (left), actual number of
L2 cache misses (middle), and number of L2 cache misses predicted
by our model (right). Here “normalized” means that for a given
query, the worst-performing system (in terms of CPU cycles or cache
misses) was assigned a score of 1.0, and the other systems were as-
signed a score representing the fraction of cycles/misses relative to
the worst-performing system. For example, on Q1, all-columns and
HYRISE used about 16% of the cycles as all-rows.

There are several things to note from these results. First, in terms
of actual cache misses and CPU cycles, HYRISE almost always does
as well as or outperforms the best of all-rows and all-columns. For
those queries where HYRISE does not outperform the other layouts,
our designer determines it is preferable to sacrifice the performance

of a few queries to improve overall workload performance.
The second observation is that cache misses are a good predictor

of performance. In general, the differences in cache misses tend to be
more pronounced than the differences in CPU times, but in all cases,
the best performing query is the one with the fewest cache misses.
Third, the model is a good predictor of the actual cache misses.
Though there are absolute differences between the normalized and
predicted cache misses, the relative orderings of the schemes are al-
ways the same. In general, the differences are caused by very hard to
model differences, such as the gcc optimizer (which we ran at -O3),
which can affect the number of cache misses.

In summary, HYRISE uses 4x less cycles than the all-row layout.
HYRISE is about 1.6x faster than the all-column layout on OLTP
queries (1–9), with essentially identical performance on the analyt-
ical queries (10–13). For some OLTP queries it can be up to 2.5x
faster than the all-column layout. Of course, in a hybrid database
system, the actual speedup depends on the mix of these queries – in
practice that many OLTP queries will be run for every OLAP query,
suggesting that our hybrid designs are highly preferable.

5.3 Data Morphing Layouts
In this section, we describe the differences between the behavior

and performance of our layout algorithm and the Hill-Climb Data
Morphing algorithm proposed by Hankins and Patel [12] (the paper
proposes two algorithms; Hill-Climb is the optimized version.) We
could not run Hill-Climb on our entire benchmark because (as noted
in the Introduction) the algorithm scales exponentially in both time
and space with the number of attributes (see Appendix D), and thus
can only be used on relatively simple databases.

Instead, we ran a simplified version of our benchmark, focusing on
the smallest relation (MATH) — the only one Hill-Climb could han-
dle — and query 13 which runs over it. Here, Data Morphing sug-
gests a complete vertical partitioning, which performs 60% worse in
terms of cache misses and 16% worse in terms of CPU cycles com-
pared to the layout used by HYRISE. The reason for this difference
is mainly due to the lack of partial projections in the Data Morphing
cost model. We would expect to see similar performance differences
for other queries if Data Morphing could scale to them, since the
Data Morphing model is missing several key concepts (e.g. partial
projections, data alignment, and query plans—see Appendix D).

6. RELATED WORK
As mentioned in Section 5.3, the approach most related to

111

HYRISE is the Data Morphing approach of Hankins and Patel [12].
Data Morphing partitions relations into both row and column-
oriented storage. The main differences between our approaches
and Data Morphing are in the fidelity of our cache-miss model (we
model many cases that Data Morphing is unable to capture), and in
our physical database design algorithm. Taken together, these make
HYRISE significantly faster than Data Morphing, and also allow it
to scale to tables with tens or hundreds of attributes, whereas Data
Morphing cannot scale to tables with large numbers of attributes.

Vertical partitioning is a widely used technique that has been ex-
plored since the early days of the database community [24, 13, 11,
17, 2]. Some of this work [9, 10, 17, 2] attempts to automatically
derive good partitions, but does so with an eye towards minimizing
disk seeks and I/O performance rather than main memory costs as
we do in HYRISE. As such, these systems do not include careful
models of cache misses. The work of Agrawal et al [2] is most
similar to our approach in that it uses as cost-based mechanism to
identify partitions that are likely to work well for a given workload.

Recently there has been a renewed interest in pure vertical par-
titioning into a “column-store”, e.g., DSM [8], Monet and Mon-
etDB/X100 [5, 6], C-Store [21]. As “pure” column systems, these
approaches are quite different than HYRISE. The Monet system is
perhaps most related because its authors develop complete models
of cache performance in column stores.

There have been several attempts to build systems in the spirit of
HYRISE that are row/column hybrids. PAX [3] is an early exam-
ple; it stores data from multiple columns in a disk block, but uses a
column-wise data representation for those columns. In comparison
to the cache miss performance of HYRISE when scanning a nar-
row projection, PAX will incur somewhat more cache misses when
scanning just a few columns from a table (since it will have to jump
from one page to the next in memory). Similarly, in comparison
to HYRISE scanning a wide projection, PAX will incur more cache
misses when scanning many columns from a table (since it will have
to jump from one column to the next in memory.)

We chose not to compare our work against PAX directly because
the Data Morphing paper [12] showed that a hybrid system like
HYRISE can be up to a factor of 2 faster for workloads that read
just a few columns, and as we show in Section 5.3, HYRISE gen-
erally performs better than Data Morphing. Fractured Mirrors [19]
and Schaffner et al. [20] are hybrid approaches that consider both
row and column representations and answers queries from the rep-
resentation that is best for a given query; this leads to good query
performance but has substantial synchronization overhead. Unlike
HYRISE, neither of these systems nor PAX vary their physical de-
sign based on the workload, and so do not focus on the automated
design problem we address.

7. CONCLUSIONS
In this paper, we presented HYRISE, a main memory hybrid

database system designed to maximize the cache performance of
queries. HYRISE creates vertical partitions of tables of different
widths, depending on the access patterns of queries over tables. To
determine the best partitioning, we developed an accurate model of
cache misses that is able to estimate the number of misses that a
particular partitioning and access pattern will incur. We presented a
database design algorithm based on this model that finds partition-
ings that minimize the number of cache misses for a given workload,
and that is able to scale to tables with a large number of columns.

Our results show that HYRISE is able to produce designs that are
20% to 400% faster than either a pure-column or pure-row approach
on a realistic benchmark derived from a widely used enterprise ap-
plication. We also show that our approach leads to better physical
designs and can scale to larger tables than Data Morphing [12], the

previous state of the art workload-aware approach for partitioning
main memory databases. As future work, we plan to examine hor-
izontal partitioning as well as additional hybrid-based query opti-
mizations, and to optimize HYRISE for future many-core processors
with multiple memory channels and an increasing parallelism.

8. REFERENCES
[1] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden.

Materialization Strategies in a Column-Oriented DBMS. In ICDE,
pages 466–475, 2007.

[2] S. Agrawal, V. R. Narasayya, and B. Yang. Integrating Vertical and
Horizontal Partitioning Into Automated Physical Database Design. In
SIGMOD Conference, pages 359–370, 2004.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving
Relations for Cache Performance. In VLDB, pages 169–180, 2001.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a
Modern Processor: Where Does Time Go? In VLDB, pages 266–277,
1999.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture
Optimized for the New Bottleneck: Memory Access. In VLDB, pages
54–65, 1999.

[6] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, pages 225–237, 2005.

[7] S. K. Cha and C. Song. P*TIME: Highly Scalable OLTP DBMS for
Managing Update-Intensive Stream Workload. In VLDB, pages
1033–1044, 2004.

[8] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model.
In SIGMOD Conference, pages 268–279, 1985.

[9] D. W. Cornell and P. S. Yu. An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases. IEEE
Transactions on Software Engineering, 16(2):248–258, 1990.

[10] P. De, J. S. Park, and H. Pirkul. An integrated model of record
segmentation and access path selection for databases. Information
Systems, 13(1):13–30, 1988.

[11] M. Hammer and B. Niamir. A Heuristic Approach to Attribute
Partitioning. In SIGMOD Conference, pages 93–101, 1979.

[12] R. A. Hankins and J. M. Patel. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. In VLDB, pages 417–428, 2003.

[13] J. A. Hoffer and D. G. Severance. The Use of Cluster Analysis in
Physical Data Base Design. In VLDB, pages 69–86, 1975.

[14] B. L. Johnston and F. Richman. Numbers and Symmetry: An
Introduction to Algebra. CRC-Press, 1997.

[15] G. Karypis and V. Kumar. Multielvel k-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed Computing,
48(1):96–129, 1998.

[16] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost
Models for Hierarchical Memory Systems. In VLDB, pages 191–202,
2002.

[17] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical
Partitioning Algorithms for Database Design. ACM Transactions on
Database Systems, 9(4):680–710, 1984.

[18] H. Plattner. A common database approach for OLTP and OLAP using
an in-memory column database. In SIGMOD Conf., pages 1–2, 2009.

[19] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for Fractured
Mirrors. In VLDB, pages 430–441, 2002.

[20] J. Schaffner, A. Bog, J. Krueger, and A. Zeier. A Hybrid Row-Column
OLTP Database Architecture for Operational Reporting. In BIRTE,
2008.

[21] M. Stonebraker, D. J. Abadi, and A. B. et al. C-Store: A
Column-oriented DBMS. In VLDB, pages 553–564, 2005.

[22] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The End of an Architectural Era (It’s Time for a
Complete Rewrite). In VLDB, pages 1150–1160, 2007.

[23] M. Stonebraker, L. A. Rowe, and M. Hirohama. The Implementation
of Postgres. IEEE Transactions on Knowledge and Data Engineering,
2(1):125–142, 1990.

[24] P. J. Titman. An Experimental Data Base System Using Binary
Relations. In IFIP Working Conference Data Base Management, 1974.

[25] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM: CPU performance
tradeoffs in block-oriented query processing. In DaMoN, 2008.

112

APPENDIX
In these appendices, we provide several examples of the behavior of
HYRISE’s physical container design and describe several extensions
that further improve HYRISE’s performance on modern machines
(Appendix A.) In Appendix B we give an example of HYRISE’s
layout selection. We also describe the details of the new bench-
mark we have developed for this paper (Appendix C.) In addition, we
give a compact comparison to the Data Morphing cost model (Ap-
pendix D), detailed information on Write Operations (Appendix E)
and Layout Generation (Appendix F.)

A. PHYSICAL DESIGN AND EXECUTION
Container Alignment Example: As described in Section 3, con-
tainer alignment on cache boundaries can have a dramatic effect on
the number of cache misses. For example, Figure 6 gives the num-
ber of cache misses for two containers and for partial projections
retrieving 0 to 80 attributes from the containers. The first container
is a 80-attribute wide container while the second container is a 86-
attribute wide container (all attributes are 4 bytes wide). The first
container has a width that is a multiple of the cache line size. The
86-attribute container is not aligned to the cache lines and suffers
more cache misses for the partial projections, although the amount
of data retrieved is the same in both cases. If this container were to
be padded to 384 bytes (instead of using 344 bytes corresponding
to the width of its 86 attributes) then both the 80 and the 86 wide
containers would behave similarly in terms of cache misses. For this
reason, properly aligning containers as done in HYRISE is essential.

Cache Set Collision: Cache collisions due to associativity con-
flicts can be problematic in cache-aware systems. For this reason,
HYRISE automatically adjusts its container alignment policy in or-
der to minimize these cache set collisions.

When the OS allocates a large memory region (for example when
creating a container), it usually automatically aligns the beginning
of the region with the beginning of a virtual memory page. Vir-
tual memory pages have a fixed size—the address of their first
byte always is a multiple of the system-level memory page size
PAGESIZE (which is a system constant that can be determined
by calling getconf PAGESIZE).

The total number of cache sets #sets is equal to Li.n/assoc,
where assoc is the associativity of the cache. Each memory address
address is mapped to a unique cache set set as follows:

set(address) =
address

Li.w
mod #sets. (21)

This mapping is cyclic and starts over every #sets ∗ Li.w bytes.
When the memory page size is a multiple of this cycle length, i.e.,
when PAGESIZE mod (#sets∗Li.w) = 0, the addresses cor-
responding to the beginning of the containers are all systematically
mapped to the same cache set, thus severely limiting the amount of
cache available when processing several containers in parallel. This

 1e+06
 1.5e+06

 2e+06
 2.5e+06

 3e+06
 3.5e+06

 4e+06
 4.5e+06

 5e+06
 5.5e+06

 0 10 20 30 40 50 60 70 80

N
um

be
r o

f L
2

C
ac

he
 M

is
se

s

Number of Attributes in Projection

1 x 80 attributes container
1 x 86 attributes container

Figure 6: L2 Misses for Containers with Different Alignments

problem often occurs in practice (it occurs for our test system de-
scribed in Section 3 for instance).

To alleviate this problem, we maintain a variable #containers
counting the number of containers. When a new container is cre-
ated, the system shifts the beginning of the container by Li.w ∗
(#containers mod #sets) bytes, to maximize the utilization of
the cache sets.

Figure 7 illustrates this point for our test system and 100 one-
attribute wide containers. Each container is 4 bytes wide and the
associativity of the L1 cache is 8 in this case. Without cache set colli-
sion optimization, the total number of cachable cache lines available
when reading several containers in parallel is 8, since the contain-
ers are all aligned to the same cache set and share the same width.
Cache evictions thus occur as soon as more than 8 attributes are read
in parallel, significantly increasing the number of cache misses (see
Figure 7). By offsetting the containers using the method described
above, HYRISE is able to read all the containers in parallel without
any early cache eviction (the system can read up to 512 containers in
parallel in that case).

Cache set collisions often occur for the L1 cache. They occur less
frequently for the L2 cache, which typically contains a much larger
number of sets and has a higher associativity than the L1 cache.

Prefetcher Selection: In addition to allocating and aligning con-
tainers to minimize cache misses, HYRISE supports several cache
prefetching policies that can be switched on a per-operator basis.
Modern CPUs prefetch cache lines that the processor determines are
likely to be accessed in the future. The advantage of this approach is
that the data for a prefetched cache line starts to be loaded while the
previous cache line is still being processed.

Most processors provide several prefetchers and allow applica-
tions to select which prefetcher they wish to use. For example, Intel
processors based on the Intel Core architecture provide two different
L2 hardware prefetchers. The first prefetcher is called Streamer and
loads data or instructions from memory to the second-level cache
in blocks of 128 bytes. The first access to one of the two cache
lines in blocks of 128 bytes triggers the streamer to prefetch the pair
of lines. The second is the Data Prefetch Logic (DPL) hardware
prefetcher that prefetches data to the second level cache based on
request patterns observed in L1.

DPL is able to detect more complicated access patterns, even
when the program skips access to a certain number of cache lines; it
is also able to disable prefetching in the presence of random accesses
where prefetching may hurt performance.

To evaluate the performance impact of the different hardware
prefetchers we created two layouts, λ1, consisting of a single wide
container of widthw, and λ2, consisting of a set of containers whose
aggregate width was w. We accessed a list of random positions in
each container, varying the selectivity from 0.0 to 1.0. For accesses
to λ1 there was no visible difference between the two prefetching
implementations (Figure 8) but for accesses to λ2, DPL used 24%
fewer CPU cycles as it was able to predict skips between containers

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f L
1

C
ac

he
 M

is
se

s

Number of Attributes in Projection

HYRISE Projection Optimized
HYRISE Projection Collisions

Figure 7: Experiment from Figure 3(a) with Cache Collision

113

Figure 8: Comparison of DPL and
Streamer for sequential access and row
stores

Figure 9: Comparison of DPL and
Streamer for sequential access and col-
umn stores

Figure 10: Comparison of DPL and
Streamer for random access and column
stores

(Figure 9). In a second experiment, we generated a list of sequential
positions of varying selectivity and again accessed λ1 and λ2. In this
case the streamer prefetcher was 7% faster than DPL when access-
ing λ2 (Figure 10), with no difference when accessing λ1. Based on
these experiments, we use the DPL prefetcher by default in HYRISE.
In cases where several small containers (like those in λ2) are scanned
with a high selectivity, we enable Streamer on a per-operator basis.

Database Loading: The output of the logical database designer is an
annotated version of the original schema. When loading the data, we
adopt several optimization techniques to improve the cache perfor-
mance: First, all containers are allocated using a memory region that
is aligned to the width of a cache line. Second, we perform narrow
row padding to append padding to some of the containers in order
to align their rows to the cache lines (see Section 3.6.) Finally, we
shift the base pointers of the containers in order to minimize cache
set collisions as described above in Appendix A.

Operator Implementation: The layouter component uses the Par-
tial Projection Model to model materializing projections, predicate
evaluation and the layout-dependent part of our hash join implemen-
tation. It uses the Selection Model to capture position-based selec-
tions. The layout-dependent costs of sorting and grouping operators
are modeled by taking into account the data accesses (e.g., projec-
tions, selections of tuples for group-by and join columns) caused by
those operations.

Layout-Independent Operations: Depending on the materializa-
tion strategy chosen for the given query plan not all costs will be
layout-dependent. Although all queries of our benchmark only con-
tain layout-dependent costs, for more complex scenarios with differ-
ent materialization strategies layout independent operations may be
needed. For example, there are layout-independent costs (e.g. index
traversals) that would compete with the amount of cache used by the
other operators; this behavior will need to be modeled, for example,
using the notion of the repetitive random accesses presented in [16].
As future work, we are investigating building a cost based query
optimizer on top of HYRISE that attempts to choose between layout
dependent and layout independent operators.

B. LAYOUT SELECTION EXAMPLE
In this section, we give an example illustrating the candidate gen-

eration process described in Section 4.2. We consider a very sim-
ple workload on a relation containing N tuples with four attributes
a1, . . . , a4 and consisting of a projection π1 = {a1, a2, a4} with
weight w1, a second projection π2 = {a2, a3, a4} with weight w2,
and a selection σ1 retrieving all attributes of a single tuple with
weight w3. The three resulting primary partitions are P 1

1 = {a1},
P 1
2 = {a2, a4}, and P 1

3 = {a3}, since π1 creates partitions
{a1, a2, a4} and {a3} and π2 splits the first partition into {a1} and

{a2, a4} (σ1 does not split the partitions any further). The costs
associated with these partitions are:

Cost
P1
1
(W) = w1 × Cost(π(P

1
1)) + f3 × Cost(π(P

1
1)sel=1/N) (22)

Cost
P1
2
(W) = w2 × Cost(π(P

1
2)) + f3 × Cost(π(P

1
2)sel=1/N) (23)

Cost
P1
3
(W) = w3 × Cost(π(P

1
3)sel=1/N) (24)

Here Cost(π(P 1
1)sel=1/N) reflects the cost of accessing one tuple

for the selection.
In this example, merging P 1

1 and P 1
2 would be advantageous for

the selection (since it touches all attributes), but introduces some
overhead when performing projections (which never access a1, a2
and a3 simultaneously). The exact overhead depends on the width of
the attributes, the cache line size, and the frequency of the operations
(as captured by our cost model in Section 3.)

C. BENCHMARK DESCRIPTION
Most database benchmarks are built to address a specific market

(e.g., OLAP or OLTP). For example, TPC-C is an OLTP benchmark
and TPC-H is an OLAP benchmark. Creating a hybrid of TPC-C
and TPC-H is difficult since each benchmark uses different schemas
and workloads. Consequently, we chose to create a new workload
derived from a real database application. As a starting point we used
the sales application of an Enterprise Resource Planning System,
which covers a full range of operations in a sales scenario.

The business entities involved in sales are modeled as a large num-
ber of relations. This is both due to the application’s use of highly
normalized OLTP schemas and a result of so-called header-items.
Header-items cause the sales order entity to be partitioned into a
sales order header table and a sales line item table. The header con-
tains data relevant to the entire sales order. For example, its descrip-
tion, order date, and sold-to-party are stored there. Attributes of the
ordered material, number and price are kept in the line item table,
with each row representing one item and belonging to one order. In
general, a single sales order consists of several line items. Master
data tables do not follow this pattern and store data in single tables
for each type. For example, in the sales and distribution scenario,
material and customer detail tables are both stored. The customer
details table contains customer attributes, including name, account
type, contact, and billing data. Specifics about a material, such as
its description, volume, weight and sales-related data are kept in the
material details table and the material hierarchy. In contrast to the
tables used by TPC-E or TPC-C, the tables we consider are modeled
after a real enterprise system and are much wider. The widest tables
are the sales order line items table with 214 attributes and the mate-
rial details table with 204 attributes. The other tables have between
26 and 165 attributes (e.g. KNA1).

Due to the complexity of these schemas, our benchmark queries

114

Sales Document Header
(VBAK)

Sales Document Item
(VBAP)

Business Partner
(KNA1)

Material
(MARA)

Business Partner Address
(ADRC)

Material Text
(MAKT)

KUNNR

KUNNR

VBELN

MATNR

MATNR

Material Hierarchy
(MATH)

MATNR

Figure 11: Simple Sales Schema

focus on sales order processing, leaving out operations for delivery
of ordered items and billing of delivered items. Figure 11 illustrates
the schema of our benchmark.

C.1 Benchmark Queries
Our benchmark includes queries that perform small transac-

tional operations—including writes—as well as more complex, read-
mostly aggregates on larger sets of data.

These queries composing our workload are as follows:
Q1 Search for a customer by first or last name (ADRC)

select ADDRNUMBER, NAME CO, NAME1, NAME2, KUNNR
from ADRC where NAME1 like (..)
OR NAME2 like (..);

Q2 Read the details for this customer (KNA1)
select * from KNA1 where KUNNR = (...);

Q3 Read all addresses belonging to this customer (ADRC)
select * from ADRC where KUNNR = (...);

Q4 Search for a material by its text in the material text table (MAKT)
select MATNR, MAKTX from MAKT where
MAKTX like (..);

Q5 Read all details for the selected material from the material table
(MARA)
select * from MARA where MATNR = (...);

Q6.a Insert a new row into the sales order header table (VBAK)
insert into VBAK (..) values (..);

Q6.b Insert a new row into the sales order line item table based on the results
of query Q5 (VBAP)
insert into VBAP (...) values (...);

Q7 Display the created sales order header (VBAK)
select * from VBAK where VBELN = (..);

Q8 Display the created sales order line items (VBAP)
select * from VBAP where VBELN = (..);

Q9 Show the last 30 created sales order headers (VBAK)
select * from VBAK order by VBELN desc limit
30;

Q10 Show the turnover for customer KUNNR during the last 30 days
select sum(item.NETWR), header.KUNNR from
VBAK as header, VBAP as item where
header.VBELN = item.VBELN and
header.KUNNR = $1 and header.AEDAT >= $2;

Q11 Show the number of sold units of material MATNR for the next 10
days on a per day basis
select AEDAT, sum(KWMENG) from VBAP where
MATNR = $1 and AEDAT = (..) group by AEDAT;

Q12 Show the number of sold units of material MATNR for the next 180
days on a per day basis
select AEDAT, sum(KWMENG) from VBAP where
MATNR = $1 and AEDAT = (..) group by AEDAT;

Q13 Drill down through the material hierarchy starting on the highest level
using an internal hierarchy on the table, each drill-down step reduces
the selectivity, starting from 40% selectivity going down to 2.5% se-
lectivity.

Queries Q1. . .Q9 can be categorized as typical OLTP queries,
while queries Q10, Q11, Q12 and Q13 can be categorized as OLAP-
style queries. Q1. . .Q6 are frequent, inexpensive OLTP queries and
have a weight wi of 100 in our benchmark. The other queries all
have a weight of 1.

Attributes HYRISE Data Morphing
2 2 1
3 1 1
5 1 7
7 1 38
9 1 43
11 1 872
13 1 15526

Table 1: Scaling Comparison: time (in [ms]) to derive layouts
for both the optimal HYRISE algorithm and the Data Morphing
algorithm for a table of varying width and a single query.

D. DATA MORPHING
Even on a simple workload consisting of only one query, the Hill-

Climb algorithm suggested in [12] is not able to scale with the num-
ber of attributes. Table 1 shows an example where a sample relation
is gradually extended one attribute at at time and where a simple
query projecting on the first two attributes is run for each configu-
ration. As can be seen on the figure, the cost of running HillClimb
becomes rapidly prohibitive, even on this very simple setting.

Besides this scalability issue, the Data Morphing cost model is
missing several key concepts that are useful in our context:
Partial Projections: Data Morphing only considers full-scan opera-
tions on the containers. While the Data Morphing model works fine
for simple, non-overlapping queries and small, aligned containers,
it can lead to arbitrarily bad results in more realistic cases. Con-
sider, for example, performing a projection of the first 4–64 bytes of
an aligned 256-byte wide container. Here, the Data Morphing cost
model will over-estimate the number of misses by a factor of 3 ver-
sus the true value (correctly predicted by the HYRISE model) since
only one cache line out of the four required by each row will be read
by the scan. This causes Data Morphing to severely penalize wide
containers in its designs. We confirmed that real designs produced
by Data Morphing can show these types of slowdowns vs HYRISE.
Data Alignment: Data Morphing does not consider data alignment.
This can lead to very bad cache estimations in many cases, e.g., for
containers that are not aligned to the cache (C.o 6= 0, in terminology
of Section 3), for partial projections (in addition to the case above),
or for selections. For instance, the cost for full but relatively selec-
tive projections (e.g., π.s < 10%) on a 60 byte container is approx-
imated as 1 cache miss per result by Data Morphing, but is actually
equal to 1.8 misses per result due to misalignment.
Query Plans: In addition to the points above, the data morphing ap-
proach does not include any notion of query plans. This is especially
bad for complex queries which access the same container several
times. Such repeated accesses are treated as only one full scan by
Data Morphing.

The HYRISE cost model and layout algorithm take those impor-
tant cases into account, leading to superior performance. Further-
more, the grouping and pruning algorithms in Section 4 allow us to
scale to tables with hundreds of columns (such as those described in
our full benchmark above), which Data Morphing is unable to do.

E. WRITING AND TRANSACTIONS
In this section we briefly describe the effect that transactions and

updates have on cache performance in HYRISE. As noted in Sec-
tion 2.1, in HYRISE, we use validity (begin and end) timestamps
for all tuples, as a result we only append new values to existing
tables. This design means that all updates are actually two writes,
one to the end of the table and one to the validity timestamp of the
previous version, although the previous version’s timestamp is very
unlikely to be read again. Furthermore, transactional operations like
logging and updates read and write sets of data (when using multi-

115

Description CPU Cycles L2 Cache Misses
No Writes 1, 105, 317 5

Non-temporal Writes 29, 902, 648 11, 683
Normal Writes 40, 289, 157 557, 346

Table 2: Comparing temporal and non-temporal writes
version concurrency control) that are not re-accessed frequently and
are private to a single transaction. These writes can result in cache
pollution with data that is not likely to be read.

To avoid this pollution, we use non-temporal writes provided by
the Intel SIMD Streaming Extensions in HYRISE. When using non-
temporal writes the write-combining buffer of the CPU will capture
all writes to a single cache line and then write back the cache line
directly to memory without storing the modified data in the cache.

To measure the benefit of non-temporal writes, we allocated a
single-column container with the size of the L2 cache (6 MB). Af-
ter scanning the container and reading all values we then measured
the number of cache misses performed by an additional scan over
the data (which by itself should not produce any L2 cache misses
since the data is already cached and the container fits into cache).
Concurrently, we write data to a second container; we alternate be-
tween using the SSE extension for non-temporal writes and using
plain memcpy(). We use the mm stream si128() function to
generate the required MOVNTDQ assembler instruction, which causes
the write combined buffer of the CPU to collect all modifications for
a cache-lines worth of data and write it back to main memory without
storing the data in any cache. This operation models the process of
accumulating a read set during the execution of a transaction.

Table 2 shows the results of the experiment. The results show that
non-temporal writes use only 75% of the CPU cycles and 0.02%
of the cache misses when compared to memcpy(), suggesting that
this optimization significantly improves the performance of writes
that are not frequently read.

F. HYRISE LAYOUT SELECTION
In this section we illustrate the influence of workload variations

on the layouts produced by HYRISE.
Experiment 1: In this experiment, instead of simply running our
layouter to find a layout for a given workload we use a workload for
which one of two layouts is optimal, given a mix of queries run with
different frequencies (or weights).

We use a table with 10 attributes (a1 . . . a10) and a total width
of 56 bytes. The workload consists of two queries: one OLTP-style
query that scans attribute a1 and, for the rows that match a highly se-
lective predicate, returns all attributes; and two, an OLAP query that
scans attribute a1, applying a non-selective predicate, and then does
a GROUP BY on the matching rows of attribute a1 and aggregates
over the values of attribute a4.

From those two queries one of two layouts is optimal. The first,
λ1, separates attribute (a1) and group (a2 . . . a10) together; the sec-
ond layout, λ2, also separates (a1), but in addition splits the remain-
ing group into (a4) and (a2 . . . a3; a5 . . . a10). Given both layouts
we want to observe when the layout algorithm chooses to switch
from one design to the other. Assuming that OLTP queries occur
more frequently than OLAP queries, we wish to visualize when each
layout is more appropriate. We vary OLTP selectivities from 0 <
σOLTP < 0.5 and OLAP selectivities from 0.5 < σOLAP < 1.
We then compute the cost of each query and determine the point at
which the layouts have equal cost.

x× CostOLTP (λ1, σ1) + CostOLAP (λ1, σ2) =

x× CostOLTP (λ2, σ1) + CostOLAP (λ2, σ2)
(25)

Equation 25 shows the formula used to calculate the cost for layout
λ1 and λ2 based on the distinct selectivities σ1 and σ2. Figure 12

Figure 12: Contour plot showing the number of OLTP queries
per OLAP query required before workload λ1’s cost exceeds
that of λ2 for different values of σ1 and σ2.

shows the result of this experiment. The contour lines define the
region where λ1’s cost exceeds that of λ2 for different values of σ1

and σ2. For example, when σ1 is .005 and σ2 is .55, if there are
more than 100 OLTP queries per OLAP query, λ1 is preferable (in
fact, for any σ1 > .01, λ1 is preferable when there are at least 100
OTLP queries per OLAP query).
Experiment 2: A related question is how many partitions are typ-
ically generated by our algorithm. In the simplest case, for a table
with n attributes and i independent queries that access the table on
disjoint attributes with the same weight and selectivity, the table will
be split into i partitions.

For more complex cases, our algorithm will only generate a par-
titioning that optimizes the total workload cost, and won’t create a
separate storage container for infrequently run queries. In most en-
terprise applications, there are a small number of query classes (and
hence attribute groups) that are accessed frequently; ad-hoc queries
may be run but they will likely represent a very small fraction of
total access. Hence, these more frequent (highly weighted) queries
will dominate the cost and be more heavily represented in the storage
layout, resulting in a modest number of storage containers for most
workloads (i.e., it is unlikely that a full column-oriented layout will
be optimal for non-OLAP workloads.)

Figure 13 shows the result of an experiment where we used our ap-
proximate graph-partitioning algorithm to determine the best layout
for a wide table of 500 4-byte attributes and an increasing number
of frequently-posed queries. The experiment starts with a relatively
expensive OLTP query (selecting all attributes with a selectivity of
40%). We then iteratively add three random OLAP queries that each
project a random pair of attributes, until we have a total of 1000
random queries. As expected, the number of partitions in slowly
converges to an “all-column” layout. The time taken to compute the
layout using our approximate partitioning algorithm and forK = 10
varies from a few hundred milliseconds initially to a few minutes for
the case with 1000 OLAP queries.

Figure 13: Increasing number of OLAP queries

116

	Introduction
	HYRISE Architecture
	Storage Manager
	Query Processor

	Hybrid Model
	Notation
	Partial Projections
	Combining Partial Projections
	Selections
	Joins and Aggregates
	Padded Containers and Reconstruction

	Logical Database Design
	Layouts
	Layout Selection
	Divide and Conquer Partitioning

	Performance Evaluation
	Schema and Query Selection
	Performance
	Data Morphing Layouts

	Related Work
	Conclusions
	References
	Physical Design and Execution
	Layout Selection Example
	Benchmark Description
	Benchmark Queries

	Data Morphing
	Writing and Transactions
	HYRISE Layout Selection

