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Abstract— We present a replication-based approach that real-
izes both fast and highly-available stream processing over wide
area networks. In our approach, multiple operator replicas send
outputs to each downstream replica so that it can use whichever
data arrives first. To further expedite the data flow, replicas
run independently, possibly processing data in different orders.
Despite this complication, our approach always delivers what
non-replicated processing would produce without failures. We
call this guarantee replication transparency.

In this paper, we first discuss semantic issues for replication
transparency and extend stream-processing primitives accord-
ingly. Next, we develop an algorithm that manages replicas
at geographically dispersed servers. This algorithm strives to
achieve the best latency guarantee, relative to the cost of repli-
cation. Finally, we substantiate the utility of our work through
experiments on PlanetLab as well as simulations based on real
network traces.

I. INTRODUCTION

Recently, there has been significant interest in applications
where high-volume data streams need to be processed with
low latency. Such applications include network monitoring
and intrusion detection, seismic activity monitoring, Web
feed analysis, global asset tracking, and monitoring of large
ecosystems. In this application domain, low-latency processing
is critical as it enables swift reaction to real-world events.

Stream processing systems are a class of software systems
that facilitate implementation of stream processing applica-
tions [1], [2], [3]. In these systems, processing is typically
expressed as an acyclic graph of operators that transform the
data streaming through them. These systems are usually geared
toward distributed processing because many applications in-
herently involve geographically dispersed data sources and
a good use of multiple servers can achieve highly scalable
processing [4], [5], [6].

In this paper, we consider stream processing in a macro-
scale that spans diverse areas of the globe. This will allow
us to monitor various events occurring around the world and
make smart decisions in near real time. To realize correct and
timely processing, however, we must address the following
challenges:

1) As we use more servers, server failures are more likely
to occur. A failed server cannot send data and may have
lost data essential to processing.

2) Computer networks are vulnerable to link failures and
congestion. Communication outages sometimes last tens
of minutes or more [7], [8].
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3) A server can be overloaded due to unexpected surges
of data streams [6] or by other applications that share
the server. In this case, stream processing at subsequent
servers also gets delayed.

We observe that previous techniques for reliable stream
processing [9], [10], [11], [12] cannot successfully address
the challenges above. These techniques commonly deploy, for
each operator, k replicas on independent servers to tolerate up
to (k-1) simultaneous failures. In these techniques, however,
only one of the peer replicas can feed a downstream replica.
If such a replica fails (or gets overloaded/disconnected), the
subsequent processing stalls until the downstream replica
notices the problem and acquires a new input connection
from another functioning upstream replica. Furthermore, these
previous techniques run replicas identically at distant servers,
thereby introducing extra delays.

To overcome the limitations of previous techniques, we
propose a new approach where multiple replicas send outputs
to each downstream replica so that it can use whichever data
arrives first. To further expedite the data flow, our approach
also allows replicas to independently process any available
data. This may cause multi-input replicas to produce outputs
in different orders. Despite such complications, our approach
always delivers the results that non-replicated stream process-
ing would produce without failures. We call this guarantee
replication transparency.

Our approach uses more resources than previous approaches
because all replicas send outputs downstream. However, our
approach has a distinct advantage of improving performance
since it always uses the fastest data flow. Furthermore, the
system naturally remains resilient against local congestions.
It is also always operational without detecting failures and
switching from failed replicas to functioning replicas.

A. Contributions

The contributions of this paper are as follows:
1) We propose a new replication framework for fast and

robust stream processing in wide area networks.
2) We define replication transparency as the key concept

for our replication framework. We also devise stream-
processing primitives for replication transparency.

3) We develop an algorithm for managing replicas. This
algorithm strives to achieve the best latency guarantee,
relative to the cost paid for replication.

4) We demonstrate the utility of our work through experi-
ments on PlanetLab [13] and trace-driven simulations.
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Fig. 1. An Example of Replication – Server A continuously measures the
latencies of connections to servers B and C and reports them via entry point
e1. Servers B and C report their CPU usage via entry points e2 and e3,
respectively. Replicas ∪2,1 and ∪2,2 merge streams from e2 and e3 and feed
on3,2 in parallel. on3,2 uses whichever tuple arrives first from ∪2,1 and ∪2,2,
while ignoring duplicates (i.e., late tuples; see those stroked-through) .

B. Road map

The rest of this paper is organized as follows. We give
an overview in Section II and design a semantic model for
replicated stream processing in Section III. In Section IV, we
devise stream-processing primitives according to our replica-
tion model. Next, we discuss replica management in Section V
and show experimental results in Section VI. We present
related work in Section VII and conclude in Section VIII.

II. BACKGROUND

In this section, we describe the assumptions behind our work
and introduce our replication framework. Then, we stress the
specific problems tackled in this paper.

A. Assumptions

System. We assume a wide area network as the substrate for
stream processing. We assume that the network has abundant
computation and communication resources.
Communication. We assume that the network layer runs
a reliable, in-order, point-to-point message delivery protocol
such as TCP.
Failure Model. We assume fail-stop server/network failures.
We do not consider Byzantine failures where faulty compo-
nents can behave in arbitrarily erroneous ways.
Query. We assume that queries are translated into a directed
acyclic graph of operators [14], [2], [3]. In this paper, we
consider the stream-processing operators defined in [14].

B. The Basic Architecture

To manage the system in a scalable fashion, we group
servers into logical clusters each of which comprises tens
of servers. For each cluster to autonomously handle queries
that span distant stream sources and applications, each cluster
includes servers at diverse locations rather than those only
within a small area. For this reason, clusters may overlap
significantly with each other in terms of their geographic
coverage. Hereafter, we focus on replicating operators within
a logical cluster.

As illustrated in Fig. 1, our approach guarantees fast and
reliable processing by making multiple replicas feed each
downstream replica (observe that replicas ∪2,1 and ∪2,2 both
send data to the second input of on3,2). To achieve reliable
processing with unstable stream sources, we introduce entry
points, which serve as the starting points for reliable stream
processing. Entry points buffer input tuples from external
stream sources until they safely arrive at the downstream
replicas. They also replicate input tuples at other peer entry
points to improve availability. Finally, entry points have well-
synchronized clocks [15] and can timestamp input tuples on
behalf of unsynchronized stream sources.

C. Problem Statements

To complete the replication framework described above, we
need to address the following research challenges.

1) What execution semantics should we consider for repli-
cated stream processing?
We take the position that replication must be transparent
to users. In other words, we want to guarantee that
replicated processing (with failures and delays) always
produces the results that would appear without replica-
tion and failures. We discuss the details in Section III.

2) How should we extend processing primitives for repli-
cation transparency?
A simple way to ensure replication transparency would
be to identically execute peer replicas. As shown in
Section VI, however, such an approach introduces extra
delays. Therefore, we let replicas run differently as long
as replication transparency is achievable. To produce
correct results, we also need to remove duplicates, as
shown in Fig. 1. In Section IV, we design processing
primitives in this fashion.

3) How should we manage replicas?
As demonstrated in Section VI, the deployment of
replicas significantly affects the network cost, perfor-
mance (in terms of the average end-to-end latency), and
availability (in terms of the probability that the system
delivers results to end-users within a certain latency). In
Section V, we discuss managing replicas so as to achieve
the best latency given a fixed replication cost.

III. REPLICATION TRANSPARENCY

The central notion behind our work is replication trans-
parency. Under this guarantee, each application always re-
ceives tuples that would be generated in the ideal non-
replication scenario where the system is completely free from
failures and delays. Because timestamps of tuples are usually
used as essential elements for processing [14], replication
transparency also requires the timestamps to represent the
precise times when the tuples would be generated in the ideal
non-replication scenario. Our goal in this paper is to deliver
such results to applications as soon as possible, by use of
replication.

The definition of replication transparency above is specified
only in terms of the results to applications. A natural question



at this point is how we should instrument operator replicas to
produce such results in the end. We first take the position
that each operator replica must generate the tuples that would
appear in the ideal non-replication scenario. We, however, let
each replica run independently, while processing any available
data. As demonstrated in Section VI, this relaxation expedites
processing, compared to previous approaches that execute
replicas identically at distant servers. This, however, causes
multi-way operators, such as Union and Join, to generate
tuples in a random order. In Fig. 1, replicas ∪2,1 and ∪2,2

produce outputs in different orders for this reason.
Despite the complications above, we achieve replication

transparency as follows:

1) We merge stream replicas into a non-duplicate stream
using a non-blocking filter. In our replication frame-
work, each operator replica receives inputs from mul-
tiple upstream replicas. An operator such as a count
aggregate [14], however, may produce incorrect results
if it processes duplicate tuples. Furthermore, processing
duplicates would waste CPU cycles. In Section IV-B,
we devise non-blocking filters that eliminate duplicates
from disordered stream replicas. In Fig. 1, the second
duplicate filter of on3,2 merges two stream replicas into
a non-duplicate stream that again contains the same
tuples as its input streams. Because the input streams
of the filter have different orders, and because the filter
operates in a non-blocking fashion, the output of the
filter has a new different order.

2) We sort disordered streams only when necessary. Order-
sensitive applications and operators, such as those with
count-based windows [14], must process inputs in the
order of the ideal non-replication scenario. In Section IV-
C, we discuss sorting streams, while introducing extra
delays. Due to this penalty, we sort streams only when
necessary. In other words, we bypass the sorting phase
for order-insensitive operators and applications.

3) We redesign operators so that they can produce, from
disordered input streams, the output tuples that would
appear in the ideal non-replication scenario. The out-
put stream need not be ordered, because downstream
replicas can handle disorder. We call this property of
operators replica consistency because it guarantees that
replicas always produce consistent output streams from
consistent input streams. We say that two streams are
consistent if they contain the same tuples regardless of
internal order. In Sections IV-D through IV-F, we devise
non-blocking implementations of Filter, Map, Union,
and Join and a blocking implementation of Aggregate.
All these operators guarantee replica consistency.

The arguments above state that we can achieve replication
transparency by eliminating duplicates, minimally sorting data
streams, and making every operator ensure replica consistency.
Replica consistency can be defined formally as follows:

Definition 1: Infinite streams S and S′ are consistent (de-
noted by S ≡ S′) if they contain the same tuples regardless

of internal order. Specifically, S ≡ S′ if there exists a
permutation µ : N → N such that S[i] = S′[µ(i)], where
S[i] denotes the ith tuple in stream S.

Definition 2: (Replica Consistency) Let o(S1, S2, · · · , Sn)
denote the set of all possible output streams that operator o
with n inputs can generate from input streams S1, S2, · · · , Sn.
Then, we say that operator o guarantees replica consistency
if any possible output streams O ∈ o(S1, S2, · · · , Sn) and
O′ ∈ o(S′

1, S
′
2, · · · , S′

n) are consistent (i.e., O ≡ O′) for any
consistent input streams Si and S′

i (i.e., Si ≡ S′
i, 1 ≤ i ≤ n).

IV. EXTENSION FOR REPLICATION TRANSPARENCY

In this section, we devise the processing primitives for
replication transparency. In Section IV-A, we introduce punc-
tuations because many of our primitives use them. Next, we
discuss filtering out duplicates in Section IV-B and sorting
streams in Section IV-C. In Sections IV-D through IV-F, we
extend stream-processing operators for replica consistency.
Any operator, including user-defined ones, can be used in our
replication framework if it guarantees replica consistency.

A. Management of Punctuations

In our approach, either stream sources or their downstream
entry points timestamp tuples using well-synchronized clocks.
They also periodically send special values, called punctua-
tions [16], [12]. Punctation p in input stream S guarantees
that the timestamp of any subsequent tuple in S will be larger
than p. All streams in the system can also satisfy this property
if each operator forwards p as soon as it receives p via all its
inputs. This is because an operator in that situation will always
receive tuples with timestamps larger than p. This implies
that, in the ideal non-replication scenario, the operator would
process all these tuples after time p, and thus the timestamps
of all later output tuples must be larger than p.

B. Duplicate Filtering

As pointed out in Section III, we use duplicate filters to
eliminate duplicate tuples from stream replicas. Duplicate
filters must deal with disorder and multiple occurrences of
the same tuple in each stream replica. They also should not
block the data flow. Algorithm 1 describes the operation of
our duplicate filter. For tuple t from stream replica Si, we
first check if t satisfies the condition in line 2. Otherwise
(i.e., if t.timestamp ≤ max punctuation), t is a duplicate
because the filter received the current maximum punctuation
(max punctuation) from a stream replica before. This implies
that the filter already received, from the same stream replica,
all tuples t′ such that t′.timestamp ≤ max punctuation.

Next, the filter uses a variable count[t][i] to remember
how many times it received tuple t from stream replica
Si (line 3). If the filter received t from Si more times
than any other stream replica, it passes t to the operator as
a non-duplicate (line 5). Otherwise (i.e., if ∃Sj such that
count[t][i] ≤ count[t][j]), t is a duplicate because the filter
already received a corresponding tuple from Sj . Lines 7-11
describe that, whenever a new punctation arrives, the filter



Algorithm 1: Duplicate Filtering
whenever tuple t arrives from stream replica Si ∈ {Sj}kj=1 do1

if t.timestamp > max punctuation then2
count[t][i]← count[t][i] + 1;3
if count[t][i] > max count[t] then4

output(t);5
max count[t]← count[t][i];6

whenever punctuation p arrives from any stream replica do7
if p > max punctuation then8

output(p);9
max punctuation← p;10
remove all count[t][∗] such that t.timestamp ≤ p;11

can safely remove count variables for all the known duplicate
tuples. The life time of each count variable is thus bounded
by the punctuation interval.

The following theorem proves the correctness of Algo-
rithm 1.

Theorem 1: Let D(Si)k
i=1 denote the set of all output

streams that duplicate filter D can produce from stream
replicas {Si}k

i=1. If {Si}k
i=1 are consistent, any O ∈ D(Si)k

i=1

is also consistent with them (i.e., O ≡ Si, 1 ≤ i ≤ k).
Proof: Since {Si}k

i=1 are consistent, all of them commonly
contain an arbitrary tuple t the same number of times (say
m). It suffices to prove that D passes t, m times in any case.
(1) if m = 0, D cannot pass t since none of the streams
{Si}k

i=1 contains t. (2) If m > 0, without loss of generality,
suppose that D receives the mth t from S1 before it receives
the mth t from Sj (2 ≤ j ≤ k). Since this implies that D
has not yet received punctuation p ≥ t.timestamp from any
stream replica, t must satisfy the condition in line 2. Since it
also implies that count[t][1] > count[t][j] (2 ≤ j ≤ k), t must
satisfy the condition in line 4. Therefore, D must pass t to the
operator. This also must be the mth output of t because, by
the induction hypothesis, D must have passed t, (m−1) times
before this. D then sets both count[t][1] and max count[t] to
m. Since count[t][j] ≤ max count[t] = m(2 ≤ j ≤ k), D
will filter out t afterwards . �

C. Sorting Streams

If a stream S feeds an order-sensitive operator/application,
we sort S using punctuations. We first insert each tuple from
S into a sorted list L. This list contains tuples in the order
of increasing timestamps. If multiple tuples have the same
timestamp, we enforce a unique ordering, for example, by
regarding these tuples as byte arrays and radix-sorting them.
Whenever a punctuation p arrives from stream S, we remove
tuples {t ∈ L : t.timestamp ≤ p} from L, while passing
them, in the sorted order, to the next operator/application. This
sorting phase each time observes the entirety of the tuples in
S up to a punctuation p and passes them in a unique order.
Therefore, it allows all peer replicas to process inputs in the
same order, with extra delays that depend on the punctuation
interval. This sorting phase is described in Algorithm 4 as part
of an order-sensitive operator (refer to lines 1-6).

Algorithm 2: Join
whenever tuple t1 arrives at input I1 do1

for each t2 ∈ B2 such that2
|t1.timestamp− t2.timestamp| < w ∧ P (t1, t2) do

output(t1 ⊗ t2);3

B1.add(t1);4

whenever punctuation p1 arrives at input I1 do5
B2.remove ({t2 ∈ B2 : p1 − t2.timestamp > w});6

* Inputs to I2 are processed symmetrically

In the rest of this section, we discuss extending operators
for replica consistency.

D. Stateless Operators and Replica Consistency

Stateless operators are those that produce each output tuple
based on only the last input tuple [14]. Filter forwards each
input tuple if the tuple satisfies a pre-defined predicate. Map
converts each input tuple into a different tuple. Union merges
two or more streams into a single output stream.

Each stateless operator naturally guarantees replica con-
sistency because it processes each tuple deterministically,
regardless of the input order. In detail, all replicas of a Filter
must pass a tuple if it satisfies the predicate. All replicas
of a Map must identically convert each input tuple and
replicas of a Union must forward each input tuple. Therefore,
our replication framework uses stateless operators as defined
in [14]. Filter, Map, Union are all non-blocking. Union is
nondeterministic because, as demonstrated by ∪2,1 and ∪2,2

in Fig. 1, its output order can vary depending on the arrival
order of tuples across its input streams.

E. Extending Join for Replica Consistency

Join [14] has two inputs I1 and I2, window size w, and
predicate P . For any input tuples t1 from I1 and t2 from I2,
it outputs the concatenation t1⊗t2 of them if they (a) belong to
the same time window (i.e., |t1.timestamp−t2.timestamp| <
w) and (b) satisfy predicate P (i.e., P (t1, t2) holds). Here, we
do not consider the extra features, called slack and timeout,
of Join that handle disorder and silence. This is because our
approach tackles these issues by use of punctuations, while
expediting processing through replication.

We implement Join as illustrated in Algorithm 2. Lines 1-
4 output the concatenation of matching input tuples, while
using Bi to buffer the tuples entered input Ii. The timestamp
of t1⊗ t2 is set to max(t1.timestamp, t2.timestamp), which
is the time when the tuple would be produced in the ideal non-
replication scenario. Lines 5-6 discard the buffered tuples that
will no longer be used. Any tuple t2 ∈ B2 that satisfies the
condition in line 6 cannot match with any tuple t1 that will
arrive at I1. This is because t1.timestamp− t2.timestamp >
p1 − t2.timestamp > w.

This Join implementation is non-blocking because it pro-
duces each output tuple as soon as it obtains both constituent
input tuples. It guarantees replica consistency because, for



Algorithm 3: Aggregate with Time Windows
whenever tuple t arrives do1

for each window w ∈ G(t).W(t.timestamp) do2
w.update(t);3

whenever punctuation p arrives do4
for each g ∈ G do5

for each w ∈ g.windows such that w.expir time ≤ p do6
g.windows.remove(w);7
output(w.get summary());8

Algorithm 4: Aggregate with Count-based Windows
whenever tuple t arrives do1

L.insert(t); // sorted list2

whenever punctuation p arrives do3
while L 6= ∅ ∧ L.first().timestamp ≤ p do4

agg count windows(L.first());5
L.remove first();6

agg count windows(t)7
begin8

count++;9
for each window w ∈ G(t).W(count) do10

w.update(t);11
if w.expir count ≤ count then12

g.windows.remove(w);13
output(w.get summary());14

end15

each pair of matching input tuples, it produces the concatena-
tion of them exactly once, regardless of the inter-arrival order
of the input streams. Similar to Union, Join is nondeterministic
and may introduce disorder.

F. Extending Aggregate for Replica Consistency

Aggregate [14] splits input stream I into substreams
{I[g]}g∈G , where G is the set of groups and I[g] is a
subsequence of I that contains tuples belonging to group g.
For each substream I[g], this operator forms windows (sets of
tuples) based on either timestamps or the count of tuples. If a
window expires, Aggregate produces an output tuple computed
from the tuples in the window. For the reasons described in
Section IV-E, we do not consider slack and timeout.

For replica consistency, Aggregate must form and close
windows uniquely, despite disorder in the input stream.
Aggregate with Time Windows. In this case, each group
g forms windows of w seconds every s seconds. There-
fore, for input tuple t, we can determine the set of win-
dows W(t.timestamp) that t belongs to. For example, when
w = 10 (sec) and s = 5 (sec), we get W(9:00:43) =
{[9:00:35, 9:00:45), [9:00:40, 9:00:50)}. Lines 1-3 in Algo-
rithm 3 uniquely form windows regardless of the input order.
Then, lines 4-8 use punctuations to find the windows that
cannot contain more tuples. This allows Aggregate to produce
the same output tuples from any consistent input stream.
Aggregate with Count-based Windows. This operator uses,
for each group g, a window of w tuples that skips s tuples

whenever it moves. Because this operation is order-sensitive,
we sort input stream as described in Section IV-C (lines 1-
6 in Algorithm 4). After this, the operator forms and closes
windows (lines 7-15) using the count of input tuples.

The two implementations above are blocking because they
wait for punctuations to assure that they obtained all the
required tuples. With time windows, we can minimize the
delay by making stream sources or their entry points produce
punctuations at expiration times of windows. With count-based
windows, the delay depends on the punctuation interval.

V. MANAGEMENT OF REPLICAS

As demonstrated in Section VI, the deployment of replicas
affects latency guarantees as well as resource usage. In this
section, we discuss managing replicas to achieve the best
latency guarantee, relative to a fixed replication cost. In Sec-
tion V-A, we discuss deploying replicas initially in a resource-
efficient fashion. In Section V-B, we devise an algorithm that
reduces the resource usage to a target level, while minimally
degrading the latency guarantee. For this, the algorithm finds
the least useful stream/operator replicas each time and discards
them. In Section V-C, we consider reviving garbage-collected
replicas to cope with changes in system conditions.

A. Deployment of Replicas

As illustrated in Section II-B, our replication framework
forms logical clusters each of which comprises servers at di-
verse locations. Servers in the same cluster elect a coordinator
for them. In this subsection, we discuss how the coordinator of
cluster S should deploy a predefined number (kmax) of repli-
cas for each operator. Our strategy strives to minimize the over-
all network cost similarly to operator placement approaches
in the non-replication context [17], [18]. In our replication
framework, for a collection of stream replicas R, the network
cost of R, cost(R), is defined as the sum of individual stream
replicas’ network costs. Formally, cost(R) =

∑
S∈R cost(S)

where cost(S) denotes the cost of stream replica S. cost(S)
is in turn defined as rate(S) · latency(S) where rate(S) and
latency(S) are the data rate and the network latency of stream
replica S, respectively. This bandwidth-delay product is based
on the idea that the longer data stays in the network, the
more resources it tends to use. An optimal deployment under
this metric also tends to choose fast network links, thereby
accomplishing low-latency processing.
The Replica Deployment Algorithm. Algorithm 5 describes
our replica deployment strategy. Each of the kmax deployment
phases creates, for each operator o in query Q, a new replica
on a server that minimally increases the network cost. For a
new replica, it first finds good candidate servers C (lines 6-7).
Such a server s must not be busy (line 6). load(s) and load(o)
are the current load of server s and the expected load of the
new replica of o, respectively. capacity(s) is the processing
capacity of server s. With α < 1, the condition in line 6 checks
if s is likely to have enough available CPU cycles even if it
runs the new replica. A good candidate server s also must
have a low risk of falling into the same network partition with



Algorithm 5: Replica Deployment (for query Q)
for i = 1 to kmax do1

deploy(Q);2

deploy(Q)3
begin4

for each operator o ∈ Q do5
C← {s ∈ S : load(s) + load(o) < α · capacity(s) ∧6

min(latency(s, s′)) > dmin, ∀s′ ∈ S(o)};7
Find s∗ ∈ C such that ∀s ∈ C8

costs∗ (in(o) ∪ out(o)) ≤ costs(in(o) ∪ out(o));9
s∗.deploy(o);10

end11

any s′ of servers S(o) that currently run replicas of o. To
ensure this, the heuristic in line 7 uses network latencies to
ensure that replicas are always deployed on sufficiently distant
servers. In several test cases, it turned out that 30ms to 70ms
is a good range for the minimum latency dmin between peer
replicas. After finding candidate servers C, the coordinator
chooses the server s∗ that will minimize the network cost
of the input streams in(o) and output streams out(o) of the
new replica (lines 8-9). Specifically, in(o) denotes all possible
input streams from the replicas directly upstream from any
replica of o, and out(o) denotes all possible output streams
to the replicas directly downstream from any replica of o. In
line 9, costs(in(o) ∪ out(o)) represents the network cost of
these input and output stream replicas, provided that server
s runs the new replica. Formally, costs(in(o) ∪ out(o)) =∑

S∈in(o) rate(S) · latency(S.source, s)+
∑

S∈out(o) rate(S) ·
latency(s, S.destination). Finally, the coordinator deploys the
new replica on s∗ (line 10).
Discussion. Our strategy above strives to find, phase-by-phase,
the deployment that will minimally increase the network cost
while providing the desired availability level. It is, however,
hard to find the optimal deployment in the first phase because
the data rate of each stream and the processing load of each
operator are not yet known (these statistics are available in
the later phases). The network cost also changes over time as
the data rates and latencies of streams vary. For this reason,
we use an approach that initially deploys replicas aggressively
and dynamically garbage-collects/revives them afterwards.

B. Garbage Collection

Our replica deployment algorithm creates kmax replicas
for each operator. Between kmax upstream replicas and kmax

downstream replicas, it also creates k2
max stream replicas.

Although kmax is usually set to a small number (say 4 or
5 at most) in practice, using all these stream replicas would
waste system resources. Furthermore, faster operator replicas
and those that feed many downstream replicas would have
a higher impact on processing than others. Thus, we use a
strategy that periodically discards the least useful stream and
operator replicas. This is to reduce the resource usage, while
minimally degrading the latency guarantee. To maintain the
minimum fault-tolerance level, however, we ensure that at least
kmin replicas of each operator survive.

Algorithm 6: Garbage Collection (for stream replicas R)
whenever

P
S∈R cost(S) > θ do1

C← {dependents(S) : S ∈ R} − {∅};2
Find a collection of stream replicas D∗ ∈ C such that3
utility(D∗)
cost(D∗)

≤ utility(D)
cost((D)

, ∀D ∈ C;
discard(D∗);4

dependents(S)5
begin6

return dependents(S, ∅);7
end8

dependents(S, D)9
begin10

D.add(S);11
D← dependents(S.source, D);12
if D = ∅ then13

return ∅;14

else15
return dependents(S.destination, D);16

end17

dependents(o, D)18
begin19

if |C(o; D)| < kmin then20
return ∅;21

if need to remove(o, D) then22
for each S ∈ in(o) ∪ out(o)−D do23

D← dependents(S, D);24
if D = ∅ then25

return ∅;26

return D;27
end28

The Garbage-Collection Algorithm. Algorithm 6 illustrates
our garbage-collection strategy. Periodically (every 5 minutes
in our prototype), the coordinator computes the current overall
network cost. If the cost is higher than a target utilization level
θ (line 1), it finds the group of least useful replicas, relative
to the network cost paid for them (lines 2-3). It then asks the
related servers to discard them (line 4). dependents(S) in line
2 finds the group of replicas that must be discarded together
with stream replica S. For example, if an operator replica o
has only one output stream S, removing S will make o useless
and therefore necessitates removing all the input streams of o
as well. In this case, dependents(S) must contain the input
streams of o. Given replicas D to discard, lines 09-17 check
if removing stream replica S will require removing its source
replica (line 12) or destination replica (line 16) for the reason
above. Lines 13-14 handle the case where we cannot remove S
because we would have fewer than kmin operator replicas if S
was removed (see also lines 20-21). Lines 18-28 are to check
an operator replica o. Lines 20-21 are to keep at least kmin

operator replicas (in line 20, C(o;D) represents the number of
replicas of o if we remove replicas in D). Line 22 checks if
removing replicas in D will make operator replica o useless
and thus require removing o. If so, the algorithm visits the
input and output streams of o while recursively applying the
algorithm (lines 23-26). If removing such streams leads to
having fewer than kmin replicas for some operator (line 25),



it decides not to remove any streams (line 26).
Measuring the Utility of Each Replica. As shown above,
our garbage-collection algorithm considers the utility of each
stream. Intuitively, we define utility as the impact of a replica
on the data flow towards applications. To compute this, our
heuristic first uses duplicate filters to measure the contributions
of stream replicas to the next operator. Specifically, each dupli-
cate filter gives, for each input tuple, weights 1

1 , 1
2 , 1

3 , · · · to its
input stream replicas based on how early they deliver the tuple
(the fastest replica gets the highest weight each time). These
weights, however, do not capture the impact after the next
operator. Thus, our heuristic periodically (every 30 seconds in
our prototype) computes the utilities of stream/operator repli-
cas from applications to more upstream replicas. Specifically,
for a group of stream replicas {Si}k

i=1, utility(Si), the utility
of Si, is computed as w(Si)Pk

j=1 w(Sj)
utility(o) where w(S) is the

accumulated weight of stream S and utility(o) is the utility of
the operator replica o that {Si}k

i=1 commonly feed. utility(o)
is set to 1 if o is an application. Otherwise, it is computed as∑

S∈out(o) utility(S) where out(o) denotes the output streams
of o.
Discussion. As described above, our garbage-collection algo-
rithm victimizes replicas with high cost and small contribution
to downstream processing. Replicas of the opposite kind
are likely to survive over time. Such surviving replicas are
in general those with high popularity (i.e., those eventually
connected to a large number of applications), those upstream,
and those along fast data flows.

C. Adaptation to Changes

Our garbage-collection algorithm saves resources while
striving to preserve the latency guarantee. If failures or local
congestions occur, however, the surviving replicas may expe-
rience unexpected delays. We solve this problem by reviving
garbage-collected replicas. In detail, if an operator replica
observes delays longer than a threshold (say 10 seconds)
across its input streams, it first finds garbage-collected input
streams that connect to functioning upstream replicas. If there
is such one, it revives the stream replica. Otherwise, it revives
a garbage-collected upstream operator replica and acquires a
new connection from that one. If the problem persists, we
can either create more upstream replicas, revive/create peer
replicas that could replace the hindered replica, or simply
discard the hindered one.

If the coordinator finds that the current network cost is lower
than the target level θ, it can also assist hindered replicas as
described above.

VI. EXPERIMENTAL RESULTS

In this section, we present various results that substantiate
the utility of our work. In Section VI-A, we describe how
we set up the experiments and simulations. Then, we present
results obtained from our prototype (Sections VI-B through
VI-D) and a trace-driven simulator (Sections VI-E and VI-F).

A. The Setup

In all of our experiments, we assumed a system configura-
tion where servers are grouped into clusters each of which con-
sists of 30 servers. Thus, for our prototype, we chose 30 distant
PlanetLab servers [13] that reliably communicate with others.
The results obtained, however, varied each time because the
servers were used intensively by many users. To compare
various approaches under an identical condition, we also
conducted simulations. Our prototype and simulator use the
same source code except for the communication component.
To send tuples and invoke remote procedures, our prototype
uses TCP sockets. The simulator instead emulates network
delays using a trace. We obtained this trace by recording
actual network delays between 100 PlanetLab servers every
10 seconds for a month starting from February 13, 2007.

Our experiments, except that in Section VI-D, used the
query illustrated in Fig. 1, while adding Filters and appli-
cations after the Joins. To easily detect data loss, however,
we used stream sources that periodically generated tuples. We
also made the Filters always pass their inputs. In detail, each
server ran two kinds of stream sources, one that reported the
server’s CPU load and the other that reported the latencies
of connections to other servers. Such input streams were first
merged at Unions, one for each input type, and the subsequent
Joins correlated load and latency readings. For the experiments
in Sections VI-B and VI-D, stream sources generated input
tuples every half a second and 1 millisecond, respectively. In
the other experiments, input tuples were generated every 10
seconds. Joins in Sections VI-B and VI-D used time windows
of half a second and 100 milliseconds, respectively. In other
cases, the window size was set to 10 seconds.

Given the query above, we deployed replicas. In Sec-
tions VI-B and VI-D, we manually did the task. In other
cases, the coordinator first obtained statistics on network
delays between servers and the data rates of streams through
a test run. Then, it deployed operators in a non-replicated
fashion, using the spring relaxation algorithm [18]. This was
to start with the best operator placement that has the lowest
network cost. After this, the coordinator replicated operators
and streams, according to the chosen replication method.

B. Comparison of Techniques for Reliable Stream Processing

In this experiment, we compare our replication technique
with previous high-availability techniques. For this, we man-
ually placed ∪1,1 at WISC, ∪2,1 at Purdue, and on3,1 at OSU.

In Fig. 2, the curve labeled “no replication” represents how
the latency, without replication, varied over time at the output
of on3,1. The latency of a tuple was defined as the difference
between the wall-clock time and the timestamp of the tuple
(i.e., the time when the tuple would be produced in the ideal
non-replication scenario, equivalently the earliest time when
the tuple could be generated). In this experiment, we crashed
the stream-processing engine at WISC at time 60. After that,
on3,1 did not produce any output because it no longer received
tuples from ∪1,1. In contrast, other curves show that relia-
bility techniques indeed provide protection against failures.
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Fig. 2. Comparison of Reliability Techniques

The curve labeled “replication” shows how our replication
technique behaved when we added replicas ∪1,2 and ∪2,2

at Purdue and WISC, respectively. In this case, despite the
failure at WISC, the processing continued relying on ∪1,2

and ∪2,1 at Purdue. After the failure, however, the latency
increased because on3,1 no longer benefited from replication.
In Fig. 2, “synchronization” shows the performance of a
previous technique that always enforces an identical execution
between primaries and backups [9]. In this technique, each
primary sends extra information, called determinants, to the
backup so that the backup can mimic the processing of
the primary. For Unions, we used the inter-arrival order of
input tuples to generate determinants. This method introduces
extra delays because primaries must hold output tuples until
backups acknowledge the recept of determinants. Checkpoint-
based techniques [9], [10] also show similar behavior because
primaries hold outputs until one round of checkpoint finishes.
After the failure, the latency dropped since ∪1,2 and ∪2,1 at
Purdue no more had synchronization partners.

Finally, “deterministic” shows the variation of latency under
a method that runs peer replicas (e.g., ∪1,1 and ∪1,2) iden-
tically by feeding the replicas in the same order [12]. As
described in Section IV-C, sorting streams introduces extra
delays because tuples are held until a relevant punctuation
arrives. We can reduce extra delays by more frequently pro-
ducing punctuations. The pace of on3,1, however, is eventually
determined by the slowest input flow.

In summary, the figure shows that our replication technique
improves both performance and reliability because it always
benefits from the best of multiple independent data flows.
On the other hand, previous approaches degrade performance
because they identically run replicas at distant servers, thereby
introducing extra delays. In previous approaches, the failure
of a server also disrupts the processing until the downstream
servers notice it and switch to another upstream server (ob-
serve the failover latencies in Fig. 2).

C. Impact of Replication on Latency

Fig. 3 shows how the end-to-end latency at an application
varies over time depending on the degree of replication. In this
experiment, each server ran three stream-processing engines
and used each of them for a different degree of replication.
For example, the curve labeled “kmax=3” shows the latency
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Fig. 3. Impact of Replication on Latency

operators no degree of replication
replication 1 2 3 4

Union 0.7 1.1 1.8 2.7 3.5
(1.43x) (2.57x) (3.86x) (5.00x)

Filter 0.8 1.2 1.9 2.8 3.6
(1.38x) (2.37x) (3.50x) (4.50x)

Aggregate 2.3 2.7 3.6 4.4 5.2
(1.17x) (1.57x) (1.92x) (2.26x)

Join 9.5 10.3 10.8 11.6 12.3
(1.08x) (1.14x) (1.22x) (1.29x)

TABLE I
CPU COST OF A REPLICA (% CPU CYCLES)

results obtained from the engines that collectively deployed
3 replicas for each operator as described in Algorithm 5. The
figure shows that the average as well as the variance of latency
decrease as we deploy more replicas. This is because each
operator in the system is provided more input flows and thus
can benefit from better ones.

D. CPU cost for Replications

Using our prototype, we also measured the CPU cost for
replication, using AMD Sempron 2800+ CPUs. In this exper-
iment, we fed 1K tuples/sec to each input of the operators.
The operators were instrumented to output 1K tuples/sec as
well. Specifically, the Filter always passed input tuples after
evaluating the predicate and the Aggregate computed the count
of input tuples using a window of 10ms that slid every 1 ms.
The Join matched each input tuple with 100 input tuples on
the other input, but produced only one output tuple every 1
ms as the result of predicate evaluation.

For each operator type, we first fixed the degree of repli-
cation (kmax) to 4 and gradually added replicas until ap-
proximately half the cycles of a CPU were used. After this,
we decreased the degree of replication from 4 to 1, while
finding the per-replica CPU cost by dividing the CPU usage
by the number of replicas. We also measured the CPU cost
for the non-replication case. Table I summaries the results.
The “no replication” column shows that each operator has a
different processing cost. Each row of the table shows that the
CPU cost per replica increases as we add more input/output
stream replicas. This increase in the CPU cost corresponds to
the overheads of removing duplicates as well as sending and
receiving tuples via stream replicas. Finally, the table shows
that the per-replica CPU cost increases at a different pace for
each operator. The Join operator has the lowest growth rate
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Fig. 4. Impact of Replica Deployment

because the processing cost itself dominates the cost of using
more stream replicas.

E. Impact of Replica Deployment

Fig. 4 shows the impact of replica deployment using results
from our simulator. For the results, we ran the simulator for
a month in simulation time. Then, we plotted the latency
distribution for all the output tuples that appeared at 10
different applications. In both figures, kmax represents the
degree of replication. The ratios within parentheses represent
the relative bandwidth usage and network cost, respectively,
compared to those in the non-replication case (i.e., kmax=1).
In Fig. 4(a), kmax = 4 (11.37x, 22.10x) illustrates the case
where we replicated each operator at 4 random places and, as
a result, consumed 11.37 times higher bandwidth and incurred
22.10 times higher network cost.

In all of the cases, the relative bandwidth usage was
less than k2

max. This is because there were (1) k2
max stream

replicas between kmax upstream operator replicas and kmax

downstream operator replicas and (2) kmax stream replicas
between a stream source and kmax downstream replicas, and
between kmax upstream replicas and an application.

As defined in Section V-A, the network cost is a bandwidth-
delay product. Because we started from an optimal, non-
replicated deployment, stream replicas added later had longer
delays than the previous ones. For this reason, the network
cost ratio is usually higher than the bandwidth ratio.

Fig. 4 shows that deploying replicas using Algorithm 5
(labeled “min-cost”) provides a better latency guarantee than
deploying replicas at random servers (labeled “random”). In
the random deployment case, there were latencies beyond 16
seconds even though a 13.39 times higher network cost was
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Fig. 5. Impact of Garbage Collection

paid. In the min-cost case, the latency was always smaller
than 1 second for a smaller network cost (10.99x). This is
because our deployment algorithm finds, among the servers
that are likely to achieve the desired availability level, those
that minimally increase the network cost.

F. Impact of Garbage Collection

As described in Section V-B, keeping all stream replicas
may waste resources without any gain in performance and
reliability. In this experiment, for each kmax value, we first
achieved the latency guarantee in Fig. 4(b) by running Algo-
rithm 5. In Fig. 5, the first bar for each kmax value represents
the network cost in this case (labeled “static min-cost”). Then,
we tested how much network cost could be saved through
garbage collection without degrading the latency guarantee.
The second bar for each kmax value represents the network
cost after garbage collection. Thus, the difference between the
first two bars in each case represents the network cost of the
streams that did not contribute to performance and reliability.
Fig. 5 also shows that, as the degree of replication increases,
only a smaller portion of stream replicas are useful. We also
tested the case where replicas react to changes in system
conditions as described in V-C (labeled “garbage-collection
/ revival”). In this case, we can more aggressively garbage-
collect replicas because those garbage-collected can be reused
whenever necessary.

VII. RELATED WORK

Techniques for highly-available stream processing so far
deploy k peer replicas on independent servers to mask (k-1)
simultaneous failures. Most of them are based on the failover
model where each operator replica receives data from only
one of the upstream replicas and, if the upstream replica fails,
the downstream replica must switch to another functioning
upstream replica to continue processing [11], [9], [12], [10].

Approaches in [11], [12] and active standby in [9] execute
all replicas in parallel. In these approaches, all the replicas are
“up-to-date”. Thus, a failure stalls the processing only during
the failover. The resource usage in these approaches increases
in proportion to the degree of replication.

In contrast to the “active replicas” approaches, passive
standby and upstream backup [9] combine active and passive
replicas to reduce the system usage. In passive standby, active



replicas periodically copy the change in their states to passive
replicas. In upstream backup, active replicas log outputs so
that, if a downstream replica fails, an empty passive replica can
use the logged data to rebuild the latest state of the failed one.
These passive backup techniques have a slower recovery speed
than the “active replicas” approaches because a passive replica,
after failover, must bring its old state up-to-date by redoing
the recent computation. An approach tackles this problem by
distributed checkpointing and parallel recovery [10].

All the failover techniques above use less resources than our
approach because at most one of the peer replicas participates
in each data flow. Furthermore, the down time after a failure
depends on the failover speed. Therefore, they are well-suited
in environments with reliable communication and limited
resources. In this paper, we assume scenarios where events
occurring around the world must be processed in near real time
over a large shared substrate. In such scenarios, our approach
has distinct advantages because it always benefits from the
best of many independent data flows.

Recently, Murty and Welsh presented a high-level vision
of a dependable architecture for Internet-scale sensing [19].
They proposed a technique that allows replicas to arbitrarily
diverge and then reconciles results from such replicas by
finding a representative value (such as the median). In contrast,
our approach prevents any side-effects of replication, while
striving to give as much freedom to each replica as possible.

Deploying operators in the non-replication context was
studied in [17], [18]. Similar to this work, our approach finds
a resource-efficient deployment. Our approach, however, con-
siders other aspects (such as the risk of peer replicas’ falling
into the same network partition) to accomplish the desired
availability level. Our approach also garbage-collects/revives
replicas to cope with the dynamics of the environment. We
presented a preliminary design of our work in [20].

VIII. CONCLUSION

Today’s applications often require service level agreements
(SLAs) on the latency of results. If the network is unable
to deliver results within these SLAs, we can consider this
as a failure. In this paper, we introduce a replication-based
approach that can cope with both fail-stop failures and unac-
ceptable latencies. The central notion behind the approach is
to replicate operators and let them flow outputs downstream
in parallel. In this way, any replica in the system can use
whichever data arrives first from upstream replicas. Therefore,
the system naturally achieves low-latency processing as well
as robustness against server and network problems.

According to this replication framework, we also devise
processing primitives that, despite the complications intro-
duced by replication, can provide the same semantic guarantee
as those devised for non-replication scenarios. In particular,
these primitives allow running replicas differently to avoid
the overhead of previous approaches. They also merge stream
replicas into a non-duplicate stream. If such a stream feeds
order-sensitive operators/applications, our primitives can sort

the stream to restore the order that would appear in the non-
replication scenario.

Another contribution made in this paper is a strategy for
managing replicas at distant servers. Our strategy strives to
achieve the best latency guarantee, relative to the cost of
replication, while coping with changes in system conditions.

Finally, we present results obtained from our prototype as
well as a detailed simulator. These results demonstrate how our
approach can overcome the limitations of previous approaches
in wide area networks. They also show that, when resources
allow, our replication technique is both feasible and correct.
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[20] J.-H. Hwang, U. Çetintemel, and S. Zdonik, “Fast and reliable stream
processing over wide area networks,” in IEEE SSPS Workshop, 2007.


