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Abstract
Batched stream processing is a new distributed data process-
ing paradigm that models recurring batch computations on
incrementally bulk-appended data streams. The model is
inspired by our empirical study on a trace from a large-scale
production data-processing cluster; it allows a set of effec-
tive query optimizations that are not possible in a traditional
batch processing model.
We have developed a query processing system called Comet

that embraces batched stream processing and integrates with
DryadLINQ. We used two complementary methods to eval-
uate the effectiveness of optimizations that Comet enables.
First, a prototype system deployed on a 40-node cluster
shows an I/O reduction of over 40% using our benchmark.
Second, when applied to a real production trace covering
over 19 million machine-hours, our simulator shows an esti-
mated I/O saving of over 50%.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed
systems—Distributed databases; H.2.4 [Database manage-
ment]: Systems—Distributed databases, Parallel databases,
Query processing

General Terms
Measurement, Performance, Management

Keywords
Data-intensive scalable computing, resource management,
batched stream processing, query series

1. INTRODUCTION
Data intensive scalable computing (DISC) systems, such

as MapReduce/Sawzall [10, 21], Dryad/DryadLINQ [18, 30],
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Hadoop/Pig [16, 20] and SCOPE [6], have unanimously em-
braced a batch processing model, where each query specifies
computation on a large bulk of data. These systems tend
to process queries individually. In reality, we face the chal-
lenging problem of executing a large number of complicated
queries on a large amount of data every day across thousands
of servers. Optimization of query executions is essential for
effective resource utilization and high throughput.

We have examined a 3-month trace from a production
data-processing cluster. This trace captures a workload that
consists of 13 thousands queries costing a total of 19 million
machine-hours. Our study on the trace focuses on network
and disk I/O because they are major performance factors in
data intensive computation [1, 19, 17, 22]. The study reveals
that system efficiency is far from ideal. For example, we
find that over 50% of total I/O is spent on repetitive input-
data scans and on repetitive computations across different
queries. Significant I/O redundancies cause significant waste
in I/O bandwidth, which often translates into significantly
reduced system throughput.

Our study further reveals that the redundancy is due to
correlations among queries. The workload exhibits temporal
correlations, where it is common to have a series of queries
involving the same recurring computations on the same data
stream in different time windows. The workload further ex-
hibits spatial correlations, where a data stream is often the
target of multiple queries involving different but somewhat
overlapping computations. For example, one data stream
might store web search logs and is appended daily with new
entries. A query might be issued daily to retrieve the top ten
hottest keywords from the search logs over a sliding window
of the last 7 days. These daily queries have clear temporal
correlations. Another set of daily queries might probe the
geographical distribution of search entries in the same 7-day
window, thereby exhibiting spatial correlations with the first
set of queries.

To expose temporal correlations among queries, we intro-
duce Batched Stream Processing (BSP) to model recurring
(batch) computations on incrementally bulk-appended data
streams, which is a dominant pattern that we observed in
the studied trace. Recurring computations on the same data
stream form a query series. An example query series con-
sists of the daily queries for the hottest keywords in the
last 7 days, as described earlier. With query series, an ex-
ecution of an earlier query in a query series could help the
execution of later queries in the same query series. First, it
could preserve intermediate results that are needed by later
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queries; for example, for the hottest-keyword query series, it
might be beneficial to create a daily keyword count because
it will be used by the next 6 days of queries in the same
query series. Those intermediate results resemble materi-
alized views [2] in database systems. Second, profiling the
execution of an earlier query could help guide optimizations
of later queries in the same query series.
Later queries in a query series are driven by bulk updates

to input data streams, rather than being triggered by query
submission from users. This has significant implications.
Queries from multiple query series operating on the same
input data stream can now be aligned to execute together
when new bulk updates occur. This maximizes opportuni-
ties to remove redundant computations or I/O across those
queries; such redundancy arises from spatial correlations
among those queries. With the Batched Stream Processing
model, traditional database optimization techniques, espe-
cially those for continuous queries [27] and multiple queries
[26], become relevant and applicable to DISC systems.
We have built Comet as a system to support Batched

Stream Processing: Comet allows users to submit query se-
ries and implements a set of global optimizations that take
advantage of the notion of query series. Query execution
in Comet is triggered by arrivals of new bulk updates to
streams. A query is decomposed into a number of sub-
queries, each of which is performed on a new bulk update.
Comet aligns sub-queries from different query series into a
single jumbo query and optimizes the jumbo query to remove
redundancies and improve performance.
We have integrated Comet into DryadLINQ [30] and en-

abled a set of query optimizations that are not available in
DryadLINQ. We used two complementary methods to eval-
uate the effectiveness of Comet. We have built a simulator
to estimate the I/O cost of a DISC system, both with and
without Comet optimizations. Our simulation of the pro-
duction trace covering over 19 million machine-hours shows
a reduction over 50% with Comet optimizations. We further
implemented a prototype system on top of DryadLINQ and
deployed the system on a 40-machine cluster. The prototype
was used to validate our simulation results. When running
a micro-benchmark, our prototype shows that Comet opti-
mizations cuts the total I/O cost by over 40%.
The rest of the paper is organized as follows. Section 2

describes our empirical study on a real-world workload from
a production system. We present the Comet design in Sec-
tion 3 and the integration into DryadLINQ in Sections 4.
Section 5 presents experimental results. We review the re-
lated work in Section 6, with a discussion in Section 7. Fi-
nally, we conclude in Section 8.

2. AN EMPIRICAL STUDY
We have obtained a 3-month query trace from a deployed

DISC system with over thousands of machines. The queries
are mainly data mining tasks on logs generated from a wide
range of services , such as search query logs and click logs.
The trace documents the information related to executions
of all query jobs in the system. The information includes the
query itself, submission time, query plan, and performance
statistics, such as the amount of I/O of each step in the
query plan. The trace contains nearly 13,000 of successfully
executed queries that take approximately 19 million machine
hours. These queries are on around 500 data streams stored
in a reliable append-only distributed file system similar to

the Google File System [14]. The data streams are appended
regularly in bulk.

2.1 Redundancy
We have identified redundancies in two kinds of opera-

tions: input data scans and common sub-query computa-
tion.

Redundant I/O for scanning input files are common in the
trace. For all query executions in the trace, the total I/O
of scanning input files contributes to about 68% of the total
I/O. The total size of input files is about 20% of the total
I/O. Thus, the redundant I/O on scanning input files con-
tributes to around 48% of the total I/O, potentially causing
a significant waste in disk bandwidth.

Redundant computations on common sub-queries are also
significant. A step s in a query is defined to have a match
if there exists a step s′ of a previous query in the sequence,
where s and s′ have the same input and a common compu-
tation. Each step with a match is a redundant computation
because the same computation has been performed on the
same data previously. In the trace, we find that 14% of the
steps have a match, which contributes to around 16% of the
total I/O. The I/O breakdown of redundant computations
shows that 8% of the total I/O is from input steps, and the
other 8% from intermediate steps.

The overall redundancies are significant, with 56% of total
I/O (48% on input file scan and 8% on intermediate steps).
Since I/O continues to be a significant bottleneck for the
overall performance of data center applications [1], these
significant I/O redundancies contribute to a great amount
of waste in total machine time.

2.2 Query Correlations
We find that queries are recurring and demonstrate strong

correlations, even though users can only manually submit
individual queries to the system.
Recurring queries. Queries in the trace exhibit strong
temporal correlations: 75% of the queries are recurring and
form around one thousand query series, each consisting of
at least two queries. Inside these query series, over 67%
run daily (usually with per-day input data window, e.g.,
requiring the log from yesterday; approximately 5% of the
daily queries may involve data spanning over multiple days);
15% are executed weekly, mostly with a per-week input data
window.
Data driven execution. In the cluster we study, up-
dates are appended to streams either daily or when updates
reach a predefined size threshold. Our study shows recurring
queries tend to access recent updates, indicating the data-
driven nature. Figure 1 shows the distribution of queries
in query series categorized by the difference between their
submission time and arrival time of the last segment that
they process. Around 70% of the queries fall into a window
of no more than one week, and 80% no more than half a
month. This shows a strong indication that executions of
the queries in a query series are driven by stream updates.
In addition, we have found that there is a gap between the
data available time and the query submission time. For ex-
ample, some queries with a one-day input data window are
processing data that has been there for over one week. This
kind of delayed submission is probably partly due to the lack
of a query-series submission interface.

One micro view of three sample query series is shown in
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Figure 1: Accumulated query fraction.
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Figure 2: Sample query series on the same stream.
Query series 1 and 3 consist of daily queries, with
input window sizes of one and two days, respectively.
Query series 2 consists of weekly queries with an
input window size of seven days.

Figure 2. The figure shows the submission dates and the
input data windows. While the submission dates are gen-
erally well aligned with the data windows, an exception is
highlighted using Circle A. The submissions of some daily
queries for the data in those three days are delayed due to
a weekend.
Correlations among queries cause redundancy. In Fig-

ure 2, input windows of the queries from query series 1 and
3 are overlapping, resulting in redundant I/O scans. Exam-
ples are highlighted in Circle B. Redundancies show up not
only across different query series, but also within a query
series. In Figure 2, since queries in query series 3 have com-
mon computations on overlapping input windows, there is
often redundant computations (Circle C).
Load distribution. Our study also reveals noticeable

temporal load imbalance in the system. Figure 3 shows the
normalized total I/O for all query executions per day in a
month. The total I/O fluctuates with a certain pattern: the
total machine time on weekdays is on average 50% higher
than on weekends. This is partly because query executions
are triggered upon user submissions, which tend to happen
during weekdays. Queries with per-week (or per-month)
data updates tend to execute at the beginning of every week
(or every month), when updates become available. Another
example is highlighted using Circle A in Figure 2. Some
daily queries for the data in those three days are delayed
due to a weekend. These result in a burst of activity after
that weekend, contributing to load imbalance.

2.3 Data Stream Properties
We have studied the temporal stability of data streams to

check the feasibility of guiding the optimization of a query

 

Figure 3: Daily total I/O in a month

Table 1: Selectivities of the top three filters and join
conditions

Filter 1 Filter 2 Filter 3 Join 1 Join 2 Join 3
mean 0.17 0.26 8.0E-03 0.027 0.064 5E-05
stdev 0.01 0.01 1.6E-03 0.005 0.008 1E-05
cv 9% 3% 20% 17% 12% 19%

based on profiling of the previous executions, especially from
those in the same query series.

We have found data distributions of newly appended up-
dates are stable across different days. For example, we ob-
served that the number of distinct values for the four most
frequently used columns in the daily update is stable. The
variance in the number of distinct values is small, with a cv
(coefficient of variation, cv = stdev

mean
) of less than 12%.

We also examined the selectivities of the top three filters
and the top three join conditions; the statistics are shown in
Table 1. The selectivity of a filter is defined to be the ratio
of the output size and the input size of the operation. The
join selectivity is defined as O

I1×I2
, where O is the number of

entries in the result and I1 and I2 are the numbers of entries
in the two inputs of the join. As we can see in the table,
most of the filters and the joins have stable selectivities.

Take Filter 1 as one example. Figure 4 shows the nor-
malized input and output data sizes in a series of recurring
queries. For each query, the output data is obtained through
applying Filter 1 on the input data. The output data size
is clearly correlated with the input data size, thereby pro-
viding excellent hints on the selectivity of later recurring
queries from the previous ones.

Finally, we found that the frequency of data stream ac-
cesses conforms to power-law distributions closely: 80% of
the accesses are on 9.3% of the data streams. This distribu-
tion reveals spatial correlations among queries. Among the
streams, we find that the frequently accessed data streams
are the raw data streams shared by many users, and the
infrequently accessed ones are usually for private uses only.

In summary, our study of the trace reveals strong tempo-

 

Figure 4: Normalized input and output data sizes
for Filter 1 in a series of recurring queries
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ral and spatial correlations among queries; those correlations
lead to significant I/O redundancies and temporal load im-
balance. There is a clear indication that queries are mostly
driven by new updates. Recurring queries are expected to
exhibit similar behavior because of the stability observed on
data stream properties: this lays the foundation for opti-
mizing recurring queries based on the profiling of an earlier
execution. All these results argue for the batched stream
processing model, as well as hinting at the potential bene-
fits of such a model.

3. COMET DESIGN
Our study on the production trace indicates that a sig-

nificant portion of queries follow the Batched Stream Pro-
cessing model, where source input data are modeled as peri-
odically appended streams with recurring queries triggered
upon bulk appends to these streams.
Each single bulk update creates a segment of the data

stream; different segments are differentiated with their times-
tamps that indicate their arrival times. Recurring compu-
tations form a query series, where each query instance in a
query series is triggered when new segment(s) are appended.
In the batched stream processing model, users can submit

query series that explicitly convey temporary correlations
among individual queries; while in a traditional batch pro-
cessing system these queries would have to be submitted
separately. This seemingly simple notion of query series en-
ables a set of new optimizations that are not available or
hard to implement in current batch-processing systems.
With query series, execution of an earlier query in a query

series is aware of future query executions in the same query
series, thereby offering opportunities for optimizations. First,
an execution of an earlier query could piggyback statistical
properties of input data streams or intermediate data; such
statistical information could guide effective optimizations of
later queries. As we have already seen in the empirical study,
important statistical properties such as the data distribu-
tions of stream and filter selectivity tend to be stable as a
data stream grows over time. Previous executions are also
effective in estimating the cost of custom functions, which
are an important part of data processing queries. Such es-
timation would have been difficult otherwise. Second, in
cases where consecutive queries in a query series have over-
lapping computations (e.g., when query series operate on a
sliding window spanning multiple segments), these queries
can be rewritten to expose the results of common intermedi-
ate computations (similar to materialized views in database
systems) to be used by later queries in the same query series.
More importantly, with query series, query execution is

now mostly driven by bulk updates to input streams rather
than by submissions from users. Queries in different query
series that operate on the same input stream can now be
aligned and optimized together as one aggregated query.
This helps remove redundancies, which are spatial corre-
lations across query series. Given the power-law distribu-
tion on data stream accesses that we observe, a significant
number of query series would access the most popular data
streams and offer opportunities for optimizations when aligned
and combined. To increase chances of sharing across query
series, a query might be further decomposed into a series
of smaller queries, each on a subset of input stream seg-
ments, followed by a final step of aggregating the results of
the smaller queries to obtain the final result. Query decom-

position ensures that all queries on the same stream process
the data on aligned segment windows, even if some queries
originally process data over multiple segment windows.

3.1 Comet
We have developed Comet as a query processing engine

that supports the BSP model and enables new optimizations
for DISC systems. Comet allows users to submit a query
series by specifying the period and the number of recurrences
of the computations. We use the following terms to define
the computation units in an execution:

• S-query. An S-query is a single query occurrence of
a query series; it can access one or more segments on
one or more streams.

• SS-query. Intuitively, an SS-query is a sub-computation
of an S-query that can be executed when a new seg-
ment arrives. We associate with each SS-query a times-
tamp indicating its planned execution time. It is usu-
ally equal to the maximum timestamp of the segments
it accesses: arrival of the segment with the maximum
timestamp triggers execution of the SS-query. An S-
query can be decomposed into one or more SS-queries
in a normalization process (Section 4.3).

• Jumbo-query. A jumbo-query is a set of SS-queries
with the same timestamp; that is, a jumbo query in-
cludes all SS-queries that can be executed together,
thereby leveraging any common I/O and computations
among these SS-queries.

Figure 5 shows how query series are processed in Comet.
When a query series is submitted, Comet normalizes it into a
sequence of SS-queries and combines them with their corre-
sponding jumbo-queries. This allows Comet to align query
series based on the segments they involve. As with cur-
rent batch processing systems such as DryadLINQ, Comet
carries out query optimizations with an emphasis on opti-
mizing normalized jumbo-queries. Different from the flow
in DryadLINQ, execution plans are not executed immedi-
ately. Instead, arrivals of new segments trigger executions
of their corresponding jumbo-queries. Our implementation
of Comet in DryadLINQ is presented in Section 4.

Comet collects statistics about data stream characteris-
tics, operators, and custom functions for cost estimation.
As done traditionally in database systems, cost estimation
assesses tradeoffs involved in various optimization choices
and chooses one with the lowest costs (Section 4.2); this ca-
pability is generally lacking in the current DISC systems.
Collected statistics are stored in a catalog that is replicated
on a set of machines for reliability.

Comet also allows users to submit ad hoc queries. Since
ad hoc queries are executed on demand, Comet executes
them with fewer optimizations and without normalization or
combining them into the jumbo query. However, Comet does
use statistics in the catalog for optimizing ad hoc queries if
they involve the same data streams and the same custom
functions as those in sbumitted query series.

4. INTEGRATION INTO DRYADLINQ
The BSP model can be introduced to existing DISC sys-

tems and leverage their software stacks. We have integrated
Comet into DryadLINQ and implemented Comet optimiza-
tions.
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Figure 5: Comet execution flow for query series.

1 // Q1: daily custom grouping on (A,B,C)
2 q1 = env.Extractor("log?today")
3 .Select(x => new {x.A, x.B, x.C})
4 .Where(x => x.A != "gb")
5 .GroupBy(x => x) //grouping on (A,B,C)
6 .Select(x => new {x.Key, c = x.Agg()});
7

8 // Q2: weekly histogram aggregation grouping on (A,B)
9 q2 = env.Extractor("log?today-6...today")

10 .Select(x => new {x.A, x.B})
11 .Where(x => x.A != "gb")
12 .GroupBy(x => x) //grouping on (A,B)
13 .Select(x => new {x.Key, a = x.Count()});
14

15 // Q3: daily join on today and yesterday’s segments
16 q3a = env.Extractor("log?today")
17 .Select(x => new {x.A, x.B, x.D})
18 .Where(x => x.A != "ru")
19 .GroupBy(x => x.D) //grouping on D
20 .Select(x => new {x.Key, m = x.Max(y => y.B)});
21 q3b = env.Extractor("log?today-1")
22 .Select(x => new {x.A, x.B, x.D})
23 .Where(x => x.A != "ru")
24 .GroupBy(x => x.D) //grouping on D
25 .Select(x => new {x.Key, m = x.Max(y => y.B)});
26 q3 = q3a.Join(q3b, x => x.m, y => y.m, (a, b) => a);

Figure 6: Three queries Q1, Q2, and Q3 in
DryadLINQ. They resemble in structure the most
popular query series in the trace. The input is a
log generated from clicks in Microsoft Bing Search.
Fields A–E are anonymous fields in the real log.

To describe our integration, we use three sample queries
(Figure 6), all operating on the same daily updated log

stream (lines 2, 9, 16, and 21). The queries use a com-
mon custom function Extractor (lines 2, 9, 16, and 21) to
retrieve rows. DryadLINQ supports the following set of op-
erators: Projection (Select), Selection (Where), Grouping
(GroupBy), Aggregation (e.g., Count), Join (Join). The bold
letters are the abbreviations of the operators for references
in later figures.

4.1 Overview
Taking an ad hoc query as input, DryadLINQ processes

it in the following four basic phases.1

(1) Translate a query into its logical plan. DryadLINQ ap-
plies logical optimizations, including early filtering and re-
moval of redundant operators.
(2) Transform the logical plan to a physical plan with phys-
ical operators.
(3) Encapsulate the physical plan to a Dryad execution graph.
(4) Generate C# code for each vertex in the Dryad execution
graph, with optimizations including pipelining and removal

1DryadLINQ also enables dynamic optimizations. We leave
them out because they are not particularly relevant here.
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Figure 7: Logical plans for Q1, Q2, and Q3 ((a),(b),
and (c)), and a physical plan for Q2 (d).

of unnecessary nodes. Each vertex in the Dryad execution
graph has several physical operator nodes. The vertices are
deployed to different machines for distributed executions.

Figure 7 shows the logical plans of the sample queries. In
DryadLINQ, physical optimizations in Phase (2) take into
account the underlying distributed system configurations
and data properties. Figure 7 (d) shows the correspond-
ing physical plan for the second query. During the transfor-
mation, DryadLINQ applies local reduction optimization:
a local grouping (LG(A,B)) followed by a local aggregation
(LA(Count)) on each machine. A distributed partition phase
(D(A,B)) then shuffles locally grouped data at the cluster
level for global grouping (G(A,B)) and aggregation (A(Count)).

The integration of Comet into DryadLINQ involves (i)
adding two new phases between Phases (1) and (2) for nor-
malization and for query matching/merging to optimize jumbo
queries, (ii) adding new query rewriting rules to Phase (2) for
further logical optimizations, (iii) incorporating new physi-
cal optimizations in Phase (3), and (iv) introducing a cost-
model based optimization framework. Details on these inte-
gration issues are described in the following subsections.

4.2 Cost Model
A precise cost model is in general hard to attain, especially

for DISC systems [19]. The integration of Comet alleviates
this problem in two aspects. First, with Comet, DryadLINQ
can take advantages of temporal correlations in the BSP
model for better predictability. In particular, data proper-
ties on different segments of a data stream tend to stay the
same, while key properties of both data and computation
are often available because the same computation has often
occurred on the same data stream before. Comet collects
statistics during query executions, e.g., input and output
sizes for each operator, as well as cost of custom functions,
and stores such information in the catalog for cost analysis.

Second, the integrated cost model focuses on estimation of
total disk and network I/O. This is because I/O is the main
factor that drives optimization decisions in DryadLINQ. Also,
due to lack of index structures in our input data and the
few number of joins in the query, the current version of
Comet avoids complications in cost models for traditional
databases [25].

As a result, we have implemented a simple and effective
cost model. At each stage, Comet can take the input
size of a query and use the relationship between input and
output sizes from a previous run of the same execution to
estimate the amount of I/O. We estimate the output size
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Figure 8: S-query normalization on Query Q2. (a)

original logical plan for Q2, (b) after decomposition, (c)

after adding materialized views.

of a stage based on the selectivity of filters and the ratio
of input/output sizes from a previous run of the same ex-
ecution. Our experiments have validated the accuracy of
such a simplified cost model, and its effectiveness in guiding
optimization choices (Section 5).
We also add a step of consulting the cost model and

the catalog into Phase (3) of DryadLINQ execution, es-
pecially when the benefit and cost of some optimizations
are dependent on certain properties of queries and their
input data streams. To allow for an iterative optimiza-
tion process, rather than following the pipelined process in
DryadLINQ, we add a control loop between Phases (2) and
(3) of DryadLINQ execution, so that Comet can enable fur-
ther optimizations after estimating the cost of the physical
plans in Phase (3). Note that DryadLINQ uses run-time dy-
namic optimizations; for example, to figure out the number
of partitions for the next stage. Cost estimation in Comet
significantly reduces the needs for such optimizations.

4.3 Normalization
Comet adds a query normalization phase in DryadLINQ

prior to its logical optimization. The normalization phase
converts a given DryadLINQ S-query into a sequence of SS-
queries, each of which is triggered when a segment of an
input stream becomes available. This process essentially
turns an S-query into an incremental computation (see [23]).
In the worst case, the normalization will convert an entire
S-query into a single SS-query.
Figure 8 depicts the normalization process for an S-query

of the second sample query series. As the S-query involves
one week’s data (Figure 8 (a)), we split the input node into
seven nodes, each corresponding to one daily segment (Fig-
ure 8 (b)). Comet then explores the paths starting from
those nodes, examines each operator at each level from the
top down, and splits the operator whenever it is appropriate
based on the decomposability of that operator.
Decomposability of an operator indicates whether it is fea-

sible to split its computation. Most of the operators, such
as projections and selections, are easily decomposed. Some
require an extra phase at the end to produce correct results;
for example, an extra merge node A’(Count) is added for
generating the final weekly histogram from the daily ones
(Figure 8 (c)). There are also others, such as aggregations
with some custom functions, that cannot be decomposed
because we cannot easily make a decomposed plan which
produces the same output as the original one.
As with DryadLINQ, Comet must infer the type of pa-

rameters in the newly constructed expression tree. Because

LINQ uses the strongly typed lambda expressions, this in-
ference process could be tedious if the new expression tree is
different from the original one. For example, when decom-
posing Query Q2, the first seven has the same structure as
the original query and therefore its expression tree is easy
to construct. The final one that merges the results from the
first seven however has a different structure and requires
careful construction.

We arrive at Figure 8 (b) after the operators are decom-
posed. Comet further splits this plan into several indepen-
dent SS-queries: it adds an output node to each of the last
decomposed operator A(Count) in the previous 6 days. The
inserted output node is considered as a materialized view
[2], and the sub-graph that ends at this output node is con-
sidered an SS-query. The rest of the plan is then another
SS-query to be executed on the final day. The SS-query
not only takes the final segment as the input, but also uses
materialized views from previous SS-queries.

After getting all SS-queries from all query series, Comet
aligns them and constructs a jumbo-query for all SS-qeuries
with the same timestamp, as shown in Figure 9 (a), for fur-
ther optimizations. Through normalization, redundancies
across queries are exposed to later logical and physical op-
timizations of Comet-enabled DryadLINQ.

4.4 Logical Optimization
Comet enables new logical optimizations including shared

computations and reused views to remove redundancies in
the logical representation of jumbo queries. These tech-
niques are rooted in logical query optimizations in database
systems [24, 31].
Shared computations. While current DryadLINQ can
identify shared computations on common expressions across
SS-queries inside a jumbo-query, its rule-based optimization
process limits sharing opportunities. To enable more sharing
opportunities, Comet employs operator reordering.

Operator reordering generates multiple possible plans, and
the cost model evaluates which one is better. Consider two
branches that have two different selection operators followed
by two grouping operators with the same grouping keys. We
can swap the selection and grouping operators, so as to do
the grouping operation only once. However, if the two selec-
tions can reduce input data size dramatically, this optimiza-
tion actually hurts overall performance. Note that current
DryadLINQ chooses the latter case. Our evaluation shows
that this choice is not always true: a wrong decision may
result in I/O penalty.
Reused view across jumbo-queries. Redundant compu-
tations can also occur across jumbo queries, which happens
when two jumbo queries operate on overlapping input seg-
ments. For instance, the output of A(Max) in Figure 9 (a)
can be reused in the execution of the next jumbo query when
a new segment arrives. Comet stores the outputs as mate-
rialized views.

Comet further specifies a co-location feature for parti-
tioned views. Co-location is an important consideration be-
cause it could reduce network traffic significantly. While
co-location of intermediate results within a jumbo-query is
well taken care of by the compiler [18, 19], co-location of
the results across jumbo queries needs special care on data
replication. Comet replicates a partitioned view according
to the partitioning scheme of related views in the catalog.

One example of partitioned views with co-location is shown
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(a) original physical plan from LP1

local grouping

local aggregation

final aggregation

final grouping

P(A,B,C)

Log[0]

P(A,B)

D(A,B,C)

A(Agg)

out1

G(A,B,C)

D(D)

A(Count)

out2

LG(D)

LA(Max)

G(A,B)

S(!=”gb”)

P(A,B,D)

(b) PP1: physical plan with shared scan

P(A,B,C)

Log[0]

P(A,B)

D(A,B,C)

A(Agg)

out1

G(A,B,C)

D(A,B)

A(Count)

out2

G(A,B)

S(!=”gb”)

TEE

P(A,B,D)

......

D(A,B)

v(1)

v(3)

v(s)

v(4)

v(2)

LG(A,B)

LA(Count)

LG(A,B)

LA(Count)

S(!=”ru”) S(!=”ru”)

D(D)

LG(D)

LA(Max)

Dryad vertex

shared scan

Figure 10: An example of shared scan: original
physical plan directly generated from LP1 and the
physical plan PP1 with the shared scan optimiza-
tion.

in Figure 8 (c), where the final SS-query merges the results
from all the previous SS-queries. Comet partitions view[-

6], ..., view[-1] in the same way and co-locates the corre-
sponding partitions in the same machine, so that aggrega-
tion can be done locally on each partition.

4.5 Physical Optimization
Comet enables new physical optimizations for efficient

data sharing in DryadLINQ. Sharing opportunities at the
physical level manifest themselves as branches in a logical
plan after logical optimizations (e.g., Figure 9 (b).) There
are two types of branches, one enables shared scan [1] and
the other shared shuffling. The differences lie in whether a
branching point corresponds to local data transfers or net-
work data transfers.
Shared scan. An example of shared scan is shown in Fig-
ure 10 (a): S(!="gb") and S(!="ru") share the same input
node Log[0]. Current DryadLINQ tends to separates the
nodes into different vertices whenever it encounters branch-
ing. That is, current DryadLINQ puts the two nodes into
different vertices (see Figure 10 (a)), which results in two
scans on the same input segment (to v(1) and v(2)).
To enable efficient shared scan, Comet puts all branching

nodes in a Dryad vertex. Comet implements a new phys-
ical operator TEE for connecting one input-stream provider
with multiple concurrent consumers. For example, Comet
applies the shared scan optimization to put S(!="gb") and
S(!="ru") inside one vertex (v(s) in Figure 10 (b)), so that
they can cooperate with each other to reduce the number of
scans on the input segment to only one.
Whether or how to package branching nodes into a vertex

is a decision to be made based on the cost model. Since
the current design of DryadLINQ outputs the result of a
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Figure 11: An example of shared shuffling: the
physical plan generated from LP2.

Dryad vertex to disk, putting multiple branching nodes in a
Dryad vertex causes the results of all the branching nodes
written to disk, rather than pipelining to next processing
steps. Therefore, naively putting all branching nodes into
a vertex is not always beneficial. The cost model decides
whether putting a node into a shared-scan vertex according
to the relative sizes of input and output.
Shared shuffling. An example of shared shuffling can be
found in Figure 9 (b): the output of S(!="gb") is shuffled
across machines twice by G(A,B,C) and G(A,B). Note that
the two grouping operators have a common prefix (A,B).
Comet partially shares the two grouping operators by push-
ing down P(A,B,C) and P(A,B) to eliminate redundant data
shuffling (Figure 9 (c)). Then, it transforms this logical plan
to a physical one (Figure 11), translates the shared group-
ing to a shared distributed partitioning (D(A,B) in vertex
v(p)), and further enables the shared-scan optimization by
grouping further operators for the two SS-queries into one
vertex (v(g)).

There are tensions between single-query optimizations and
Comet optimizations, which exploit sharing among queries.
For example, DryadLINQ uses early aggregations to reduce
the I/O in later stages, but this could eliminate certain op-
portunities for removing redundancies across queries. More
concretely, two different physical execution plans for the
same jumbo query are shown in Figure 10 (b) and Fig-
ure 11. The former applies the early aggregation optimiza-
tion (LA(Count)), which can usually reduce data sizes for
a later distributed partitioning phase across the network
incurred on individual SS-queries. The latter applies the
shared-shuffling optimization to reduce redundant data shuf-
fling across SS-queries. Unlike DryadLINQ, which always
chooses the former, Comet relies on the cost model to pre-
dict which one is better.
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5. EXPERIMENTS
In this section, we evaluate Comet with DryadLINQ on a

small cluster and with simulations on the real trace.

5.1 Experimental Setup
We perform two sets of experiments to evaluate Comet.

The first set of experiments is on a real deployment of Comet
on a 40-machine cluster using a micro benchmark. This mi-
cro benchmark is to reveal micro-level details of Comet with
full control of choices on Comet optimizations in DryadLINQ.
The second set of experiments performs simulations on the
entire real-world trace reported in Section 2 to assess global
effectiveness of Comet.
We mainly focus on system throughput, and use total I/O

as the main metric. Total I/O is the number of bytes (in
GB) in both disk and network I/O during an execution.
To evaluate the separate benefits of individual optimiza-

tion techniques, we manually enable/disable certain opti-
mizations in both real deployment and simulations. Over-
all, we define three optimization configurations: Original,
under which queries are executed without Comet optimiza-
tions; Logical, which adopts only query normalization and
logical optimizations; and Full, which includes query nor-
malization, logical, and physical optimizations.

5.1.1 Micro benchmark setup
All experiments on the micro benchmark are performed on

a cluster of 40 machines, each with a dual 2GHz Intel Xeon
CPU, 8 GB memory and two 1TB SATA disks, connected
with 1 Gb Ethernet.
We assemble a micro benchmark, which consists of the

three query series in Figure 6. The three sample queries re-
semble the key structures of the most popular query series
in the trace and with different characteristics in different di-
mensions: 1) periods: Q1 and Q3 are daily queries, and Q2

consists of weekly queries; 2) complexity: Q1 and Q2 are sim-
ple queries with only one input stream, and Q3 has a join on
two inputs; 3) grouping: Q1 and Q2 have a common grouping
prefix (A, B), and Q3 has a grouping on D. These charac-
teristics are to evaluate the key optimization techniques in
Comet.
The dataset contains per-day segments of a real stream

from the same workload. The average size of the per-day
segments is around 2 TB. We projected the five referenced
columns (denoted as A–E) into a stream. Each segment is
evenly partitioned and stored on machines in a cluster. The
average size of each segment is around 16 GB. The total
stream size is around 112 GB in total, covering updates for
a week. Column A has a relatively small number of dis-
tinct values with an uneven distribution, Column B follows
the zip-f distribution, and Columns C, D, and E are nearly
evenly distributed.
The optimal execution plans for jumbo queries are auto-

matically generated according to the cost model in Comet.
In the experiment, we also examine execution plans with-
out Comet optimizations. The final execution plans for the
jumbo-query based on the three query series and the given
dataset are as follows: Original uses a normal DryadLINQ
generated execution plan, Logical uses the plan in Figure 10 (a),
and Full uses the plan in Figure 11 (we will discuss why
Comet did not select Figure 10 (b) later.) For both Logical
and Full on the input of one week, queries are normalized
into SS-queries, which are aligned with the per-day stream

updates. From day 1 to day 6, both Logical and Full are sta-
ble, as they repeat the same jumbo-query. On day 7, they
perform an additional final grouping operation on the seven
materialized views generated in previous jumbo-queries for
the second query series.

We have run each experiment five times. Variances among
different runs are small, and we report averages.

5.1.2 Simulation setup
We implement a trace-driven simulator that is capable of

estimating savings due to Comet optimizations. Taking a
trace from a real workload as input, the simulator first cate-
gorizes queries into two kinds: ad hoc queries and recurring
queries. For query series, the simulator maintains global log-
ical and physical plans, representing all the jumbo queries
that have been processed. The simulator tries to match the
query plan of a jumbo query against the global query plan
and calculates the benefits of each optimization technique.
For example, if the query plan exactly matches a path in
the global execution plan, we add the total I/O of the query
plan to the savings from logical optimizations. In particu-
lar, the Comet simulator simulates the following aspects in
Comet.

• Simulating query normalization. The simulator nor-
malizes queries into SS-queries. If statistics of an in-
put segment are available, we estimate the total I/O
cost of an SS-query with our cost model. Otherwise,
we evenly distribute the total I/O costs of each step of
the original query to those of the SS-queries.

• Simulating logical optimizations. The simulator re-
moves redundancies in jumbo queries. The material-
ization cost of creating materialized views is counted.
The cost involves writing two extra copies of the data,
replicating the data twice in the distributed file system
for reliability.

• Simulating physical optimizations. The simulator op-
timistically estimates the benefits of shared scan and
shared shuffling: the cost of only one input scan or
partitioning is counted.

The Comet simulator also supports simulating executions
of ad hoc queries. Due to the unpredictability of ad hoc
queries, the simulator considers whether an ad hoc query
can reuse views generated from previous executions of query
series. Finally, the Comet simulator outputs the total I/O
cost of the simulated workload at the end of simulation.

In this study, we use the trace described in Section 2 and
report the simulation results. This offers the capability of
estimating the effectiveness of Comet with a real trace from
a production system.

5.2 Micro Benchmark Study
The micro benchmark study evaluates the cost model and

choices in jumbo-query optimizations, including shared scan
and shared shuffling.
Cost Model Accuracy. We evaluate the accuracy of our
cost model by comparing total I/O numbers from real runs
and from estimation based on statistics from previous runs;
that is, we use statistics from previous execution and the
input size of the current one to estimate the cost of the
current execution. The experiment was done twice under
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day 1 to day 7.

 

Figure 13: Total I/O of the shared scan.

the Original and Full configurations. Figure 12 shows the
result: the estimated total I/O follows the actual total I/O
closely, which validates the accuracy of our cost model.
Shared Scan. To investigate the appropriate number of
branches to be combined in one shared-scan vertex (Sec-
tion 4.5), we combine 16 SS-queries from the first query
series together with a varying number of branches in one
shared-scan vertex (1, 2, 4, 8, and 16). For example, we
split the 16 SS-queries into 4 vertices when the number of
branches in one vertex is 4. Figure 13 shows the total I/O
with different selectivities (by changing filtering conditions).
The results show that it is beneficial to enable shared scan
with a large number of branches when selectivity is low: this
is the case for most queries in our trace. When selectivity
is high, the overhead of materializing results in shared scan
is high, and the appropriate number of queries per shared
scan vertex is small. Our cost model can guide this decision
making.
Early filtering versus shared shuffling. As discussed
in Section 4.5, pushing down a selection operator for shared
shuffling is not always profitable. We investigate how total
I/O varies with selectivity of the selection operators in the
first query series (by changing filtering conditions.) The
experiment was done twice on two instances of the first
query series: the first instance applies early filtering with-
out shared shuffling; the second instance applies late filtering
with shared shuffling. Figure 14 shows the total I/O num-
bers for the two cases with varying selectivity: As selectivity
increases, the benefit of shared shuffling increases. When
the selectivity is larger than 50%, late filtering is preferable.
Comet decides early filtering or shared shuffling using cost
estimation according to selectivity.
Early aggregation versus shared shuffling. Recall that
Comet selected Figure 11 (w/ shared shuffling) instead of
Figure 10 (b) (w/ early aggregation) as our Full optimiza-
tion benchmark. The reasons are as follows. The Count early
aggregation applied to the second query series can save only

0 

20 

40 

60 

80 

100 

120 

140 

0% 50% 100%

To
ta

l 
I/

O
 (

G
B

)

Filtering ratio

Early filtering

Late filtering

Figure 14: Performance on running two instances of
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Figure 15: The effectiveness of Comet on the micro
benchmark.

0.2 GB of the network I/O, due to the distribution of par-
titioning key A,B for the aggregation. Meanwhile, shared
shuffling between the first and second query series can save
0.9 GB network I/O, which is much more profitable.
Co-location of partitioned views. We also evaluate the
impact of co-location between two partitioned views that
are to be joined as in the third query series. We run the
experiments with and without co-locating two views, and
found that the total I/O is reduced from 191.6 GB to 175.2
GB, which has performance gain of 8.6%.

To put it all together, we run the three query series under
the three optimization configurations. Figure 15 shows the
total I/O of one week in a steady execution, denoted as day
1 to day 7. In Original, Q1 and Q3 are daily executed from
day 1 to day 7, and Q2 is executed on day 7 only. Original
has a sharp spike in the total I/O on day 7 due to Q2.

With logical optimization, Logical and Full reduce the
total I/O by 12.3% and 42.3%, respectively. Besides, since
our optimization divides the execution of Q3 into seven days,
Logical and Full have a more balanced load compared to
Original.

5.3 Global Effectiveness Study
Simulation validation. We first evaluate the accuracy of
our simulation. Figure 16 shows the total I/O of the micro
benchmark reported in the experiments described earlier and
the result with our simulation, under the three optimization
configurations. The maximum deviation is approximately
5% for the Full configuration, which validates the credibility
of our simulation.
Overall effectiveness. We run the simulator on the entire
trace under two optimization configurations. By default,
the optimization configurations have query normalization
enabled. To study effectiveness of normalization, we also
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Figure 17: Total I/O in simulation with and without
query normalization.

run simulation without normalization. Figure 17 depicts the
simulated results under these four configurations. It shows
that the Full optimization with normalization can reduce
total I/O by 52%, a significant cost saving. The Full op-
timization without normalization can also reduce total I/O
by 42%. This means that normalization contributes 10% of
cost saving; this is reasonable given that over 67% of the
query series in our trace are daily executed that need no
query normalization. For the remaining two Logical config-
urations, we can still get 15% to 16% reduction in terms of
total I/O.
Performance gain breakdown. A closer look at savings
from logical optimizations reveals that around 76% and 22%
of their savings come from extraction and aggregation opera-
tions, with around 2% due to the shared computations from
other operations. As for physical optimizations, over 97% of
all the physical optimization savings come from shared scan,
with the remaining due to shared shuffling.
Performance gain on ad hoc queries. We further look
at ad hoc queries in our evaluation. Those ad hoc queries ac-
count for 30% of total I/O in Original, but the ratio goes up
to 61% after optimizations because our optimizations are
more effective on recurring queries. Ad hoc queries also
benefit if some of their computations has already been per-
formed previously. Our results show a saving of 2% in terms
of total I/O for ad hoc queries.
Load distribution. Figure 18 shows the amount of per-
day I/O of Original and Full optimization normalized to
that of maximum of Original in a month. We observed
that our optimization techniques reduce total I/O for every
day in the month. The normalized daily load of Original is
between 0.03 and 1.00, and that of Full is between 0.02 and
0.65. With query decomposition, load in the system with
Full becomes more balanced than that with Original.
Comparison with existing approaches. Finally, we

 

Figure 18: Normalized daily I/O with full optimiza-
tion.

Table 2: Normalized simulated I/O of different op-
timization approaches

Approaches Normalized simulated I/O
Original 100%
MV 85%
SM 80%

MV+SM 75%
Comet 48%

implemented two existing complementary multi-query op-
timization approaches in the simulator, one based on ma-
terialized views [19] for caching (denoted as MV ), and the
other scheduling input scans [1] (denoted as SM ). MV iden-
tifies common computations based on the past history and
stores the results of identified common computations for
reuse when executing in the current day. SM considers
shared scans among queries in the query waiting queue.
Compared with Comet, these two approaches do not have
query normalization or global optimizations on shared input
scans.

Table 2 shows the normalized I/O of simulating different
multi-query optimizations, where MV+SM denotes the re-
sult of applying both MV and SM to the system. Comet
is more effective than MV+SM, with 36% less I/O. The
improvement is mainly due to two factors. First, Comet
performs query decomposition for sharing whereas neither
MV nor SM does. Second, Comet has a larger optimiza-
tion scope than MV+SM. Comet aligns query executions to
data updates for optimizations among query series, whereas
MV+SM bases its scope on query arrivals.

6. RELATED WORK
Comet builds on prior work in both data intensive dis-

tributed systems and databases systems.

6.1 Large-scale Data Processing Systems
The need for large-scale data processing has given rise to

a series of new distributed systems. The state-of-the-art ex-
ecution engines, such as MapReduce [10], Dryad [18], and
Hadoop [16] provide scalable and fault-tolerant execution
of individual data analysis tasks. More recently, high-level
languages, such as Sawzall [21], Pig Latin [20], DryadLINQ
[30], and SCOPE [6] introduce high-level programming lan-
guages, often with certain SQL flavors, to facilitate speci-
fication of intended computation. All these systems adopt
a batch processing model and treat queries individually. A
set of optimization techniques, such as early aggregation (or
local reduction), have been proposed and incorporated into
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those systems, almost exclusively for optimizing individual
queries.
I/O optimizations for DISC systems have made query

optimization techniques in database systems relevant. Ol-
ston et al. [19] recognize the relevance of database optimiza-
tion techniques and propose a rule-based approach for both
single- and multi-query optimizations in batch processing.
Existing systems such as DryadLINQ [30] and SCOPE [6]
have already employed database techniques to improve sys-
tem performance. Chen et al. [8] optimize data distribu-
tion in evaluating composite aggregation queries. Agrawal
et al. [1] propose shared scans of large data files to improve
I/O performance. The work focuses on a theoretical anal-
ysis, with no report of real implementations or evaluations.
The adoption of the BSP model does help Comet address the
challenges that were considered difficult: the BSP model al-
lows a natural alignment of multiple queries to enable shared
scans and makes a simple and accurate cost model feasible.
Our previous work [17] presents a preliminary study on

the trace and outlines some research opportunities. This
work extends the previous study with an emphasis on query
correlations, and realizes the research opportunities through
the proposal of the BSP model and the integration into
DryadLINQ.

6.2 Database Optimizations
Many core ideas in Comet optimizations can find their

origins in query processing techniques in database systems
[11, 15], both in batch processing [11, 24, 26] and in stream
processing [3].
As with the stream processing model [3], computation in

the BSP model is triggered by new updates to data streams,
but without resource and timing constraints normally asso-
ciated with stream processing; as with the batch processing
model, each query in a query series is a batch job, but com-
putations are recurring, as it is triggered by a (bulk) update
to data streams.
Batch processing. There is a large body of research on
query optimizations for batch processing in traditional (par-
allel) databases [11]. Shared-nothing database systems like
Gamma [12] and Bubba [5] focus mainly on parallelizing a
single query. As for multiple query optimizations, material-
ized views [2, 24] are an effective mechanism in exploiting
the result of common subexpressions within a single query
or among multiple queries. Zhou et al. improves the view
matching opportunities on similar subexpressions [31]. In
Comet, persistent outputs registered in a catalog are ma-
terialized views, without complicated and usually expensive
view maintenance in database systems [4]. In addition, by
merging queries into a jumbo query, results of most common
expressions do not need to be materialized. Concurrent disk
scans on the same relational table can be shared with proper
scheduling [9, 32, 29].
Stream processing. Stream processing systems such as
STREAM [28] and NiagaraCQ [7] usually process real-time
and continuous data streams. Due to resource and time
constraints, stream data are usually not stored persistently.
Continuous queries run on a stream for a period of time,
and return new results as new data arrives. Query pro-
cessing algorithms for incremental computation [27] and for
identifying common sub-queries among continuous queries
[7] are proposed to process streams efficiently.

7. DISCUSSIONS
The BSP Model and Ad Hoc Queries. Comet’s design
targets the BSP model, but can easily accommodate ad hoc
queries. In fact, we expect that for any DISC systems the
workload will consist of those conforming to the BSP model
and those ad hoc queries that do not. Many optimization
techniques in Comet can benefit ad hoc queries as well, as
our simulation indicates. Clearly, ad hoc queries cannot
take full advantages of the optimizations in Comet: because
an ad hoc query is triggered upon submission, it cannot be
easily aligned with other queries for shared scans; because
an ad hoc query is non-recurring, the cost model might be
less accurate.

The co-existence of the BSP queries and the ad hoc queries
also impose challenges on other parts of the system. Ad
hoc queries are likely to be significantly smaller than jumbo
queries. Fairness in scheduling thus becomes crucial for pro-
viding a reasonable service to ad hoc queries.
The BSP Model and its Impact on an Underlying
System. Comet can also benefit from better support from
underlying execution engines. Currently, jumbo queries that
Comet creates are given to the underlying system as a single
job: the information that the job contains multiple queries
is lost. This makes it hard to achieve fairness among queries
in a job and for preventing failures of individual queries from
aborting other queries in the same job.

There is also a tension between maximizing sharing and
enabling parallel executions. For example, to get the bene-
fits of shared scan and shared shuffling, multiple queries are
now scheduled to run on the same machines concurrently.
While this optimizes overall throughput and improves re-
source utilizations, it might create hotspots in some part
of the system, with idle resources elsewhere. A distributed
storage system must balance data allocation; this will help
alleviate tensions in Comet.
Declarative Operators and Imperative Custom Func-
tions. The combination of declarative operators and imper-
ative custom functions in DryadLINQ might appear to be a
prefect choice for expressiveness, ease of programming, and
flexibility. But the effect of pollution from those impera-
tive custom functions is particularly alarming, especially for
some of the seeming natural optimizations we would like
to perform. It seems to echo some of criticisms from the
database community [13]. Some way of constraining that
flexibility seems desirable.

The issue has already surfaced in the original DryadLINQ
system, as hinted by its authors. Optimizations such as early
aggregations become hard with custom aggregation func-
tions. The custom functions also make it hard to propagate
the data properties that are important for optimizations.
We believe that a combination of automatic program anal-
ysis and tasteful constraints on the custom functions might
help address the issues.

8. CONCLUDING REMARKS
With an increasing use of distributed systems in large-

scale data processing, we envision the inevitable convergence
of database systems and distributed systems in this context.
The convergence will bring a set of new challenges and op-
portunities in performance optimization. Comet is a step
towards that convergence. Motivated by the observations
from a real system, Comet embraces a new execution model
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driven by arrivals of data updates and makes cross-query op-
timization tractable. While Comet leverages DryadLINQ,
an existing system, for system-level resource management
and scheduling, the underlying distributed system challenges
have not yet been addressed satisfactorily, especially consid-
ering a large-scale and dynamic system with a large number
of incoming and concurrent queries.
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