
SCARAB: Scaling Reachability Computation on
Large Graphs ∗

Ruoming Jin† Ning Ruan†

† Department of Computer Science
Kent State University

Kent, Ohio, USA
{jin,nruan,sdey}@cs.kent.edu

Saikat Dey† Jeffrey Yu Xu‡

‡ Department of Systems Engineering &
Engineering Management

Chinese University of Hong Kong
Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT

Most of the existing reachability indices perform well on small- to
medium- size graphs, but reach a scalability bottleneck around one
million vertices/edges. As graphs become increasingly large, scal-
ability is quickly becoming the major research challenge for the
reachability computation today. Can we construct indices which
scale to graphs with tens of millions of vertices and edges? Can the
existing reachability indices which perform well on moderate-size
graphs be scaled to very large graphs? In this paper, we propose
SCARAB (standing for SCAlable ReachABility), a unified reach-
ability computation framework: it not only can scale the existing
state-of-the-art reachability indices, which otherwise could only be
constructed and work on moderate size graphs, but also can help
speed up the online query answering approaches. Our experimen-
tal results demonstrate that SCARAB can perform on graphs with
millions of vertices/edges and is also much faster then GRAIL, the
state-of-the-art scalability index approach.

Categories and Subject Descriptors

H.2.8 [Database management]: Database Applications—graph

indexing and querying

General Terms

Performance

Keywords

Scalable reachability, Reachability backbone, Reachability join test

1. INTRODUCTION
Reachability is a fundamental operator on directed graphs. It

answers whether a vertex u can reach another vertex v using a sim-
ple path (?u → v). Computing reachability has been studied in
a wide range of computer science disciplines, including software
engineering, programming languages, and distributed computing.

∗R. Jin and N. Ruan were partially supported by NSF CAREER
award IIS-0953950 and J. Y. Xu was supported by Council of the
Hong Kong grants 419008 and 419109.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Early work on reachability in the database field dates back to its ap-
plication to the recursion operator and knowledge management [1].
The recent emergence of rich graph data (from biology, social net-
works, software analysis, semantic web) poses new challenges for
reachability computation and reignites interest in discovering good
reachability indices [24, 22].

In the last several years, quite a few graph indexing approaches
[5, 23, 8, 21, 16, 9, 6, 15, 25, 24, 4, 22, 14, 7] have been proposed to
speed up answering reachability queries in database systems. All
these approaches lie between two extreme reachability computa-
tion schemes, namely, online DFS/BFS and the complete transi-
tive closure, and aim to balance between query time, index size,
and construction cost. However, almost all of them face the scal-

ability bottleneck for handling massive graphs, which are quickly
arising from social networks (such as Twitter and WeiBo), the se-
mantic web, and large domain ontologies (such as in the biomedical
field). The majority of these approaches can only handle moderate
size graphs having tens or hundreds of thousands vertices/edges;
only a few barely reach the “million-vertices” threshold [9, 22, 14].
Though online search methods, such as DFS/BFS, can always per-
form on any size graphs, their query answering time grows linearly
with graph size, too costly for very large graphs.

To deal with the scalability problem, Yildirim et al. recently
proposed GRAIL, which is a refined DFS utilizing auxiliary inter-
val labeling to prune the search space [24]. However, its overall
reachability computation speedup compared with DFS is quite lim-
ited (comparable or even slower than DFS for many cases). Fur-
thermore, though it tends to reject a “negative query” rather fast
(when a vertex cannot reach another vertex) [24], its performance
for confirming a “positive query” is still a major issue as it has to
discover an actual path between the queried vertices. Also, GRAIL
can be one or two orders of magnitude slower for answering ran-
dom queries, even more for positive queries.

To sum, scalability is quickly becoming the major research chal-
lenge for reachability computation today: Can we construct in-
dices which scale to graphs with tens of millions of vertices and
edges? Can the existing reachability indices which perform well on
moderate-size graphs be scaled to very large graphs? In this paper,
we provide positive answers to these questions. Specifically, we
propose SCARAB (standing for SCAlable ReachABility), a uni-
fied reachability computation framework: it not only can scale the
existing state-of-the-art reachability indices, which otherwise could
only be constructed and work on moderate size graphs, but also can
help speed up the online query answering approaches. In the fol-
lowing, before we proceed to the introduction of SCARAB, we first
review the existing reachability indexing methods and discuss the
underlying reason for their scalability bottleneck.

169

1.1 Prior Work on Reachability Computation
and Scalability Bottleneck

To answer the reachability query in a directed graph, we can
always transform it into a directed acyclic graph (DAG) by coa-
lescing strongly connected components into vertices and answer-
ing queries on the DAG. Since a DAG is often much smaller than
the original directed graph, it is the target for reachability indexing.
Let G = (V, E) be the DAG for a reachability query, with number
of vertices n = |V | and number of edges m = |E|.

Numerous reachability computation approaches [1, 13, 18, 10,
20, 5, 23, 8, 21, 16, 9, 6, 15, 25, 24, 4, 22, 14, 7] have been proposed
and can be largely classified into three categories: transitive closure

compression, hop labeling, and refined online search.
Category I (Transitive Closure Compression): This category aims
to directly compress the transitive closure TC and assign each ver-
tex u a compressed reachable set TC(u). To determine the reach-
ability from vertex u to v, vertex v only needs to check against
TC(u). Representative methods include chain representation [13,
6], interval representation [1, 18],dual-labeling [23], path-tree [16],
and bit-vector compression [22]. Using interval-representation as
an example, in the reachable set of a vertex u, any contiguous ver-
tex segment is compressed to its start vertex and end vertex. For in-
stance, if the complete transitive closure of u is {0, 1, 2, 3, 7, 8, 9},
it can be compressed into two intervals: [0, 3] and [7, 9]. The semi-
nal work [1] shows how to find an optimal tree for such a represen-
tation. The latest work [22] shows that the bit-vector compression
methods, such as PWAH (Partitioned Word Aligned Hybrid com-
pression scheme), can also significantly compress these contigu-
ous vertex segments (considering the corresponding binary vector
representation of a reachable vertex set) . Good surveys of these
methods can be found in [14, 24].

This category of methods is generally faster than the methods
in the other two categories. Indeed, on moderate size graphs, sev-
eral independent studies have demonstrated that interval represen-
tation and path-tree are the best in terms of query answering time
for reachability computation [14, 22, 24]. However, the basis of
their success is also the very reason for their scalability bottleneck:
even when the graph is sparse, as the number of vertices increases,
so does the size of the materialized transitive closure, inevitably
exceeding the main memory capacity. On a moderate 8-GB ma-
chine, the upper capability of most these techniques is around one
million vertices. Though the compressed TC may be materialized
and stored on disk, both its construction and its query performance
can become prohibitively expensive due to the disk-access cost. To
make things even worse, in order to produce the best compression,
some of the techniques, such as tree-based interval representation
[1], actually need to compute the complete TC first.
Category II (Hop Labeling)): The second category utilizes inter-
mediary vertices to encode the reachability, i.e., each vertex records
a list of intermediate vertices it can reach (Lout) and a list of inter-
mediate vertices which can reach it (Lin). To answer the reacha-
bility query, a join process between the outgoing intermediate ver-
tices of the start vertex and the incoming ones of the end vertex is
performed to determine whether there is a common vertex (or one
vertex in the first set can reach another in the second). Using two
sets of labels, hop labeling may also be viewed as a transitive clo-

sure factorization [15]. Compared with the first category methods,
the hop labeling approaches are generally slower but can produce
smaller index size [24, 14].

The seminal 2-hop labeling approach proposed by Cohen et al. [10]
is the first in this category; the recent 3-hop labeling by Jin et al.

[15] utilizes a chain decomposition as the intermediary highway
structure to improve the 2-hop labeling; and more recently, path-

hop [4] further generalizes 3-hop by utilizing a tree structure to
replace the chain decomposition. However, all these approaches
have high construction cost, which directly results in their scalabil-
ity bottleneck. Specifically, in order to minimize the labeling size,
the original 2-hop relies on a greedy set-cover framework, which
not only involves repetitively finding densest subgraphs from a set
of bipartite graphs, but also needs to materialize the entire transitive
closure. The overall construction complexity of the original 2-hop
(O(n3|TC|)) is prohibitively expensive. Even with significant re-
duction of the construction cost by [20, 15, 4], these approaches
can only handles graphs with far fewer than a million vertices.

Several heuristic approaches have been proposed to reduce 2-
hop construction time. Schenkel et al. propose the HOPI algo-
rithm, which applies a divide-and-conquer strategy to compute 2-
hop labeling [20]. Cheng et al. propose several methods, such
as a geometric-based algorithm [8] and graph partition technique
[9], to produce a 2-hop labeling. Though their algorithms signifi-
cantly speed up the 2-hop construction time, without the set-cover
framework, they do not produce any approximation bound of their
labeling size. Moreover, their scalability is also constrained by the
lack of any good scalable partition algorithm on very large directed
graphs, which these methods [20, 9] rely on.
Category III (Refined Online Search): The third category of
methods utilize online search to answer reachability queries; they
employ auxiliary labeling information to aggressively prune the
search space. Specifically, Label+SSPI [5] and GRIPP [21] both
utilize a tree cover to speed up the DFS process. The state-of-
the-art GRAIL [24] assigns each vertex multiple interval labels;
each label is generated by random depth-first traversals. The cor-
responding interval generated from the same DFS traversal can de-
termine whether one vertex is likely to reach another: if Iv * Iu

(the interval of v is not a subset of the interval of u), then vertex
u cannot reach vertex v; however, when Iv ⊆ Iu, we cannot de-
termine whether u can reach v. Thus, Iv ⊆ Iu is a necessary but
insufficient condition for determining reachability; and multiple in-
tervals can increase the rejection probability. GRAIL [24] utilizes
such a multi-interval labeling to prune the search space in the DFS
process and has been shown to be the best online search method. It
is also the only feasible scalable solution which can handle graphs
with tens of millions of vertices/edges so far.

The advantage of this category is that they generally do not need
any optimization process and no transitive closure is needed in the
construction. Its construction time and index size are both quite
small, and thus can be applied to any graphs without size limita-
tion. However, it generally has the slowest query answering time
as it leaves most work to the query stage. When the graph size be-
comes very large, their query performance may become too expen-
sive to answer reachability queries. As we mentioned earlier, even
the state-of-the-art GRAIL has some issues on query performance.

1.2 Overview of SCARAB
To meet the scalability challenge of reachability computation on

very large graphs, we develop a novel SCARAB approach, which
can not only scale any of the existing reachability indices (such as
methods in category I and II), but also speed up the online search
methods (such as DFS and methods in category III). The basic idea
of SCARAB is rather simple:
1. (Reachability Backbone) For any large graph, SCARAB first
scales down the original graph by extracting a “ reachability back-
bone” which carries the major “reachability flow” information.
2. (Accessing Backbone) To answer reachability query (u, v), start
vertex u accesses a list of local outgoing backbone vertices and end
vertex v accesses a list of local incoming backbone vertices. Then

170

<iAnnotate iPad User>
Underline

<iAnnotate iPad User>
Underline

<iAnnotate iPad User>
Underline

u (v) perform a forward (backward) local BFS in the original graph
to access the reachability backbone.
3. (Reachability Join Test) Given the outgoing backbone vertex
set and the incoming backbone vertex set, a “reachability join test”
determines whether any outgoing vertex can reach an incoming ver-
tex in the backbone. If yes, then u can reach v; otherwise, no. Any
existing reachability computation methods can be applied to the
reachability join operation on the backbone.

Interestingly, SCARAB can be employed recursively; or in other
words, we may construct a hierarchical backbone structure. Since
the single level reachability backbone is already very scalable (suf-
ficient to handles graphs with millions of vertices) as we will show
in the empirical study, we will not consider the hierarchical struc-
ture in this work. The reachability backbone is similar in spirit to
the highway structure used in several state-of-the-art shortest path
distance computation methods on road networks [3, 19]. How-
ever, how to construct and utilize such structure in the reachabil-
ity computation has not been fully addressed. Several existing ap-
proaches [20, 9, 25] have considered applying a graph partition to
extract a high level structure to assist reachability computation. Un-
fortunately, the graph partition problem itself is known to be hard
(especially on directed graphs) and lacks good scalable solution.

SCARAB needs to consider two basic research problems:

1. How can we formally define the reachability backbone, and

can it be discovered efficiently on very large graphs? Here,
the backbone itself not only needs to capture the high level
reachability information of the original graphs, but also has
to allow the fast access for any individual vertex.

2. How can we utilize the reachability backbone to compute

reachability efficiently? Specifically: 1) How can we access

the backbone vertices quickly? The local search cost must
be minimized; 2) How can we adopt and utilize the existing

reachability index to optimize the reachability join test? For
different reachability computation methods, different strate-
gies can be taken to speed up the reachability join test.

To answer the first question, we define the reachability backbone
to be a minimal graph structure (in terms of the number of ver-
tices), such that for every pair of vertices which are ǫ-hops apart in
the original graph, both can access the backbone using only a lo-
cal search (within ǫ-hops), and their corresponding access vertices
are connected in the backbone. In other words, the backbone struc-
ture carries all non-local reachability information. To discover the
backbone, we develop a set-cover approach which can approximate
the minimal backbone with guaranteed bound and a fast heuristic
approach which scales almost linearly with respect to the graph
size. To speed up backbone access when answering reachability
query, we consider the strategy to materialize those locally acces-
sible backbone vertices for each vertex. For different categories of
reachability computation, including online search, transitive clo-
sure compression, and hop-labeling, we tailor different strategies
for faster reachability join test using the backbone.

2. REACHABILITY BACKBONE DEFINITION
In this section, we formally define the reachability backbone

which plays a central role in SCARAB for scaling the reachabil-
ity computation. Intuitively, it is designed to have a number of
desired features: 1) it should be much smaller than the original
graph; 2) it should carry sufficient topological information to assist
the reachability computation in the original graph; 3) it should be
easy to access for any vertex in the original graph. To satisfy these
features, SCARAB explicitly separates local vertex pairs from non-

local vertex pairs, and focuses on utilizing the backbone for recov-
ering the reachability for non-local reachable pairs. For local pairs,

(a) Original Graph G (b) G’s Reachability Backbone

Figure 1: Running Example

reachability can be computed directly online, so no global infor-
mation is needed. Furthermore, the separation between local and
non-local vertex pairs is determined through a threshold parameter
ǫ which can be used not only to facilitate the access of backbone
vertices, but also to help control the backbone size.

Formally, given a locality threshold ǫ, for any pair of vertices
u and v, if u can reach v within ǫ intermediate vertices, i.e., the
distance between from u to v is no greater than ǫ, then (u, v) is
referred to as a local pair, and if u can reach v but through at least
ǫ + 1 intermediate vertices, i.e., their distance is greater than ǫ,
then (u, v) is referred to as a non-local pair. If u cannot reach v,
then, (u, v) is referred to as a unreachable pair. Given this, the
reachability backbone is defined as follows:

DEFINITION 1. (Reachability Backbone) Given a DAG G =
(V, E) and the locality threshold ǫ, a reachability backbone G∗ =
(V ∗, E∗), where V ∗ ⊆ V and E∗ may contain edges not in E,

has the following property: for every non-local (unreachable) pair

(u, v) in graph G, there must (not) exist two vertices u∗ and v∗ in

V ∗, such that (u, u∗) and (v∗, v) are both local pairs in G and u∗

can reach v∗ in G∗.

EXAMPLE 2.1. Figure 1(b) shows a reachability backbone of

graph G (Figure 1(a)) with ǫ = 2. As an example, for non-local

vertex pair (1, 18), there is a backbone vertex 3 where vertex 1
reaches 3 in one hop, there is another backbone vertex 10 where

vertex 10 reaches 18 in two hops, and vertex 3 reaches 10 in the

reachability backbone. Indeed, for any non-local vertex pair in Fig-

ure 1(a), you can find their corresponding local backbone vertices

and they are connected in the reachability backbone (Figure 1(b)).

On the other hand, if two vertices cannot reach one another, no

additional connection in the backbone will make them reachable

from one to another. In other words, there are no false positives for

reachability using the reachability backbone.

Clearly, the reachability backbone depends on the locality thresh-
old ǫ. As we will show in the empirical study Section 5, for any real
and synthetic graphs, a reachability backbone with ǫ ≤ 4 can al-
ready significantly reduce the size of the original graph G by an or-
der of magnitude. More surprisingly, for almost all the real graphs
which are publicly available for reachability study [23, 9, 15, 24],
the reachability backbone even for ǫ = 2 can reduce the number of
vertices by one to two orders of magnitude. The detailed study on
the selection of the locality threshold ǫ is discussed in Section 5.
Reachability Backbone Edge Set: Given a DAG G = (V, E)
and its reachability backbone G∗ = (V ∗, E∗), let TC(V ∗) be the
transitive closure of G on V ∗, i.e., TC(V ∗) = {(u∗, v∗) ∈ V ∗ ×

171

V ∗|u∗ → v∗ in G}. Furthermore, let TC∗(V ∗) be the transitive

reduction [2] of TC(V ∗), i.e., TC∗(V ∗) contains the smallest
(and unique) edge set which preserve all reachability information
between any two vertices in V ∗. Given this, we make the following
observation of the edge set E∗ in the reachability backbone:

LEMMA 1. (Backbone Edge Set) Given any reachability back-

bone G∗ = (V ∗, E∗) for G = (V, E), E∗ ⊆ TC(V ∗). In other

words, E∗ does not introduce any additional reachability informa-

tion beyond those between any two vertices of V ∗ in the original

graph G. Furthermore, G
∗ = (V ∗, TC∗(V ∗)) is also a reacha-

bility backbone of G, where TC∗(V ∗) is referred to as the canoni-
cal backbone edge set of the backbone vertex set V ∗.

Clearly, if any additional reachability is introduced, then there
is will be false positives. This violates the backbone definition.
The complete proof of Lemma 1 is omitted due to space limitation.
Lemma 1 has the following important implication.

COROLLARY 1. For any candidate reachability backbone graph

G∗ = (V ∗, E∗) in a given graph G, where V ∗ ⊆ V and E∗ ⊆
TC(V ∗), for any unreachable pair (u, v) in G, it will remain un-

reachable using G∗.

This is because no additional reachability information is added in
E∗ besides those in the original graph G, i.e., E∗ ⊆ TC(V ∗).
Thus, we only need to focus on recovering the reachability for the
non-local pairs in the original graph using the reachability back-
bone and do not have to deal with the non-reachable pairs. To
facilitate our discussion, in the reminder of the paper, any valid

backbone edge set E∗ satisfies TC∗(V ∗) ⊆ E∗ ⊆ TC(V ∗).

EXAMPLE 2.2. In Figure 1(b), the edge set of the reachability

backbone is a valid backbone edge set for the backbone vertex set

{3, 8, 10, 12, 16}. However, it is not a canonical backbone edge

set. If we remove the redundant edges ((8, 10) and (8, 12)), then

the resulting edge set is a canonical one as any further edge re-

moval will disconnect some reachability pair in the original graph.

Minimal Reachability Backbone (MBR): Since the reachability
backbone G∗ aims to scale-down the original graph G, its size
should be as small as possible while still maintaining its prop-
erty for reachability computation. Given this, we introduce the
minimal reachability backbone discovery problem: given a DAG

G = (V, E) and the locality threshold ǫ, a minimal reachability

backbone is the one with the smallest number of backbone vertices,

i.e., arg min|V ∗| G
∗. Since any reachability backbone edge set

E∗ satisfies E∗ ⊆ TC(V ∗), then, we can first discover the back-
bone vertex set V ∗ on the graph G without defining its edge set
E∗. Once the backbone vertex set is discovered, we can always
choose E∗ = TC∗(V ∗) as the default edge set, which can be im-
mediately computed. Thus, the MRB problem can be reformulated
as follows:

DEFINITION 2. (Minimal Reachability Backbone Vertex Set

(MRBVS) Discovery) Given a DAG G = (V, E) and the locality

threshold ǫ, we would like to find a minimal backbone vertex set

V ∗ ⊆ V such that for any non-local pair (u, v) in graph G, there

must exist two vertices u∗ and v∗ in V ∗, such that (u, u∗) and

(v∗, v) are both local pairs in G and u∗ can reach v∗ in G.

However, computing MRBVS is an NP-hard optimization prob-
lem because its corresponding decision problem is NP-hard.

THEOREM 1. (NP-hardness of MRBVS discovery problem)

Given a DAG G = (V, E) and the locality threshold ǫ, computing

its minimal backbone vertex set is NP-hard.

The proof can be found in Appendix.

3. BACKBONE DISCOVERY
Since discovering the minimal backbone vertex set (MRBVS) is

NP-hard, we cannot expect to find a exact solution in polynomial
time. Furthermore, based on Definition 1, even the direct verifica-
tion of whether a vertex subset in V meets the backbone criterion is
computationally expensive: the reachability for any non-local pair
and any unreachable pair has to be explicitly verified. In this sec-
tion, we propose two backbone discovery algorithms to deal with
the problem.

3.1 Backbone with Local Meeting Criterion
The first approach utilizes the local meeting criterion to find

reachability backbone vertex set and then to discover MRBVS.
Specifically, it is based on the following key observation:

LEMMA 2. (Local Meeting Criterion) Given DAG G = (V, E)
and a subset of vertices V ∗, if for any non-local vertex pair (u, v)
with d(u, v) = ǫ + 1, there exists a vertex x ∈ V ∗, such that

u → x, x → v with d(u, x) ≤ ǫ and d(x, v) ≤ ǫ, then V ∗ is a

reachability backbone vertex set.

Proof Sketch: Clearly, when d(u, v) = ǫ + 1, the case is trivial
and u∗=v∗=x. Now, let d(u, v) > ǫ + 1. In that case, there is a
vertex w such that d(u, w) = ǫ + 1 and w → v. Based on the
postulate, we can find a vertex x ∈ V ∗ such that d(u, x) ≤ ǫ and
d(x, w) ≤ ǫ. Let u∗ = x. If d(x, v) ≤ ǫ, then v∗ = x. Otherwise,
we can find w′, such that d(w′, v) = ǫ + 1 and x→ w′. Based on
the postulate, we can find a vertex y ∈ V ∗ such that d(w′, y) ≤ ǫ
and d(y, v) ≤ ǫ. Then we have v∗ = y. To sum, for any non-local
pair (u, v), we can find u∗ and v∗ in V ∗, such that d(u, u∗) ≤ ǫ,
d(v∗, v) ≤ ǫ, and u∗ → v∗. 2

Once a set of reachability backbone vertices V ∗, which satisfy
the local meeting criterion is discovered, generating its backbone
edge set E∗ is very easy: for each vertex u ∈ V ∗, add only edges

in E∗ linking u to only vertices in its ǫ-neighborhood. The follow-
ing lemma guarantees that the produced graph (V ∗, E∗) maintains
the reachability information in V ∗, and can be used for recovering
reachability between any non-local pair in the original graph.

LEMMA 3. (Reachability Backbone Edge Set with Local Meet-

ing Criterion) Let V ∗ be the reachability backbone vertex set which

satisfies the local meeting criterion in G and E∗ contains the edges

which directly link any local-pair in V ∗, i.e., for any (u, v) ∈ E∗,

d(u, v) ≤ ǫ in G. Then if u→ v in G (u, v ∈ V ∗), then u→ v in

G∗=(V ∗,E∗). In other words, TC∗(V ∗) ⊆ E∗ ⊆ TC(V ∗).

EXAMPLE 3.1. In Figure 1(a), the vertex set {3, 8, 10, 12, 16}
satisfies the local meeting criterion. Its corresponding edge set in

Figure 1(b) is generated based on the above method.

The proof of Lemma 3 is in the Appendix. Note that even though
the local meeting criterion is very helpful in constructing a reach-
ability backbone, not every reachability backbone vertex set has to
satisfy the local meeting criterion.

EXAMPLE 3.2. Consider graph G contains two sets of vertices

A and B, and any vertex pair (a, b) (a ∈ A and b ∈ B, and

d(a, b) = ǫ+1), and these pairs are linked by vertex-disjoint paths

(with length ǫ + 1) and any two paths can only meet at the ends.

Clearly, vertex set A∪B can be a reachability backbone vertex set

(assuming there is no other vertices besides A, B and intermediate

vertices in the paths linking these two sets).

However, the local meeting criterion is much easier to manage
and it also provides a good collection of possible backbone vertex
sets. Especially, we observe the simple bound:

172

(a) C6 (b) C10 (c) Nǫ(6) and N ′
ǫ(6).

Figure 2: Bipartite Graph Representation for Candidate Sets

(ǫ = 2) and its Generation

LEMMA 4. Let V ∗
ǫ be the minimal reachability backbone ver-

tex set which satisfies the local meeting criterion with respect to

the locality threshold ǫ and V ∗ be the overall minimal reachabil-

ity backbone vertex set (not necessarily satisfying the local meeting

criterion) with respect to the locality threshold ǫ, then, |V ∗
ǫ | ≥

|V ∗| ≥ |V ∗
ǫ+1|.

Proof Sketch: It is easy to verify that any reachability backbone
vertex set (not necessarily satisfying the local meeting criterion)
with locality threshold ǫ is always a reachability backbone vertex
set which satisfies the local meeting criterion with respect to the
locality threshold ǫ + 1. Together with Lemma 2, the bound holds.
2

Thus, V ∗
ǫ provides an upper-bound of V ∗. Formally, the problem

of discovering the minimal reachability backbone vertex set with
the local meeting criterion is referred to as the LMRBVS discovery

problem and we will focus on this problem for minimal reachability
backbone vertex discovery.

THEOREM 2. (NP-hardness of LMRBVS discovery problem)

Given a DAG G = (V, E) and the locality threshold ǫ, computing

its minimal backbone vertex set which satisfies the local meeting

criterion is NP-hard.

Theorem 2 can be proved similarly as the proof of Theorem 1
and is thus omitted for simplicity. Though the LMRBVS discovery
problem is still NP-hard, it does admit an approximation algorithm
based on the set-cover framework with guaranteed bound.

3.1.1 A Set-Cover Based Approach

Given this, we observe the LMRBVS discovery problem can
be directly coded as an instance of the set cover problem [12]:
Given DAG G = (V, E) and the locality parameter ǫ, let U =
{(u, v)|d(u, v) = ǫ + 1} be the ground set, which includes all the
non-local pairs with distance equal to ǫ + 1. Each vertex x in the
graph is associated with a set of vertex pairs Cx = {(u, v)|d(u, x) ≤
ǫ, d(x, v) ≤ ǫ, d(u, v) = ǫ+1}, where Cx includes all of the non-
local pairs with distance equal to ǫ + 1, such that u can reach x
and x can reach v, each within ǫ hops. Thus, we have a total of |V |
candidate sets C = {Cx|x ∈ V }. Now, in order to discover the
LMRBVS, we seek the a subset of vertices V ∗ ⊆ V , which has the

minimal cardinality, to cover the ground set, i.e., U =
S

v∈V ∗ Cv .

Basically, V ∗ serves as the index for the selected candidate sets to
cover the ground set.

EXAMPLE 3.3. Figure 2 shows the candidate sets of vertex 6
and 10 for the graph in Figure 1(a). Here, each directed edge in

the bipartite graph corresponds to a non-local pair with distance 3
for locality parameter ǫ = 2.

For this set cover instance, we may apply the classical greedy
algorithm to find the minimal set cover, which essentially corre-
spond to the LMRBVS: Let R be the covered non-local pairs with

distance ǫ + 1 (initially, R = ∅). For each candidate set Cx in C
(corresponding vertex x in V), we define the price of H as:

γ(Cx) =
1

|Cx\R|
.

At each iteration, the greedy algorithm picks up the candidate set

Cx (vertex x)with the minimum γ(H) (the cheapest price) and puts

it into V ∗. Then, the algorithm will update R accordingly, R =
R ∪ Cx. The process continues until no element in the ground set

is uncovered: R = U . It has been proven that the approximation

ratio of this algorithm is ln(|U|) + 1 [12].

Putting these together, we claim the following optimality result
for discovering LMRBVS. Its proof is omitted for simplicity.

THEOREM 3. The set-cover approach finds a reachability back-

bone vertex set with the local meeting criterion whose size is larger

than the smallest cardinality of such a vertex set by at most O(ln(|U|) =
O(ln n) factor where n is the number of vertices in the original

graph G.

Computational Complexity: The overall computational complex-
ity of the set-cover approach is as follows. Let Nǫ(v) and Eǫ(v)
denote the vertices and the edges, respectively, in v’s forward ǫ-
neighborhood. If directed edges are traversed in reserve, N ′

ǫ(v)
and E′

ǫ(v) are the vertices and edges of the reverse neighborhoods.
First, we generate the ground set by performing a local BFS on
each vertex u to discover all vertices which u can reach with ǫ + 1
hops. This takes O(

P

v∈V (|Nǫ+1(v)| + |Eǫ+1(v))|). Second, to
generate all candidate sets, for each vertex u, we perform two lo-
cal BFS traversals, one forward and one backward on edges (with
both stopping at depth ǫ). Figure 2 (c) shows the forward and
reverse (ǫ = 2)-neighborhood for vertex 6 in the running exam-
ple graph (Figure 1(a)) and Figure 2 (a) is the resulting candidate
set C6. Then, any vertex pair (x, y) ∈ N ′

ǫ(u) × Nǫ(u), which
belongs to ground set, i.e., their distance is ǫ + 1, needs to be
added to the candidate set Cu. This step takes O(

P

v∈V (|Nǫ(v)|+
|Eǫ(v)|+ |N ′

ǫ(v)|+ |E′
ǫ(v)|+ |Nǫ(v)| × |N ′

ǫ(v)|) time. Finally,
the fastest set cover algorithm [11] can perform in linear time with
respect to the size of candidate sets, i.e., O(

P

v∈V |Cv|), where
|Cv| ≤ |Nǫ(v)| × |N ′

ǫ(v)|.
However, large scale-free graphs may contain some vertices with

high out-degree and/or in-degree, which may produce very large
ground set and candidate sets and make their materialization very
costly. This can become the scaling bottleneck of this approach.

3.2 Fast and Scalable Backbone Discovery
Though the set cover approach can provide good approximation

of MRBVS, it can be expensive for large graphs. Here, we describe
a fast algorithm which need not materialize the ground set (and
candidate sets) and which is very scalable, as each vertex needs to
perform only a simple local BFS traversal (within ǫ hops). Instead
of relying on the local meeting criterion which has the need for
two BFS traversals (forward and reverse) and a Cartesian product
between two sets, this approach utilizes a slightly different one-side

condition. In particular, there is only one difference between the
local meeting criterion and the one-side condition: the latter targets
the local vertex pair with distance ǫ whereas the former targets the
non-local vertex pair with distance ǫ + 1.

Formally, given DAG G = (V, E) and a subset of vertices V ∗,for

a vertex pair (u, v) in G with d(u, v) = ǫ, if there is a vertex

x ∈ V ∗ , such that u → x and x → v, with d(u, x) ≤ ǫ and

d(x, v) ≤ ǫ, then we say (u, v) is covered by V ∗. Otherwise,
(u, v) is not covered by V ∗.

173

LEMMA 5. (One-side Condition) If V ∗ can cover every ver-

tex pair (u, v) with d(u, v) = ǫ in G, then V ∗ is a reachability

backbone vertex set.

Proof Sketch: Based on the proof of Lemma 2, we just need
to prove u can reach v using the backbone when d(u, v) = ǫ +
1. Clearly, there exists a path with length ǫ + 1, such as x0 =
u, x1, · · ·xǫ, xǫ+1 = v. We consider the following cases:
1) u ∈ V ∗ and v ∈ V ∗: Since both V ∗ (u → v) and we can
always utilize the default edge E∗ = TC∗(V ∗) in the reachability
backbone, thus, V ∗ meets the criterion of reachability backbone;
2) u ∈ V ∗ and v /∈ V ∗: For vertex pair (u, xǫ), there is x ∈ V ∗

such that d(u, x) ≤ ǫ and d(x, xǫ) ≤ ǫ. Now, if d(x, xǫ) < ǫ, then,
d(x, v) ≤ d(x, xǫ) + d(xǫ, v) ≤ ǫ. If d(x, xǫ) = ǫ, then there is a
direct neighbor of x, such that d(x, y) = 1 and d(y, xǫ) = ǫ − 1.
Now, for vertex pair (y, v), we have d(y, v) = ǫ. Thus, we must
have z ∈ V ∗, such that d(y, z) ≤ ǫ and d(z, v) ≤ ǫ. Thus, we
can find x and z in V ∗, such that x → z and d(u, x) ≤ ǫ and
d(z, v) ≤ ǫ;
3) u /∈ V ∗ and v ∈ V ∗ and 4) u /∈ V ∗ and v /∈ V ∗ can be proved
similarly. Put together, we prove the lemma. 2

Note that we also refer to the test condition for the reachability
backbone in Lemma 5 as one-side condition based on the following
property. For any vertex u, let Sǫ(u) contain all the vertices which
u reaches using exactly ǫ hops, i.e., Sǫ(u) = {v|d(u, v) = ǫ}. If

u ∈ V ∗, then any (u, v) ∈ {u} × Sǫ(u) is covered. To facilitate
our discussion, if any (u, v) ∈ {u} × Sǫ(u) satisfies the one-side
condition, we say vertex u is covered, otherwise, it is not covered.
Utilizing this property, we can utilize a fast heuristic approach to
generate V ∗.

Algorithm 1 FastCover(G)

1: sort vertices in V based on certain order
2: V ∗ ← ∅
3: for each u ∈ V do

4: if NOT covered(u, V ∗) {{u} × Sǫ(u) is uncovered} then

5: add u to V ∗

6: end if

7: end for

8: return V ∗;
Procedure covered(u, V ∗)
9: depth(u)← 0; distance(v)← ǫ + 1;

10: add u to Q {priority queue Q ordered by topological order}
11: while Q 6= ∅ do

12: v ← Q.pop() {the one with least topological order};
13: v.visited← TRUE;
14: N(v)← {w : (w, v) ∈ E and w.visited = TRUE}; {all

end vertices of incoming edges of v}
15: depth(v)← minw∈N(v) depth(v) + 1;
16: if v ∈ V ∗ then

17: distance(v)← 0
18: else

19: distance(v)← minw∈N(v) distance(v) + 1;
20: end if

21: if depth(v) = ǫ and distance(v) ≤ ǫ then

22: return FALSE; {(u, v) is uncovered}
23: end if

24: add all v’s neighbors to Q;(if they are not in Q)
25: end while

26: return TRUE; {every vertex pair in {u} × Sǫ(u) is covered}

Algorithm 1 sketches the fast heuristic approach. We first or-
der the vertices in certain way (determining the backbone vertex

selection order). The most basic approach is to randomly order
them (corresponding to an adaptive sampling procedure). Initially
the reachability backbone vertex V ∗ is an empty set (V ∗ = ∅).
Then, for each vertex u based on the order, we check whether it
is covered by the current reachability backbone vertex set V ∗, i.e.,
every vertex pair (u, v) where v ∈ Sǫ(u) is covered. If it is not
completely covered (covered(u)=FALSE), then, we simply add the
vertex u into V ∗. Based on the property of one-side condition, then
we immediately cover u.

Given this, the major issue is that we need to quickly deter-
mine whether a vertex u is covered. The straightforward method
needs to determine that every (u, v) ∈ {u} × Sǫ(u) is covered.
This is clearly very expensive. Here, we describe a fast procedure
which simply performs a single BFS of the neighborhood of u, i.e.,
G[Nǫ(u)] which is the induced subgraph of all the vertices within ǫ
hops of u including itself. Recall our goal is to check that for each
vertex pair (u, v) with d(u, v) = ǫ to be covered in V ∗, there exists
a vertex x ∈ V ∗, such that u → x and x → v with d(u, x) ≤ ǫ
and d(x, v) ≤ ǫ. We first make sure we will not visit any ver-
tices which are more than ǫ hops away from u. This is easily done
by recording the depth of each visited vertex. Furthermore, each
vertex will record a variable distance, which records the smallest
distance from an already visited backbone vertex x to it. The dis-
tance of each vertex is initialized to be ǫ + 1, which suggests no
backbone vertex reaches it in ǫ steps. For any visited vertex v in
V ∗, we assign distance(v) = 0. In particular, we visit the ver-
tices based on their topological order, which has the property that
for any visited vertex, all its predecessors must have been visited
before. Given this, for any visited vertex v not in V ∗, we sim-
ply choose the minimal distance of all its direct predecessors (the
ends of incoming edges) and increase it by one. In this way, we
can easily maintain the correct distance value for each vertex. This
covered procedure is sketched in Algorithm 1.

The overall computational complexity of the FastCover proce-
dure (assuming using random order) is O(

P

u∈V |Nǫ(u)| log |Nǫ(u)|+
|Eǫ(u)|). For random graphs with average vertex degree d, the time
complexity can be written as O(nǫ log ddǫ). Since this algorithm
does not need to materialize the ground set and candidate sets, there
is no scalability bottleneck and the algorithm scales linearly with
respect to the graph size.

In addition, we note that there are many ordering strategies for
determining the selection order of backbone vertices (besides the
random ordering). Especially, we found the vertex order based on
the product of vertex in-degree and out-degree is particularly effec-
tive for producing the reachability backbone on very large graphs.
Though the FastCover does not provide any approximation bound,
using this order strategy, this approach in most of the cases (in the
empirical study) can discover the backbone vertex set with size be-
ing quite comparable to the set-cover approach (Section 5). Thus,
we adopt this ordering strategy for FastCover. We note that such
ordering will introduce an additional O(|V | log |V |) sorting time
complexity. However, for real world large graphs, most of the prod-
ucts of vertex in-degree and out-degree are expected to be less than
O(|V |) due to the scale-free property. Given this, we may utilize
the counting sort for the majority of vertices and thus empirically
reduces the ordering cost to approximately O(|V |).

Finally, it is also rather easy to construct the edge set for the
reachability backbone vertex set with the one-side condition:

LEMMA 6. Let V ∗ be the reachability backbone vertex set which

satisfy the one-side meeting criterion in G and E∗ contain the

edges which directly link any local-pair in V ∗ and all the non-local

pairs with distance ǫ + 1 in V ∗. Then if u → v in G (u, v ∈ V ∗),

the u→ v in G∗=(V ∗,E∗).

174

Note that the only difference between this lemma and Lemma 3
is that this one has to directly link non-local pairs with distance ǫ+
1, whereas Lemma 3 does not need. The reason can be observed in
the first case in the proof of Lemma 5. Basically, there is possibility
that two backbone vertices can be ǫ + 1 hops away and there is no
other backbone vertices between them. The proof of Lemma 6 is
similar to Lemma 3 and is omitted for simplicity.

4. REACHABILITY COMPUTATION VIA

REACHABILITY BACKBONE
Using the reachability backbone G∗ to compute a reachability

query consists of two basic steps:
1. Local Search for Accessing Backbone: First, we perform two
local BFS (within ǫ depth from the starting vertex) in the original
DAG G: the forward BFS from u to collect Bǫ

out(u), the set of all
backbone vertices which u can reach within ǫ hops, i.e. Bǫ

out(u) =
{x ∈ V ∗|d(u, x) ≤ ǫ} = V ∗ ∩ Nǫ(u); and the reversed BFS
from v to collect Bǫ

in(v), the set of all backbone vertices which
can reach v within ǫ hops, i.e., Bǫ

out(v) = {y ∈ V ∗|d(y, v) ≤
ǫ} = V ∗ ∩N ′

ǫ(v). Note that during the forward BFS (or reversed
BFS), we can also check whether u reaches v locally (d(u, v) ≤ ǫ),
and if it is, we directly confirm the reachability.
2. Reachability Join Test (Bǫ

out(u) → Bǫ
in(v)): The reachabil-

ity join test Bǫ
out(u) → Bǫ

in(v) in the reachability backbone G∗

determines whether there exists x ∈ Bǫ
out(u) and y ∈ Bǫ

in(v),
such that x → y in G∗. If it is then u → v in G and not oth-
erwise. Given this, we basically need to compute the reachability
between any (x, y) ∈ Bǫ

out(u) × Bǫ
in(v). Due to the modest size

of the reachability backbone, we can effectively utilize any of the
existing reachability indices and computational methods.

Algorithm 2 BasicReach(u,v)

Parameter: G∗ is the reachability backbone
1: perform two BFS to compute Bǫ

out(u) and Bǫ
in(v);

2: for each x ∈ Bǫ
out(u) do

3: for each y ∈ Bǫ
in(t) do

4: if Reach(x,y|G∗) then

5: return TRUE;
6: end if

7: end for

8: end for

9: return FALSE;

The basic reachability computation scheme is sketched in Al-
gorithm 2. Note that Reach(x, y|G∗) is the generic reachability
computation method (such as those describe in Section 1) in the
reachability backbone G∗. In the following, we will discuss strate-
gies and refinement to speed up the basic computation scheme.
Specifically, in Subsection 4.1, we discuss optimization strategies
to utilizing the transitive closure compression and hop-labeling ap-
proach. Then in Subsection 4.2, we describe how online search and
GRAIL can be better adopted in this query scheme.

4.1 Speed Up Query Processing
In this subsection, we focus on optimization strategies for the

reachability indexing approaches: the transitive closure compres-
sion (category I) and hop-labeling approach (category II) which
are applied to the reachability backbone G∗. Specifically, for any
method in the first category, each vertex x in the reachability back-
bone G∗ is assigned a compressed transitive closure TC(x) (dif-
ferent methods utilize different compression strategies) and to com-
pute Reach(x, y|G∗), a search procedure quickly determines whether
y ∈ TC(x); for any method in the second category, each vertex x

is assigned two labeling sets Lout(x) ⊆ V ∗ (some vertices which
x can reach) and Lin(x) ⊆ V ∗ (some vertices which reach x). To
compute Reach(x, y|G∗), Lout(x) is searched against Lin(y) to
see whether there is a common vertex [10] (or there is a common
chain [15, 4]) which can link x to y.

Given this, we can observe the performance of Algorithm 2 is de-
termined by these two steps for any reachability query (?u → v):
1) the two local BFS compute the backbone access vertex sets
Bǫ

out(u) and Bǫ
in(v) and one of them is used to determine whether

the start vertex can reach the end vertex locally. Here, the potential
problem is that BFS may potentially scan a large number of ver-
tices and edges, especially when there are hub vertices (incoming
or outgoing) in the ǫ-neighborhood. 2) the cost of the reachability
join test is determined by the number of reachability pair queries.
In the basic scheme, we need to compute |Bǫ

out(u)| × |Bǫ
in(v)|

pairs, which can be expensive.
Access Vertex Materialization and Reduction: To address these
two problems, our first strategy is to explicitly materialize the back-
bone access vertex sets for each vertex u. This is because the num-
ber of those vertices is generally quite small. Interestingly, the ac-
tual materialized vertex set can be even smaller: given DAG G and
its reachability backbone V ∗, for each vertex u, the following two
backbone access vertex sets need to be materialized:

Bǫ
out(u) = {v ∈ V ∗|d(u, v) ≤ ǫ and there is no other vertex x,

in V ∗ such that d(u, x) ≤ ǫ ∧ d(x, v) ≤ ǫ(u→ x→ v)}

Bǫ
in(u) = {v ∈ V ∗|d(v, u) ≤ ǫ and there is no other vertex y ,

in V ∗ such that d(v, y) ≤ ǫ ∧ d(y, u) ≤ ǫ(v → y → u)}

LEMMA 7. (Access Vertex Reduction) For any reachability

query (?u → v), when (u, v) is a non-local pair, it is sufficient

to perform reachability join test between Bǫ
out(u) and Bǫ

in(v), i.e.,

Bǫ
out(u)→ Bǫ

in(v), to determine whether u can reach v.

Intuitively, Lemma 7 suggests that if a backbone vertex in V ∗ is
accessed, then none of its successors (according to visit order) need
to be consider in the reachability join test. This is because those
pruned vertices are already in the backbone and can be accessed by
those “first-accessed” ones. Therefore there is no need to record or
utilize them in the reachability join test. Due to the space limitation,
we omit the proof of Lemma 7. Since |Bǫ

out(u)| ≤ |Bǫ
out(u)| and

|Bǫ
in(v)| ≤ |Bǫ

in(v)| for any vertex pair, this strategy can reduce
the cost not only of online search but also of reachability join test.
Online Pruning: The second strategy targets directly the reach-
ability join test. If we can quickly reject x → y where x ∈
Bǫ

out(u) and y ∈ Bǫ
in(v), then we do not need to actually per-

form Reach(x, y|G∗), which either involves searching through
the compressed transitive closure of x, TC(x) (in Category I) or
comparing two labeling sets Lout(x) and Lin(y) (in Category II).
Furthermore, if we can quickly reject x → v, then we can even
directly avoid the reachability tests against all vertices in Bǫ

in(v).
To achieve such goal, we utilize the interval labeling method

in GRAIL [24]. Basically, each vertex u in the entire graph G
is assigned multiple interval labels Iu which can help to determine
quickly the non-reachability between two vertices. These labels are
generated by performing a constant number (c) of random depth-
first traversals, i.e., the visiting order of the neighbors of each ver-
tex is randomized in each traversal. Each traversal will produce
one interval for every vertex in the graph. Such interval labeling
has the property that if Iv * Iu, then vertex u cannot reach vertex
v. However, when Iv ⊆ Iu, we cannot determine whether u can
reach v. GRAIL [24] utilizes this labeling in the depth-first search
to prune the search space. Such a labeling can be constructed very

175

fast (O(c(n + m))) and its index size is only O(cn), where c can
be quite small (c = 5 is shown to be sufficient to provide good
pruning) [24].

We use such labeling to help quickly reject any (x, y) pairs in
Bǫ

out(u) × Bǫ
in(v) and any vertex x which cannot lead to u → v.

We explicitly compute each Reach(x, y|G∗) only if we cannot
simply prune such a test using the multi-interval labeling. Note that
for the hop-labeling approach (Category II), an alternative strategy
exists which can directly avoid the explicit the pair-wise reacha-
bility computation. The idea is to first merge all the Lout(x) for
x ∈ Bǫ

out(u) and Lin(y) for all y ∈ Bǫ
in(v), and then perform

a comparison between the two merged lists. However, since the
merge cost is actually quite expensive, we found this method is
actually much slower than explicit pairwise comparison together
with the online pruning method. Explicit pairwise comparison’s
early termination (when the first x → y is confirmed) turns out to
be quite effective. Thus, we do not adopt the merge strategy here.
Bidirectional Local Search: Though there is no need to perform
the online BFS to collect the reachability backbone access ver-
tices, we still need to determine whether u can reach v locally,
i.e., d(u, v) ≤ ǫ. To perform such a local test, we can utilize a
bidirectional BFS to reduce the search space. Specifically, the for-
ward BFS starting at u needs to expand to at most ⌈ǫ/2⌉ depth and
the reversed BFS starting from v needs to expand to ⌊ǫ/2⌋ depth.
Furthermore, in either BFS expansion, if a reachability backbone
vertex (in V ∗) is visited, then we do not have to further expand
its outgoing (or incoming) vertices, a considerable savings for hub
vertices. Hub vertices (a vertex either with high in-degree of out-
degree) tend to be covered in the reachability backbone vertex set.
Indeed, if they are not covered, we can explicitly add them to the
reachability backbone. Since the number of hub vertices tend to
be quite small [17], this strategy can help reduce the cost of local
search while not greatly expanding the backbone size.

Algorithm 3 FastReach(u,v)

Parameter: G∗ is the reachability backbone
1: Bidirectional online BFS search from u and v;
2: if meet then

3: return TRUE
4: end if;
5: for each x ∈ Bǫ

out(u) do

6: if Iv ⊆ Ix then

7: for each y ∈ Bǫ
in(t) do

8: if Iy ⊆ Ix then

9: if Reach(x,y|G∗) then

10: return TRUE;
11: end if

12: end if

13: end for

14: end if

15: end for

16: return FALSE;

The query processing algorithm which incorporates the above
optimization strategies is sketched in Algorithm 3. Clearly, its
worst case computational complexity can be partitioned into two
parts (O(T1 + T2)). T1 comes from the bidirectional local search,
where T1 = maxu∈V (|N⌈ǫ/2⌉(u)|+ |E⌈ǫ/2⌉(u)|)+
maxv∈V (|N ′

⌊ǫ/2⌋(v)| + |E′
⌊ǫ/2⌋|). T2 is the cost of the reach-

ability join test, given by maxu,v∈V |B
ǫ
out(u)| × |Bǫ

in(v)| × T3

≤ maxu,v∈V |Nǫ(u)| × |Nǫ(v)| × T3, where T3 is the worst case
complexity of different reachability computational methods in the
reachability backbone G∗. Recall that |N ′

ǫ(v)| (|E′
ǫ(v)|) is the

number of vertices (edges) in v’s reversed ǫ-neighborhood. For
instance, consider Agrawal et al.’s tree-interval [1] is used to com-
press the transitive closure in the reachability backbone and let
n′ = |V ∗|, and assume the original graph is a random DAG with
average in-degree and out-degree d, then the worst case computa-
tional complexity of FastReach can be simplified to O(d⌈ǫ/2⌉ +

d2ǫ ˙logn′). As we will show in Section 5, the actual number of
Reach invocations is much smaller than d2ǫ and can be treated as
constant (it is also a local measure). Thus, the worst case query
computational complexity can be effectively scaled down and di-
rectly relates to the size of the reachability backbone.

4.2 Speed Up Online Search
The FastReach query processing scheme can be applied to the

(refined) online search methods (Category III) such as GRAIL.
Basically, each invocation of Reach(x, y|G∗) needs to perform
an independent GRAIL search. However, this is clearly very ex-
pensive as each search needs to travel a large search space in G∗

and the search spaces of different invocations can even overlap.
Furthermore, assuming both y1 and y2 are in Bǫ

in(v), and x ∈
Bǫ

out(u), it may happen during Reach(x, y1|G
∗), it may reach

y2 even though x cannot reach y1. Finally, for the online search
method, the cost of local online search (for collecting access ver-
tices in the reachability backbone) compared with the search in the
reachability backbone is quite small. Thus, the need to actually
materialize them is small.

Given this, OnlineSearch is proposed to deal with these issues
and consists the following main steps:
1. Perform a reversed BFS from v and for each visited reachability

backbone vertex y ∈ V ∗, flag it to be “target”. If u is visited, re-

turn TRUE;

2. Perform a forward BFS from u and if any visited vertex x is a

reachability backbone vertex x ∈ V ∗, then perform a online search

(recursive) from u in G∗:

2.1. if the current visited vertex x is already visited before (visit[x] =
TRUE), then return (trace back);

2.2. if the current visited vertex x is a target (target[x] = TRUE),

then return TRUE;

2.3. recursively visited all x’s neighbors.

3. return FALSE;

Basically, all the different searches starting from different back-
bone access vertices (in 2.) can be considered as a single recursive
graph traversal. To answer a reachability query (u, v), any vertex
in G∗ will be visited at most once. This is because we first flag
all the backbone vertices which reach v within ǫ steps. Thus, if a
vertex is already visited in the earlier search, then it basically has
no chance to reach any of the flagged backbone vertices and no
need to revisit them. Also, during the forward and reverse BFS, if a
backbone vertex is visited, then there is no need to further explore
it (similar to Lemma 7). In addition, we note for the refined online
search, such as GRAIL, we can also utilize the interval labeling in
both BFS in the original graph and recursive search in the reacha-
bility backbone search. For instance, in the reversed BFS, we only
need to visit vertex y such that Iy ⊆ Iu, and in both forward BFS
and online recursive search, we only need to visit vertex x such that
Iv ⊆ Ix. Finally, we note that if we focus on the computational
cost of the online recursive search as it is usually the dominant one,
then the worst-case computational complexity of OnlineSearch is
O(n′ + m′), where n′ = |V ∗| and m′ = |E∗| for any refined
online search method [24, 5, 21].

5. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the SCARAB computa-

176

tion framework on both real and synthetic datasets. In particular,
we are interested in following questions:
1. What are the effects of SCARAB on existing reachability in-
dices, in terms of query time, index size, and construction time?
2. How do the state-of-the-art reachability computation methods
scale when boosted by SCARAB? How do they compare with the
state-of-the-art scalable reachability index, GRAIL?
3. How does the locality parameter ǫ affect the SCARAB reacha-
bility computation?

5.1 Experimental Setup
To answer these questions, we study the following state-of-the-

art reachability approaches and their SCARAB counterparts.
1) PathTree [16], an improved version of Agrawal’s tree-interval
method [1];
2) Nuutila’s Interval [18], a transitive closure compression method,
recently demonstrated to be one of the fastest reachability compu-
tation methods [22];
3) 2HOP [10], Cohen et al.’s original 2-hop labeling approach;
4) GRAIL [24], a scalable reachability indexing approach using ran-
dom DFS labeling (the number of intervals is set at 5, as suggested
by authors).

Here, Methods 1 & 2 are state-of-the-art transitive closure com-
pression (Category I) methods, Method 3 is the optimal hop la-
beling approach (Category II), and Method 4 is the state-of-the-art
online traversal method (Category III) and the best available scala-
bility index. For each of these, we have developed their SCARAB
methods, referred to as PT-G∗, IN-G∗, 2HOP-G∗, and GRAIL-G∗,
where G∗ refers to the reachability backbone. In addition, we also
consider DFS (traditional depth-first search) and PWAH (the lat-
est bit-vector compression method for transitive closure compres-
sion) [22] as benchmarks. For the latter, we use PWAH-8, the best
variant of this approach [22]. All the methods (including source
code) except DFS and 2HOP are either downloaded from authors’
websites or provided by the authors directly. We coded DFS and
2HOP ourselves, with several fast heuristics [20, 15] for 2HOP
to speed up its construction time (though it still cannot directly
run on large graphs). The SCARAB framework utilizes the index
construction and query processing implementation in the original
methods. All algorithms are implemented in C++ based on the
Standard Template Library (STL).

In the experiments, we focus on three important measures: query
time, index size and construction time. For the query time, in
past studies, only completely random queries are used, which have
shown to be heavily skewed towards negative queries (u 9 v)
[24]. In some cases, there are even no any positive query (u→ v).
This is highly unlikely for the real workload as the query pair tends
to have certain connection. To address this issue, we also intro-
duce the equal query load, where about 50% are positive queries
and 50% are negative queries. Positive queries are generated by
sampling the transitive closure. Since the SCARAB computation
framework incorporates different indexing methods, our construc-
tion time consist of two parts: reachability backbone discovery time
and indexing time. Correspondingly, the index size of a SCARAB

method consists of three parts: the index size of the reachability
backbone, the label size of GRAIL on the backbone, and the origi-
nal graph size.

All experiments are performed on a Linux 2.6.18 machine with
Intel Xeon 2.8GHz CPU and 12GB RAM.

5.2 Experimental Results
Here, we report on three groups of experiments to address the

major questions on the SCARAB computation framework.

Dataset |V | |E| |V ∗

S
| |E∗

S
| |V ∗

F
| |E∗

F
|

agrocyc 12684 13408 185 307 410 587

anthra 12499 13104 182 292 410 549

arXiv 6000 66707 1620 42789 3191 7684

citeseer 10720 44258 1300 4786 3951 8808

ecoo 12620 13350 190 317 409 589

go 6793 13361 1165 2499 1761 3182

kegg 3617 3908 185 187 487 495

mtbrv 9602 10245 175 306 407 557

nasa 5605 7735 938 1178 1010 1467

pubmed 9000 40028 642 3111 1899 8574

vchocyc 9491 10143 162 268 408 560

xmark 6080 7028 780 1308 744 1299

yago 6642 42392 190 697 1002 4057

Table 1: Small Real datasets

Dataset |V | |E| |V ∗

F
| |E∗

F
|

citeseer 693,947 312,282 45,920 25,442

go_uniprot 6,967,956 34,770,235 137,055 1,436,198

mapped_100K 2,658,702 2,660,628 52,719 219,964

mapped_1M 9,387,448 9,440,404 184,856 825,950

uniprotenc_22m 1,595,444 1,595,442 31,909 31,908

uniprotenc_100m 16,087,295 16,087,293 467,047 467,046

uniprotenc_150m 25,037,600 25,037,598 1,046,951 1,046,950

citeseerx 6,540,399 15,011,259 336,670 1,531,727

cit-Patents 3,774,768 16,518,947 1,316,773 5,879,535

Table 2: Large Real datasets

Small Real Graphs (Studying SCARAB Effect): In the first group
of experiments, we use a group of 13 small real graphs which
have been used as the standard benchmarks in the recent studies on
reachability index [23, 8, 16, 15, 25, 24, 4, 22, 14]. The first three
columns in Table 1 show the dataset names along with the num-
ber of vertices and edges of their corresponding coalesced DAG.
Table 3 reports the query times of DFS, GRAIL, 2HOP, PWAH-8,
INTERVAL (IN), PATH-TREE (PT), and some of their SCARAB

counterparts , including GRAIL-G∗, 2HOP-G∗, IN-G∗ and PT-G∗

using the equal query load. Table 4 reports the query time using the
random query load. Specifically, we consider two types of reach-
ability backbones: G∗

S , which is constructed by the set-cover ap-
proach (in Subsection 3.1) and the G∗

F , which is constructed by the
FastCover approach (in Subsection 3.2). The locality parameter ǫ
is set at 2. In Table 1, columns |V ∗

S | and |E∗
E | record the number

of vertices and edges of the reachability backbone G∗
S and columns

|V ∗
F | and |E∗

F | record the number of vertices and edges of G∗
F .

We make the following important observations on the query time:
1) For the original methods (no SCARAB), the methods of cat-
egory I are clearly faster than the hop labeling approach (cate-
gory II), which is faster than the online search methods (category
III). PATH-TREE method consistently is the fastest at handling
the equal query load; Nuutila’s INTERVAL in some datasets is
slightly faster than the PATH-TREE at handling the random query
load. Overall, PATH-TREE is the clear winner. The latest bit-
compression method (PAWH) can be one order of magnitude slower
than both PATH-TREE and INTERVAL. In general, the reachabil-
ity answering method slows down on the equal query load, though
the effects on PATH-TREE and INTERVAL are quite minimal.
2) When the SCARAB framework is applied, GRAIL and 2HOP
run 11 and 12 times faster, respectively. The reachability backbone
discovered by the set-cover method (G∗

S) tends to provide better
speedup than the ones discovered by the FastCover (G∗

F). This is
consistent with the observation that the size of G∗

S is smaller than
G∗

F (Table 1).
3) When applying the SCARAB framework to INTERVAL and
PATH-TREE, there are moderate performance drop compared with
the original ones though they are still consistently faster than the
latest PAWH-8 method. Also, both backbones (G∗

S) and G∗
F have

similar query performances. We note that the performance drop of

177

Dataset
Using Reachability Backbone Original (Without Reachability Backbone)

GRAIL-G∗
S GRAIL-G∗

F 2HOP-G∗
S 2HOP-G∗

F IN-G∗
S IN-G∗

F PT-G∗
S PT-G∗

F DFS GRAIL 2HOP PWAH-8 INTERVAL PATH-TREE

agrocyc 5.56 20.64 4.66 4.48 4.5 4.24 4.5 4.11 123.39 137.59 36.55 4.6 1.5 1.19

anthra 5.88 23.27 4.85 4.45 4.63 4.19 4.52 3.96 115.69 124.28 36.4 4.53 1.49 1.32

arXiv 89.02 153.28 32.64 24.29 19.31 13.51 20.87 14.97 4964.03 164.43 285.59 21.38 3.8 3.29

citeseer 44.62 48.59 21.73 17.04 17.42 14.2 16.62 14.55 414.41 101.65 273.22 55.84 5.32 3.61

ecoo 6.32 21.56 4.7 4.58 4.56 4.28 4.44 4.17 137.22 134.83 47.52 4.47 1.49 1.21

go 23.07 25.65 10.83 9.3 9.91 8.5 9.67 8.4 233.42 70.89 120.77 32.09 3.81 3.2

kegg 9.84 15.84 6.04 5.94 5.74 5.65 5.65 5.52 827.49 263.94 26.08 5.14 1.85 1.31

mtbrv 6.65 25.71 4.81 4.58 4.63 4.23 4.49 4.08 151.37 122.78 42.28 4.27 1.49 1.13

nasa 25.9 33.78 7.91 8.24 7.33 7.52 6.99 7.21 243.1 87.88 70 11.15 2.58 1.45

pubmed 45.04 51.28 24.66 15.2 16.17 12.23 17.02 13.7 382.55 136.24 513.49 73.64 5 4.13

vchocyc 6.2 24.95 4.58 4.39 4.47 4.11 4.35 4.06 139.23 120.38 44.53 4.53 1.48 1.09

xmark 148.41 162.54 10.01 10.31 9.33 9.58 8.4 8.69 351.99 118.14 83.97 40.06 2.78 1.52

yago 6.41 7.74 5.05 4.91 4.75 4.79 4.74 4.74 73.37 51.31 194.77 15.86 4.11 3.01

Table 3: Query Time (ms) Based on Equal Query of Real Datasets

Dataset
Using Reachability Backbone Original (Without Reachability Backbone)

GRAIL-G∗
S GRAIL-G∗

F 2HOP-G∗
S 2HOP-G∗

F IN-G∗
S IN-G∗

F PT-G∗
S PT-G∗

F DFS GRAIL 2HOP PWAH-8 INTERVAL PATH-TREE

agrocyc 2.64 2.66 2.6 2.63 2.67 2.67 2.63 2.6 23.69 138.38 25.29 1.57 1.25 1.35

anthra 2.57 2.6 2.53 2.55 2.61 2.59 2.59 2.55 21.4 124.16 25.17 1.39 1.23 1.36

arXiv 136.61 93.55 24.51 16.57 17.58 11.8 18.14 12.25 8163.23 165.82 130.5 30.46 5.79 4.36

citeseer 9.45 10.09 6.98 6.5 7.05 6.26 6.79 6.16 271.07 100.98 58.61 32.89 5.22 3.47

ecoo 2.62 2.62 2.58 2.58 2.66 2.63 2.62 2.57 27.75 134.63 25.32 1.46 1.25 1.3

go 3.78 3.94 2.95 2.87 2.97 2.91 2.92 2.84 78 70.4 60.78 5.69 3.29 2.44

kegg 6.99 11.42 5.2 5.17 5.18 5.05 5.07 5.01 1333.52 264.14 26.77 4.97 2.69 1.96

mtbrv 2.51 2.57 2.47 2.47 2.55 2.52 2.5 2.48 30.31 121.94 25.88 1.5 1.27 1.3

nasa 3.22 3.33 2.55 2.58 2.59 2.59 2.54 2.55 83.94 87.94 43.91 4.18 2.63 1.66

pubmed 8.31 9.52 6.5 5.88 6.26 5.59 6.27 5.78 234.15 136.35 63.68 37.11 4.12 3.34

vchocyc 2.49 2.56 2.47 2.45 2.53 2.51 2.5 2.46 30.83 120.67 26.86 1.49 1.26 1.34

xmark 8.85 9.27 3.75 3.8 3.76 3.8 3.72 3.72 246.4 118.68 48.2 6.69 2.61 1.77

yago 4.24 4.72 4.19 4.34 4.2 4.33 4.16 4.26 73.75 51.45 54.96 13.34 3.53 2.88

Table 4: Query Time (ms) Based on Random Query of Real Datasets

using the reachability backbone mainly comes from the fact that
SCARAB has to perform an additional local search. 4) In the ran-
dom query load, we note that most SCARAB approaches have sim-
ilar performance. This is because the online pruning method (Sub-
section 4.1 and 4.2) based on the GRAIL labeling is in general
quite effective in rejecting negative queries. To sum, the SCARAB

approach only moderately increases the query time of INTERVAL
and PATH-TREE, but significantly speeds up GRAIL and 2HOP
on these real datasets. Also, the query performance based on the
FastCover is generally slower but still comparable to the one based
on the SetCover approach. However, the former is much easier to
construct. Due to space limitation, we will focus on studying the
reachability backbone based on FastCover in the rest of the exper-
imental evaluation.

Figure 3 shows the index size of different reachability index
methods along with their SCARAB counterparts. Interestingly, the
index size of the SCARAB variants is actually larger than the orig-
inal ones without the reachability backbone. This is because all
of them utilize the GRAIL labeling, which on these small graphs
tends to be larger than other approaches. It is not hard to see in
the SCARAB approaches, the other costs, including the material-
ized backbone access vertices, are quite small. Basically, all of
their sizes are quite close to the index size of GRAIL. Figure 5
shows the construction time of different reachability indices. It is
interesting to observe that the SCARAB approach generally has
smaller construction time compared with their corresponding orig-
inal ones. Basically, the very light preprocessing of FastCover can
scale down the graph significantly. Basically, the very light pre-
processing of FastCover can scale down the graph significantly.
Indeed, in Table 1, even for ǫ = 2, almost all the graphs can be
scaled down by more than an order of magnitude. Thus, the orig-
inal reachability index needs to be performed on a much smaller
graphs (backbones).
Large Real Graphs (Studying SCARAB Scalability):

In this group of experiments, we study the scalability of the
SCARAB framework. We use 9 large real graphs used in the
GRAIL study [24], which Yildirim et al. show they cannot be pro-

Dataset
Using Reachability Backbone Original(WithoutBackbone)

GRAIL-G∗
F IN-G∗

F PT-G∗
F 2HOP-G∗

F DFS GRAIL IN

citeseer 34.98 27.34 26.80 30.35 26.67 74.02 12.87

go_uniprot 68.74 26.30 25.07 27.56 191.90 116.73 26.74

mapped_100K 62.13 17.93 18.34 17.26 154.94 349.51 6.11

mapped_1M 42.86 19.38 23.55 20.07 131.79 405.41 6.47

uniprotenc_22m 16.69 17.08 16.39 16.47 22.73 62.04 16.32

uniprotenc_100m 34.89 30.60 37.51 722.85 34.77 112.54 21.29

uniprotenc_150m 55.40 81.30 — — 40.63 117.05 37.07

citeseerx 1475.00 36.84 — — 38183.80 2148.26 11.33

cit-Patents 528.31 109.58 — — 7449.32 556.58 —

Table 5: Query Time(ms) on Equal Query of Large Real Graphs

Dataset
Using Reachability Backbone Original(WithoutBackbone)

GRAIL-G∗
F IN-G∗

F PT-G∗
F 2HOP-G∗

F DFS GRAIL IN

citeseer 10.17 9.81 9.72 9.67 22.39 74.06 11.38

go_uniprot 18.97 18.13 16.13 17.17 252.83 92.85 20.58

mapped_100K 10.14 9.91 9.42 9.42 11.56 396.57 8.78

mapped_1M 11.89 12.32 12.47 13.20 12.07 406.03 6.93

uniprotenc_22m 15.00 14.47 14.55 13.65 26.24 83.33 16.21

uniprotenc_100m 23.77 22.69 21.26 23.91 39.99 96.43 25.46

uniprotenc_150m 46.40 75.09 — — 43.97 124.80 32.18

citeseerx 114.83 34.16 — — 74121.40 2148.33 16.60

cit-Patents 435.32 78.68 — — 15888.80 691.70 —

Table 6: Query Time(ms) on Random Query of Large Real Graphs

cessed by existing indexing methods, except for DFS and GRAIL.
For the original methods without reachability backbone, we con-
firm such observation except the latest implementation of Nuutila’s
INTERVAL [22], which is published after the GRAIL paper. How-
ever, it also fails on one large dataset. Given this, we are interested
in how SCARAB can scale the existing reachability indices which
cannot process these large graphs. Here, we use ǫ = 2 for generat-
ing backbones. Table 2 shows the size of the original DAG and its
corresponding reachability backbone size. The average reduction
rate is around 25 times.

Tables 5 and 6 report the query time using the equal and random

query load, respectively. We make the following observations:
1) Similar to the results on small graphs, SCARAB provides a nice
speedup over the original GRAIL. In several graphs, the speedup is
more than an order of magnitude.
2) INTERVAL turns out to be quite scalable. But INTERVAL-G∗

is quite comparable and even in some cases, slightly faster. Fur-
thermore, INTERVAL-G∗ handles the cit-patents graph easily with

178

 50000

 100000

 150000

 200000

 250000

 300000

agrocyc

anthra
arXiv

citeseer

ecoo
go kegg

mtbrv
nasa

pubmed

vchocyc

xmark
yago

In
de

x
Si

ze

GRAIL-G
*
F

2HOP-G
*
F

IN-G
*
F

PT-G
*
F

GRAIL
2HOP

PWAH-8
INTERVAL

PATH-TREE

Figure 3: Index Size on Real Small Graphs

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

citeseer

go_uniprot

m
apped_100K

m
apped_1M

uniprotenc_22m

uniprotenc_100m

uniprotenc_150m

citeseerx

cit-Patents

In
d

e
x

S
iz

e
 (

lo
g

)

GRAIL-G
*
F

2HOP-G
*
F

IN-G
*
F

PT-G
*
F

GRAIL
INTERVAL

Figure 4: Index Size on Real Large Graphs

 1

 10

 100

 1000

 10000

 100000

agrocyc

anthra
arXiv

citeseer

ecoo
go kegg

mtbrv
nasa

pubmed

vchocyc

xmark
yago

Co
ns

tru
ct

io
n

Ti
m

e
(lo

g)

GRAIL-G
*
F

2HOP-G
*
F

IN-G
*
F

PT-G
*
F

GRAIL
2HOP

PWAH-8
INTERVAL

PATH-TREE

Figure 5: Construction Time (ms) on Real Small Graphs

 100

 1000

 10000

 100000

 1e+06

citeseer

go_uniprot

m
apped_100K

m
apped_1M

uniprotenc_22m

uniprotenc_100m

uniprotenc_150m

citeseerx

cit-Patents

C
o

n
st

ru
ct

io
n

 T
im

e
 (

lo
g

)

GRAIL-G
*
F

2HOP-G
*
F

IN-G
*
F

PT-G
*
F

GRAIL
INTERVAL

Figure 6: Construction Time (ms) on Real Large Graphs

very good query performance whereas INTERVAL cannot.
3) With the help of SCARAB, 2HOP and PATH-TREE using the
reachability backbone can handle 6 out of 9 large graphs, which
they had difficulty handling before. The largest one contains more
than 16 million vertices.
Figure 4 and Figure 6 show the index size and the construction time
of different reachability indices, respectively. Similar observations
as in first group of experiments can be made. Interestingly, in sev-
eral large datasets, the index size of the SCARAB variants is still
dominated by the GRAIL labeling.
Large Scale-Free Graphs (ǫ effects on G∗): In the last group
of experiment, we study the effect of ǫ on the size of reachability
backbone G∗ produced by the FastCover method. Here, we vary
the ǫ from 2 to 4 on a group of large scale-free directed graphs. The
number of vertices in these graphs range from 1, 000, 000 vertices
to 10, 000, 000 vertices. The edge density of these larges is fixed
to be 2.

Table 7 shows the number of vertices and edges in G∗ with re-
spect to ǫ on these large graphs. Clearly, as ǫ increases, the size
of backbone also reduces. However, the density of the backbone
will also increase accordingly. This is expected as the local search
range for each backbone vertex increases. But we note that the in-
crease rate is rather small. Interestingly, we note that even when
ǫ = 2, the vertex reduction rate is around 4 to 5 times. Also, this
seems to be lower than the real graphs. This suggests that there are
still some important properties of the real world graphs, which are
not well captured by the existing graph model, such as the scale-
free (power-law degree distribution) model. Finally, we note that
the INTERVAL approach can handle the graph up to 3, 000, 000
vertices. Using the SCARAB framework, it can handle all these
graphs, and its query performance can be more than one order of
magnitude faster than GRAIL. Duo to the space limitation, we do

not report the query time, index size, and construction time on these
graphs.

Dataset
ǫ = 2 ǫ = 3 ǫ = 4

|V ∗

F
| |E∗

F
| |V ∗

F
| |E∗

F
| |V ∗

F
| |E∗

F
|

SF _1M 272951 948147 191208 828203 148411 786808

SF _2M 550860 1945895 385357 1698330 298336 1613006

SF _3M 823203 3037757 577754 2641205 448956 2499018

SF _4M 1125023 4020338 785084 3490157 605751 3303259

SF _5M 1335414 4532958 907895 3930738 698639 3768870

SF _6M 1597084 5509326 1077552 4766918 824395 4567924

SF _8M 2130229 7348966 1437845 6413161 1100027 6199982

SF _10M 2663122 9191144 1798266 8025036 1376667 7760405

Table 7: Size of Reachability Backbone on Scale-Free Graphs

6. CONCLUSION
In this paper, we introduce a simple yet effective SCARAB frame-

work to help the existing reachability indices to handle large graphs.
It can also help speed up the online query answering approaches.
Our experimental results demonstrate that SCARAB can perform
on graphs with millions of vertices/edges and is also much faster
then GRAIL, the state-of-the-art scalability index approach. In the
future work, we will investigate to apply SCARAB hierarchically
or recursively. We also plan to study how SCARAB can be applied
to other reachability problems, such as label-constraint reachability
problems. Finally, we plan to study how to incrementally maintain
the reachability backbone for the dynamic graphs.

7. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient mgmt.

transitive relationships in large data and knowledge bases. In
SIGMOD, pages 253–262, 1989.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of
a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

179

[3] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316:566–, April 2007.

[4] J. Cai and C. K. Poon. Path-hop: efficiently indexing large graphs for
reachability queries. In CIKM ’10, 2010.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for
pattern matching on dags. In VLDB ’05, pages 493–504, 2005.

[6] Y. Chen and Y. Chen. An efficient algorithm for answering graph
reachability queries. In ICDE, 2008.

[7] Y. Chen and Y. Chen. Decomposing dags into spanning trees: A new
way to compress transitive closures. In ICDE’11, 2011.

[8] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computation
of reachability labeling for large graphs. In EDBT, 2006.

[9] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing
reachability labelings for large graphs with high compression rate. In
EDBT, 2008.

[10] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[11] G. Cormode, H. Karloff, and A. Wirth. Set cover algorithms for very
large datasets. In CIKM ’10, pages 479–488, 2010.

[12] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[13] H. V. Jagadish. A compression technique to materialize transitive
closure. ACM Trans. Database Syst., 15(4):558–598, 1990.

[14] R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An efficient
reachability indexing scheme for large directed graphs. TODS, 36(1),
2011.

[15] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression
indexing scheme for reachability query. In SIGMOD’09, 2009.

[16] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering
reachability queries on very large directed graphs. In SIGMOD’08,
2008.

[17] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45(2):167–256, 2003.

[18] E. Nuutila. Efficient Transitive Closure Computation in Large

Digraphs. PhD thesis, Finnish Academy of Technology, 1995.

[19] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In 17th Eur. Symp. Algorithms (ESA), 2005.

[20] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient
connection index for complex XML document collections. In EDBT,
2004.

[21] S. Trißl and U. Leser. Fast and practical indexing and querying of
very large graphs. In SIGMOD ’07, 2007.

[22] S. J. van Schaik and O. de Moor. A memory efficient reachability
data structure through bit vector compression. In SIGMOD ’11,
pages 913–924, 2011.

[23] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In ICDE ’06,
page 75, 2006.

[24] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable reachability
index for large graphs. PVLDB, pages 276–284, 2010.

[25] L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng. A uniform
framework for ad-hoc indexes to answer reachability queries on large
graphs. In DASFAA ’09, 2009.

APPENDIX

A. PROOF OF THEOREM 1.
Proof Sketch:We reduce the classical NP-hard problem, set-

cover problem (SCP), to this problem In SCP, let U be the ground
set and C records all the candidate sets, where for any candidate
set C ∈ C and C ⊆ U . The goal is to determine whether there
are K (or less) candidate sets in C such that ∪iCi = U . Now we
transform it to the decision version of MRBVS discovery problem,
i.e., whether there is a backbone vertex set containing K or less
vertices.

We construct the following DAG based on a set cover instance:
let G = (X ∪ Y ∪ Z, EXY ∪ EY Z) be the DAG, where each
vertex in X and Z corresponds to a unique element in the ground

set U , and each element in Y corresponds to a candidate set in C;
the edge set EXY contains all the edges (xu, yC) where xu is the
corresponding vertices of element u ∈ U in the vertex set X , and
yC is the corresponding vertex of candidate set C ∈ C in Y , and
the element u ∈ U belongs to the candidate set C in C; the edge set
EY Z = Y × Z, i.e., it contains the edge set which connects any
pair from a vertex in Y to a vertex in Z.

Given this, we will show that for the locality parameter ǫ = 1,
the minimal reachability backbone vertex set (MRBVS) contains
only vertices in Y and directly corresponds to the minimal set cover
solution. Thus, the set cover problem which asks whether there is
a K or less vertex cover can be directly answered by the solution
on whether there is a K or less backbone vertex set in the above
problem instance.

For the first claim (MRBVS contains only vertices in Y), if it is
not, let the minimal reachability backbone vertex set V ∗ = X ′ ∪
Y ′∪Z′, where X ′,Y ′, and Z′ contains the backbone vertices from
vertex set X , Y , and Z, respectively.
Case 1 (X ′ 6= ∅ and Z

′
= ∅): In this case, we can simply drop

all the vertices in X ′, and V ∗ = Z′ is enough to serve as the
backbone vertices. This is because for any non-local pair (x, z),
there exist x∗ and y∗ where y∗ must be in Y ′, and either (1) x∗ = x
in X ′ or (2) x∗ = y∗ in Y ′. For (1), we must have (x, y∗) ∈
EXY and thus we can always replace x∗ with y∗. Basically, Y ′

would contain enough backbone vertices. A similar proof holds for
X

′
= ∅ and Z

′ 6= ∅.
Case 2 (X ′ 6= ∅ and Z

′ 6= ∅): In this case, we construct Ys as
follows: each vertex x ∈ X ′ randomly chooses an edge (x, y) in
EXY and adds (x, y) into Ys. It is easy to see that |Ys| ≤ |X

′.
We claim the following backbone vertex set Y ′ ∪ Ys is enough to
recover the reachability between any non-local pair in G. This is
because for any non-local pair (x, z), which needs x∗ = x and
z∗ = z in the original backbone vertex set, it now can use y ∈ Ys

((x, y) ∈ EXY) to serve as the backbone vertices: x∗ = y and
z∗ = y. Since |Ys ∪ Y ′| < |X ′ ∪ Y ′ ∪ Z′|, this is clearly im-
possible due to the minimality assumption. To sum, the minimal
reachability backbone vertex set V ∗ should contain only the ver-
tices in Y .

Now, we show that V ∗ directly corresponds to the solution of
the minimal SCP. By way of contradiction, if the corresponding
set of candidates in V ∗ is not the minimal one which can cover
the ground set U , and then we claim V ′ which corresponds to the
minimal set cover is also a backbone vertex set. This is because for
any non-local pair (x, z), there must exist y in V ′ where (x, y) ∈
EXY since x in the ground set is covered by some candidate C
(corresponding to y). Clearly, this contradicts our assumption that
V ∗ is the minimal one. 2

B. PROOF OF LEMMA 3.
Proof Sketch:Since (u, v) ∈ E∗ only if (u, v) is local pair in G

(u → v), therefore, E∗ ⊆ TC(V ∗). Now, we show TC∗(V ∗) ⊆
E∗, i.e., if u→ v in G, the u→ v in G∗=(V ∗,E∗). If d(u, v) ≤ ǫ,
then u→ v in G∗=(V ∗,E∗) by definition. If d(u, v) = ǫ + 1, then
based on Lemma 2, there exists a x ∈ V ∗ such that d(u, x) ≤ ǫ
and d(x, v) ≤ ǫ. So, based on the definition of G∗, u→ v. Now, if
d(u, v) > ǫ+1, then there is a vertex w such that d(u, w) = ǫ+1
and w → v. Based on Lemma 2, we can find a vertex x ∈ V ∗

such that d(u, x) ≤ ǫ and d(x, w) ≤ ǫ. So, the proof is reduced
to d(x, v). We apply the same procedure until we reach a vertex
y ∈ V ∗ with d(y, v) ≤ ǫ. Then, based on the definition of G∗,
u→ v. 2

180

