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Abstract—Server consolidation based on virtualization is a key
ingredient for improving power efficiency and resource utilization
in cloud computing infrastructures. However, to provide satisfac-
tory performance in such scenarios under changing application
workloads, dynamic management of the consolidated resource
pool is critical. Unfortunately, this type of management is also
challenging in cloud platforms because of the inherent tradeoffs
between power and performance, and between the cost of an
adaptation and its benefit. In this paper, we present Mistral, a
holistic controller framework that optimizes power consumption,
performance benefit, and the transient costs incurred by various
adaptations and the controller itself to maximize overall utility.
Mistral can handle multiple distributed applications and large-
scale infrastructures through a multi-level adaptation hierarchy
and scalable optimization algorithm. Through extensive exper-
iments, we show that our approach outstrips other strategies,
each of which represents addressing the tradeoff between only
two objectives among power consumption, performance, and
transient costs.

I. INTRODUCTION

Improved resource utilization by dynamically taking advan-
tage of workload variations is a key differentiator of shared
infrastructure approaches such as cloud computing. Through
actions such as virtual machine (VM) migration and resource
capping, cloud infrastructure providers not only accommodate
demand spikes by temporarily taking resources away from
underutilized applications, but also save energy by shutting
down idle resources. However, consolidation can also have
a detrimental impact on application performance, and thus,
must be used very carefully in a wide array of distributed
online services such as online shopping, communications, and
enterprise applications where savings cannot come at the cost
of a degraded user experience.

In addition to the power-performance tradeoff that is inher-
ent in server consolidation, infrastructure providers must also
consider adaptation benefit and cost tradeoffs since workload
varies dynamically, and runtime consolidation actions such as
migration are not free. While VM technology has made great
strides in reducing the downtime during migration to a few
hundred milliseconds (e.g., [1]), the end-to-end performance
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Fig. 1: Costs of a single VM live-migration

and power consumption impacts can still be significant. For
example, Figure 1 shows the increase in power consumption
and end-to-end response time of a 3-tier Web/Java/MySQL
application as a function of time during the live migration of a
single of its Xen-based VMs (initiated at the 25sec mark). The
measurements, shown for three different workloads of 100,
400, and 800 concurrent user sessions, indicate that the impact
is not only significant, but that it depends on the workload and
is incurred over a substantial period of time.

Coupled with a changing workload, adaptation costs can
lead to complete rethinking of the best strategy for power sav-
ings. For example, when the workload is rapidly changing, it
may be better to suffer a slight performance degradation rather
than trigger an expensive migration whose costs may never
be recouped before another adaptation is needed. Or, a cheap
but modest change such as the redistribution of resources
amongst VMs may be a more effective than powering up a
new host. Finally, the power cost and decision delay incurred
by the system making the adaptation decision must also be
considered. Often it may be better to make a suboptimal
decision quickly rather than invest time and energy searching
for savings that are not enough to recoup the investment.
Although there have been extensive prior studies both on



balancing steady-state performance and on minimizing the cost
of VM migrations (see Section VI), we are not aware of any
work that balances steady state performance and power with
the dynamic adaptation costs under changing workloads.

In this paper, we present Mistral, a holistic optimization
system that balances power consumption, application perfor-
mance, and transient power/performance costs due to adapta-
tion actions and decision making in a single unified frame-
work. By doing so, it can dynamically choose from a variety
of actions with differing effects in a multiple application,
dynamic workload environment. We extend control techniques
developed in our prior work [2] and make new contributions by
incorporating the cost of power in both steady state and during
adaptations, and enable significant power savings by migrating
applications away from idle resources and shutting them down
only when appropriate. Also for the first time, we provide the
controller with an ability to factor its own power consumption
and decision delays into its decision making. Finally, we
construct the controller as a scalable, multi-level hierarchical
system that can deal with a large number of applications and
hosts, and also with adaptation actions at multiple time-scales
ranging from a few milliseconds to tens of minutes. Finally, we
show the benefits of our approach by extensive experimental
comparisons to three alternative strategies, each of which
represents optimizing the tradeoff between any two objectives
among performance, power consumption, and transient costs.

II. OVERVIEW

Mistral controllers optimize over dual objectives of power
and performance, and therefore, the framework uses a utility
based model to compare both on a uniform footing. We begin
by first describing this utility model and subsequently provide
an overview of Mistral’s architecture.

A. Assumptions

We assume a set of distributed applications s ∈ S to be man-
aged, each of which consists of multiple tiers of components
(e.g., web, application, and database servers). Each tier may
consist of several replicas, and these are hosted inside VMs
running on the physical hosts, with one replica per VM for the
sake of convenience. Each application is also associated with
a set of transaction types (e.g., home, login, search, browse)
through which users access its services. Each transaction
type generates a unique call graph through some subset of
application tiers. For example, a browse request invokes a web
server forwarding the request to the application server, which
makes several calls to the database. The workload ws for each
application s is then defined as a vector of the mean request
rate for each transaction type, and overall workload for the
entire system W as the vector of workloads for all hosted
applications.

Mistral controllers are activated from time-to-time to deter-
mine which physical machine each VM should reside on, and

how much CPU it should receive1. A system configuration ci

is represented by the set of VMs in the system, the physical
machine on which they are hosted, and the CPU fraction
allocated to them. CPU allocations are enforced using Xen’s
credit-based scheduler and can be changed, while VMs can be
moved from one machine to another using live migration. As
capacity demands change, component replicas can be added
or removed from each application tier by migrating them from
or to a cold-store repository respectively, while physical hosts
can be turned on or off to save power. These actions form
the set of adaptation actions A. Each action a transforms the
system from one configuration ci to another ci+1.

B. Utility

To decide when and how to adapt at runtime, Mistral esti-
mates the potential future benefit of each adaptation action a as
well as its cost in terms of changes in power and performance
utility values. The cost of each adaptation action a depends
on its duration d(a) and impact on response times and power
consumption. Meanwhile, the benefit of adaptation depends
on how long the system remains in the new configuration,
defined as stability interval CWi. Thus, the overall system
utility U consists of the power utility Upwr of the system
after adaptation, the application utilities Us

RT
based on the

performance of each application after adaptation, and transient
adaptation costs URT (c, a) incurred during adaptation.

To compute application utility, each application has its
own performance objective in the form of a target mean
response time TRT s(ws) computed over an application de-
fined monitoring window M , a reward R(ws) for meeting
the target response time in a single monitoring period, and
a penalty P (ws) for missing it. The response time targets,
rewards, and penalties are allowed to depend on the request
rate, thus allowing arbitrary application utility functions to
be defined. As described in Section V, our experiments use
a function in which the reward increases and the penalty
decreases as the workload increases. Given the measured or
predicted request rate for application s at time-step i as W s

i
,

the system configuration as ci, the measured or predicted mean
response time RT s

i
, the target response time TRT s(W s

i
),

reward Rs(W s

i
), and penalty P s(W s

i
), the application utility

accrual rate is given as:

Us

RTi
(ci) =

�
Rs(W s

i
)/M if RT s

i
≤ TRT s

P s(W s

i
)/M otherwise

(1)

For the (negative) utility accrued due to power consumption,
we focus on power consumed by the physical hosts in this
paper. While power consumed by cooling infrastructure is also
a major concern in typical data centers, we do not consider
it explicitly since cooling overheads can be approximately
modeled as a fixed percentage of the power consumed by the
computing infrastructure [3]. We convert the energy cost per

1We do not currently manage other resource types such as memory,
network, or disk except to ensure that VMs are only hosted on machines
that have sufficient memory to satisfy the VM’s fixed memory requirements.



Watt-hour PCWh to the instantaneous rate at which utility is
accrued using the equation

Us

pwr
(ci) = −pwr(ci) · PCWh (2)

where pwr(ci) is the predicted or measured mean power
consumption (in Watts) of the system in configuration ci over
the monitoring interval M .

To convert adaptation costs to a utility value, Mistral com-
putes the instantaneous rate at which an application accrues
utility during the execution of a series of adaptation actions in
an interval. Let RT s(ci, a) and pwr(ci, a) be the measured
or predicted mean response time of application s and the
power consumption of the system when adaptation action
a is executed in configuration ci. By plugging these values
into Equations 1 and 2, the corresponding utility accrual
rates Us

RTi
(ci, a) and Us

pwr
(ci, a) during execution of action

a starting from a configuration ci can be computed.
Finally, we put together these components to obtain the

overall utility accrued between two invocations of a Mistral
controller. Let the initial configuration be ci, and let CWi−1

be the stability interval as defined earlier. Let W s

i
represent

the fixed workload during the stability interval. The stability
interval ends when the workload deviates from a band of width
Bs, called the workload band, centered around this fixed value
i.e., (W s

i
−Bs/2, W s

i
+ Bs/2). When that happens, the con-

troller is invoked to evaluate the need for adaptation and may
execute a sequence of adaptation actions Ai = a1, a2, . . . an

to transform ci into a new configuration ci+1. We anticipate
that this new configuration is retained until the end of the
new stability interval CWi. Let d(a1), d(a2), . . . , d(an) be
the length of each adaptation action, and let c1, c2, . . . , cn be
intermediate configurations generated by applying the actions
starting from ci. Let c0 be the initial configuration ci and cn be
the final configuration ci+1. Then, the overall utility is given
by

Ui =
�

ak∈Ai

d(ak) ·
�
Us

pwr
(ck−1, ak) +

�

s∈S

Us

RTi
(ck−1, ak)

�

+
�
CWi −

�

ak∈Ai

d(ak)
��

Us

pwr
(ci+1) +

�

s∈S

Us

RTi
(ci+1)

�
(3)

The first term sums the system-wide power utility and ap-
plication specific performance utilities accrued during each
adaptation action execution (i.e., the action costs), while the
second term sums the power and application utilities of the
resulting configuration ci+1 until the end of the stability
interval. By maximizing this utility, Mistral can balance the
cost accrued over the duration of an adaptation with the benefit
accrued between its completion and the next adaptation.

C. Architecture
In a large data center environment, Mistral is deployed in the

form of a multi-level hierarchical control scheme with multiple
instances of Mistral controllers managing different subsets
of hosts and applications and operating at different time-
scales. The lowest level controllers manage a small number of
machines and the applications that are hosted on them (e.g.,
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Fig. 2: Architecture of a Single Mistral Controller

a single rack). At the next higher level, a controller manages
machines owned by multiple lower level controllers.

To understand how the controllers interact, consider that
an adaptation action is only chosen by a controller if it is
anticipated to increase utility over the next CWi time units.
From equation 3, it can be seen that as the stability interval
becomes longer, adaptation is less frequent, but the benefits of
adaptation can accrue for longer periods. Thus, longer stability
intervals make increasingly disruptive actions with potentially
more significant benefits (e.g., VM live migrations, power
cycling) worthwhile, while short stability intervals may rule
out all but the quickest actions (e.g., CPU capacity tuning).
Stability intervals can be made longer by making the workload
bands wider, i.e., allowing a larger change in workload before
adaptation is needed. Therefore, lower level controllers are
configured with very narrow workload bands. They may
be invoked very rapidly, but only produce modest changes,
which coupled with their limited target domain, ensure quick
decision times. Higher level controllers have increasingly
larger workload bands, longer times between invocation (e.g.,
hourly, daily, weekly), larger sets of more potent actions to
choose from, more hosts and applications to consider, and
correspondingly take longer to make their decisions. Our
experimental evaluation uses a two-level hierarchy with the
lower level controller invoked periodically once every unit
interval (i.e., the band is 0), while the high level controller
uses a band of 8 req/sec.

Figure 2 illustrates the architecture of a single controller.
The architecture consists of a set of “predictor modules” and
an “optimizer module”. The predictor modules, which include
the Performance Manager, the Power Consolidation Manager,
the Cost Manager, and the Workload predictor (ARMA fil-
ter), are described in Section III and use analytical models



to predict utility values of new configurations and actions
being considered by the optimizer. Given a configuration c
and workload W , the Performance and Power Consolidation
Managers predict the corresponding application utility and
power utility values. When provided with a list of actions in
addition to c and W , the Cost Manager predicts the action
costs, while the ARMA filter uses previous workload history
to predict the stability intervals. The optimizer module consists
of the Optimal Adaptation Search engine and is responsible
for choosing the optimal set of actions that will maximize
the utility. The search is guided by upper bounds of utility
estimates (denoted by the superscript “*”) which are provided
by the predictor modules. The optimizer is described in
Section IV.

III. MODEL BASED PREDICTION

Next, we describe the queuing models used by the Per-
formance Manager to predict application performance, the
analytical models used by the Power Consolidation Man-
ager to predict the overall system’s power consumption, the
measurement-based techniques used by the Cost Manager to
predict transient adaptation costs, and the predictive filter used
by the Workload predictor to predict how long the system
workload will remain approximately at its current value.

A. Application Modeling
To estimate the benefit of a configuration, we need to

estimate the response time of each application for a given
workload. In this paper, we use layered queuing network
(LQN) models from our prior work on performance optimiza-
tion [4]. The tier servers are modeled as FCFS queues, while
hardware resources (e.g., CPU, disk, and bandwidth) are mod-
eled as processor sharing (PS) queues. Interactions between
tiers triggered by an incoming transaction are modeled as
synchronous calls in the queuing network and our models also
account for the resource sharing overhead imposed by Xen [5].
The models are also used to estimate the CPU utilization of
each tier for a given workload. The parameters for models
(e.g., per-transaction service time at each hardware resource)
are measured in an offline measurement phase. In this phase,
each application is instrumented at each tier using system
call interception. Then, delays between incoming and outgoing
messages are measured per transaction. More details can be
found in [4].

B. Power Consumption Modeling
To estimate power consumption of a configuration and

workload, we employ a utilization-based model used in previ-
ous studies (e.g., [3], [6]). Specifically, for a physical machine,
we use an empirical non-linear model, pwr = pwridle +
(pwrbusy − pwridle) ∗ (2ρ − ρr), where pwridle represents
the power consumption of the machine at standby state and
pwrbusy represents the maximum power consumption of the
machine observed in our scenario, and ρ is the CPU utilization
of the machine estimated by the LQN models at the current
workload. A tuning parameter r is used to minimize the square

error and is obtained at a model calibration phase. We use
offline experiments to calibrate the non-linear model to fit into
actual power consumption observed using a power meter. The
total power usage of the system is simply the sum of physical
machines’ power usages.

C. Transient Adaptation Costs
In this paper, we consider six adaptation actions: in-

crease/decrease a VM’s CPU capacity by a fixed amount,
addition/removal of a VM, live-migration of a VM between
hosts, and shutting down/restarting physical hosts. Addition
of a VM replica is implemented by migrating a dormant VM
from a pool of VMs to the target host and activating it by
allocating CPU capacity. A replica is removed by migrating it
back to the pool.

Costs of these adaptation actions are measured experimen-
tally offline for different workloads and configurations and are
stored in tables used at runtime. Specifically, we measure the
following attributes of each adaptation: (a) adaptation duration,
(b) change in response time for the application being adapted
as well as applications co-located with the application being
adapted, and (c) change in power consumption during the
adaptation.

We use the following process to measure these costs. For
each adaptation action a, we set up a target application s along
with a background application s� such that all replicas from
both applications are allocated equal CPU capacity (40% in
our experiments). Then, we run multiple experiments, each
with a random placement of all VMs across all the physical
hosts. During each experiment, we subject both the target and
background application to the workload W s and W s

�
, and

after a warm-up period of 1 minute, measure response times
of two applications RT s and RT s

�
and the total power usage

of corresponding physical machines pwr. Then, we execute the
adaptation action a, and measure the duration of the action,
d(a), the response time of each application during adapta-
tion, RT s(a) and RT s

�
(a), and the power usage on affected

physical machines pwr(a). If none of application’s VMs are
co-located with the VM impacted by a, no background appli-
cation measurements are made. We use these measurements
to calculate delta response times ∆RT s(a) = RT s(a)−RT s

and ∆RT s
�
(a) = RT s

�
(a)−RT s

�
, and the delta power usage

∆pwr(a) = pwr(a) − pwr. These deltas along with the
action duration are averaged across all random configurations,
and their values are encoded in a cost table indexed by the
workload. When Mistral requires an estimate of adaptation
costs at runtime, it measures the current workload W and
looks up the cost table entry with the closest workload W �.

D. Workload Prediction
Given that our approach balances immediate adaptation

costs versus their potential future benefits, the ability to
estimate workload changes is crucial. The approach we have
chosen is to estimate how long the workload stays approxi-
mately at its current level based on the history of workload
changes. To recall from Section II-B, the stability interval for



an application s at time t is the period of time for which
its workload remains within ±b/2 of the measured workload
W s

t
at time t, where b is a user-specified threshold. This

band [W s

t
- b/2, W s

t
+ b/2] is called the workload band Bs

t
.

When an application’s workload exceeds the workload band,
Mistral must re-evaluate the system configuration. When the
workload falls below the band, the controller must check if
other applications might benefit from the resources that could
be freed up.

At each unit monitoring interval i, Mistral checks if the
current workload W s

i
is within the current workload band Bs

j
.

If one or more application workloads are not within their band,
Mistral estimates a new stability interval CW e

j+1 for the next
control window and updates the bands based on the current
application workloads. To estimate the stability intervals, we
employ an auto-regressive moving average (ARMA) filter
commonly used for time-series analysis (e.g. [7]). The filter
uses a combination of the last measured stability interval
CWm

j
and an average of the k previously measured stabil-

ity intervals to predict the next stability interval using the
equation: CW e

j+1 = (1− β) · CWm

j
+ β · 1/k

�
k

i=1 CWm

j−i
.

Here, the factor β determines how much the estimator weighs
the current measurement against past historical measurements.
It is calculated using an adaptive filter to quickly respond
to large changes in the stability interval while remaining
robust against small variations. To calculate β, Mistral first
calculates the error εj between the current stability interval
measurement CWm

j
and the estimation CW e

j
using both

current measurements and the previous k error values as
εj = (1 − γ) · |CW e

j
− CWm

j
| + γ · 1/k

�
k

i=1 εj−i. Then,
β = 1−εj/ maxi=0...k εj−i. This technique dynamically gives
more weight to the current stability interval measurement by
generating a low value for β when the estimated stability
interval at time i is close to the measured value. Otherwise,
it increases β to emphasize past history. We use a history
window k of 3, and set the parameter γ to 0.5 to give equal
weight to the current and historical error estimates.

IV. OPTIMIZATION APPROACH

The holistic optimization approach of Mistral relies on a
simpler optimizer, Perf-Pwr optimizer, to provide the best
configuration while ignoring any adaptation costs. In this
section, we will first describe Perf-Pwr optimizer and then
the holistic algorithm of Mistral.

A. Perf-Pwr Optimizer
Perf-Pwr optimizer generates the optimal tradeoff between

performance and power consumption for a given workload
when any transient adaptation costs are ignored. Specifically,
Perf-Pwr finds the optimal capacities of VMs that can be
packed on as few server machines as possible while balancing
performance and power usage. Similar to our prior study [4],
Perf-Pwr optimizer employs a heuristic bin-packing algorithm
to place given VMs to hosts and a classic gradient-based search
algorithm, but extends the algorithm to deal with variable
number of active host machines and their power consumption.

Perf-Pwr optimizer determines the optimal configuration
(i.e., one that maximizes application utility) first for the whole
system (all hosts active) and then reduces the number of hosts
to see if a smaller number of active hosts would optimize
overall utility (application utility + power usage). Specifically,
for any given set of hosts, Perf-Pwr optimizer initially allocates
maximum CPU capacities for all VMs. Then, it attempts
to place (pack) these VMs on the given set hosts (bins).
The bin-packing algorithm used by the optimizer chooses
the host that has the largest space among used hosts. If no
such host is found, it chooses a new empty host only if it
is available. If the bin packing fails, the optimizer starts a
search process where, in each iteration, it generates a set
of candidate configurations by (a) reducing the capacity of
individual VMs and (b) reducing the replication level of an
application component (and thus, removing one VM). Then,
it chooses the candidate that has the highest gradient value
among all the candidates, where the gradient is defined as
∇ρ = (ρnew−ρ)/(Unew

RT
−URT ) and ρnew and Unew

RT
represent

each new candidate’s CPU utilization and performance utility,
respectively. It attempts to pack the chosen candidate ci on
the given set of hosts and if the packing fails, the algorithm
performs the next iteration using configuration ci as the new
starting point. If the packing succeeds, the optimizer considers
the resulting configuration as a potential optimal configuration
and repeats the search with a reduced number of hosts. For
each potential optimal configuration, the optimizer estimates
watts consumed by each host by summing all hosted VMs’
utilization and also shared utilization (i.e., consumed by Dom-
0). The optimizer stops reducing number of hosts when the
number of hosts reaches a threshold that can host minimum
capacities of the VMs. The potential optimal configuration that
has the largest utility is chosen as the “ideal configuration” c∗

and its utility denotes the “ideal utility” U∗ = U∗
RT

− U∗
pwr

.
The ideal utility is an upper bound for the holistic optimization
since it ignores adaptation costs.

B. Holistic Optimization
The core of Mistral is a holistic optimization algorithm

that incorporates power and performance overheads caused by
adaptation actions and the cost of the decision making process
into the tradeoff formulation. Given the utility function and
models, Mistral determines the optimal sequence of adaptation
actions that transforms the current configuration c to the new
optimal configuration.

The algorithm constructs a search graph, where edges are
adaptation actions and vertices are system configurations. The
search starts from the vertex v0 representing the current con-
figuration c. A new configuration (vertex) at each depth of the
search graph is constructed by choosing one adaptation action.
A configuration can be either “intermediate” or “candidate.”
A candidate satisfies the allocation constraint that the sum
of all VMs’ CPU and memory capacities on each host must
be less than 100%, while an intermediate does not satisfy
the constraint. For instance, Mistral may assign more CPU
capacity to a VM than available on a host by choosing an



“Increase CPU” action, requiring a subsequent “Reduce CPU”
or “Migrate” action to yield a candidate. When a candidate ci

is determined to be the final optimal configuration, the shortest
path starting from the initial configuration c to configuration
ci denotes the optimal sequence of adaptation actions needed
to achieve optimal utility for a given control window.

Naive A* algorithm. Although the problem can be formulated
as a weighted shortest path problem, it is not possible to fully
explore the extremely large configuration space at runtime. To
tackle this challenge without sacrificing optimality, we adopt
the A* graph search algorithm [8]. The A* algorithm requires
a “cost-to-go” heuristic to be associated with each vertex of
the graph. This heuristic estimates the shortest distance from
the vertex to a goal state and, for the result to be optimal,
the heuristic must be “permissible” in that it overestimates the
cost-to-go. We use the ideal utility U∗ as the heuristic since it
represents the highest utility that can be generated for the given
workload. Since it does not consider any costs, it overestimates
the utility and therefore, it is a permissible heuristic.

The algorithm starts from v0 with current configuration. In
each iteration of search, it generates the set of child vertices
as one adaptation step from a parent vertex (e.g.,v0) and stores
these vertices in the total set of explored vertices V . It also
stores the parent vertex only if it is a candidate configuration. It
then chooses the vertex v from V with the lowest utility. Each
vertex’s utility is computed by summing the cost of actions
from v0 plus the cost-to-go if the vertex is an intermediate,
or the total utility U if the vertex is a candidate. If the
chosen vertex v is a candidate, the algorithm returns the
vertex and computes actions. The algorithm considers v as
the final optimal configuration since the vertex’s utility is
larger than any other utilities of intermediate configurations
that can be generated by further explorations. This is because
those utilities (i.e., the cost-to-go plus accumulated cost) will
decrease as further actions are taken. Meanwhile, utilities of
any other candidates generated by further explorations are less
than those utilities generated with cost-to-go by the definition
of permissible. Thus, optimality is guaranteed.

Since the naive A* algorithm still evaluates a large number
of configurations due to the numerous possible adaptation
actions at each depth of the graph, the search time may
increase exponentially as the number of hosts and applications
increases. For example, if the workload changes significantly
and then stays relatively long in this state (resulting in a large
control window), the algorithm may try to change the current
configuration significantly by searching a large number of
possible action sequences. The huge search space, and the
resulting long search time, is a general problem for many
optimization techniques proposed in the literature for cloud
computing environments. Spending too much time to compute
an optimal configuration can adversely affect the system
response time (and utility) since the current configuration that
may not be optimal for the changed workload is used during
the decision making. Furthermore, the optimization procedure
itself may consume significant amount of power while making

its decision2. Therefore, we consider the cost of decision as
another tradeoff in our optimization formulation.
Self-Aware A* algorithm. We have developed a method to
accelerate the search by decreasing the search space at each
vertex dynamically (i.e., decreasing the number of adaptation
actions considered for each configuration in the graph). We
set the algorithm to choose a small portion of all possible
expanded configurations based on similarity to the ideal con-
figuration c∗. Specifically, the algorithm computes a weighted
Euclidean distances between each expanded configuration and
c∗ by summing up the differences in the corresponding VM
sizes (CPU capacities) in the two configuration. We also
set a weight to each VM based on its relative size in the
ideal configuration. For example, we set 2 times more weight
to V Mi than V Mj if their CPU capacities are 60% and
30%, respectively, in the ideal configuration. In addition, we
compute another distance value based on VM placement on
hosts by counting how many VMs have identical locations
(same host) in the two configurations and then normalize the
value with the total number of VMs.

Our Self-Aware A* algorithm uses the weighted Euclidian
distances and a heuristic to dynamically restrict the search
space and to allow Mistral to control the cost of search versus
the potential benefits during the search process. Specifically,
Mistral measures the elapsed time of the search, T , the utility
accrued of the current configuration, UT , and the power usage
of the search procedure itself, UpwrT . Then, the algorithm
compares the cost to an “expected utility”, UH , to decide
when the search space needs to be restricted (i.e., search
needs to be completed soon). We consider a history of recent
utilities and choose the lowest one as UH (i.e., a pessimistic
estimate). Furthermore, we set a delay threshold for the search
T that depends on the length of control window and can
be empirically obtained. We use 5% of the control window
length in our experiments. This threshold prevents a too long
search in the case UH is too high for the current system
state. When the cost of search reaches UH , or T exceeds
T , Mistral accelerates its search by decreasing search width
of each vertex. The resulting search algorithm is shown in
Algorithm 1. Note that the risk of stopping too early and
never finding the correct adaptations is reduced by the fact
that Mistral operates multi-level controllers and lower level
controllers will refine the configuration chosen by the higher
level controllers.

The algorithm takes the current configuration c, workload
W , the length of control window CW , the expected utility UH ,
its performance and power utilities over the unit monitoring
interval URT H and UpwrH , and the search delay threshold
T as inputs and returns the optimal sequence of adaptation
actions A. Using Perf-Pwr, the algorithm computes the
ideal utilities. The UtilityEst estimates performance and
power utilities, U �

RT
and U �

pwr
, with current configuration

and workload. The elapsed time T , the utility accrued by the
current configuration UT , the power consumption incurred by

2“consuming power to save power”



Input: c, W , CW , UH , URT H , UpwrH , T Output: A
(c∗, URT∗ , Upwr∗) ← Perf-Pwr(W );
if c∗ = c then return “null”;
v0.(A, c, URT (A), Upwr(A), URT , Upwr, D)
← (φ, c, 0, 0, URT∗ , Upwr∗ , 0);
(V, T, UT , UpwrT , st) ← ({v0}, 0, 0, 0,Time());
(U �

RT , U �
pwr) ← UtilityEst (c, W );

while forever do
vmax ← argmax

v∈V
v.U ; t ← 0;

if vmax.alast = “null” then return vmax.A;
foreach a ∈ A ∪ “null” do

vn ← vmax; vn.A ← vmax.A ∪ a;
vn.c ← NewConfig (vn.c, a);
Vn ← Vn ∪ vn;

if (UT + UpwrT ) ≥ UH or (T ≥ T ) then
Vn ← PruneByDistancevn∈Vn

(vn.c, c∗);
foreach vn ∈ Vn do

if vn.c = “candidate” then
(URT , Upwr) ← UtilityEst (vn.c, W );
vn.U ← (CW − vn.D) · (URT − Upwr) +
(vn.URT (A)− vn.Upwr(A));

else
(d, URT (a), Upwr(a)) ←Cost (vn.c, W, a);
vn.URT (A) ← vn.URT (A) + d · URT (a);
vn.Upwr(A) ← vn.Upwr(A) + d · Upwr(a);
vn.D ← vn.D + d;
vn.U ← (CW − vn.D) · (U∗

RT − U∗
pwr) +

(vn.URT (A)− vn.Upwr(A));
if ∃v� ∈ V s.t. v�.c = vn.c then

if vn.U > v�.U then v� ← vn;
else

V ← V ∪ vn;

t ← Time()− st; st ← Time(); T ← T + t;
UpwrT ← UpwrT + t · Upwrt ;
UT ← UT + t · (U �

RT − U �
pwr);

UH ← UH − t · (URT H − UpwrH );

Algorithm 1: Optimal adaptation search

the search procedure itself UpwrT , and expected utility UH are
updated after each depth of search.

In each iteration in the while loop, the open vertex with
the highest utility is selected as vmax. If this vertex’s config-
uration is a “candidate” (i.e., its last action is “null”), then
the algorithm considers the configuration as the optimal one
and returns actions leading to the configuration as described
in the Naive A* algorithm. Otherwise, it explores further
by triggering all possible actions including “null” (i.e., “do
nothing”). NewConfig generates a new vertex (configuration)
resulting from performing action a in the current vertex.
If the cost of the search (i.e., UT + UpwrT ) exceeds the
expected utility, or the elapsed time exceeds the given delay
threshold, the algorithm prunes the number of new vertices
using the Euclidean distances described above by calling
PruneByDistance. The pruning selects the top 5% of
the vertices. When a new configuration is a “candidate”,
the algorithm invokes UtilityEst to estimate performance
and power utilities. Otherwise, it invokes Cost to compute
the adaptation costs such as accrued performance and power
utilities (i.e, URT (A) and Upwr(A), respectively), and then
computes the total utility with the cost-to-go values. If the
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Fig. 3: Performance utility function

newly generated vertex vn is the same as one previously
found, say v, and vn’s utility is larger than that of v, then
the algorithm replaces the old vertex with the new one.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

Our experimental testbed is illustrated by the test-bed box
in Figure 2. We use a three-tier servlet version of the RUBiS
benchmark [9] that emulates an eBay-like auction as our
test applications. This application consists of an Apache web
server, a Tomcat application server, and a MySQL database
server running on a Linux-2.6 guest OS using Xen 3.2 [10].
In our experiments, we use “browsing only” transaction mix
provided by the RUBiS package consisting of 9 read-only
transaction types such as browse-category, browse-items, and
view-comments. The application workload will remain in the
range 0 to 100 req/sec. We use up to 4 applications, referred
to as from RUBiS-1 to RUBiS-4 and thereby, deploy up to 20
VMs in the test-bed.

Hosts are commodity Pentium-4 1.8GHz machines with
1GB of memory running on a single 100Mbps Ethernet seg-
ment. Up to 8 machines are used to host RUBiS applications,
while two are used as client emulators to generate workloads
(not shown in the figure). One machine is dedicated to host
dormant VMs used in server replication, and one as a storage
server for VM disk images. Finally, we run the Mistral
controller on a separate machine. We hook all machines except
clients to a power meter to measure power usage. Each VM is
allocated 200MB of memory with a limit of up to 4 VMs per
host. The remaining 200MB is allocated to the Xen hypervisor,
called Dom-0. The total CPU capacity of all VMs on a host
is capped to 80% to ensure enough resources for Dom-0
even under loaded conditions. We set the minimum CPU
capacity for each VM to 20% to avoid request errors even
under low request rates. We use Xen’s credit-based scheduler
to dynamically set CPU capacity of each VM. To replicate
the database server, we use a simple master-slave mechanism
provided by MySQL. All tables are copied and synchronized
between replicas. We set the maximum replication level for
Tomcat and MySQL servers to 2, which is enough to handle
the maximum request rates (100 req/sec) in our experiments,
while we do not replicate Apache since a single Apache server
per application is enough even under the maximum request
rates.
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Fig. 4: Application workloads
We set the target response time to 400ms. This time was

derived experimentally as the mean response time across all
transactions of the RUBiS application running with a “default
configuration” where all tiers’ CPU capacities are set to
40% and workload was constant at 50 req/sec. The exact
amount of the reward and penalty depends on the current
application request rate and is shown in Figure 3. As the
request rate increases, the reward increases and the penalty
decreases to reflect an increasingly “best-effort” nature of
service. In general, the rewards were chosen so as to yield a
20% ”net profit” over the power costs incurred in the default
configuration, and then scaled according to the workload. The
monitoring interval is set to 2 minutes so that we can react
quickly to workload changes. The cost per watt consumed over
a monitoring interval was set to $ 0.01 in our experiments. We
set the workload band to 0 req/sec for the 1st-level controller
and 8 req/sec for the 2nd-level controller to ensure that even
relatively small workload changes could cause the controller
to be triggered.

In our experiments, we generate 4 workloads, one for each
RUBiS application, based on the Web traces from the 1998
World Cup site [11] and the traffic traces of an HP customer’s
Internet Web server system [12]. We choose a typical day’s
traffic from each trace. Then we scale and shift them to the
range of request rates that our experimental setup can handle.
Specifically, we scale both the World Cup request rates of
150 to 1200 req/sec and the HP traffic of 2 to 4.5 req/sec to
our desired range of 0 to 100 req/sec. Since our workload is
controlled by adjusting the number of simulated clients, we
create a mapping from the desired request rates to the number
of simulated concurrent sessions. Figure 4 shows these scaled
workloads for four RUBiS applications from 15:00 to 21:30,
where RUBiS-1 and RUBiS-2 use the scaled World Cup trace,
and RUBiS-3 and RUBiS-4 use the HP workload trace.

B. Model validation

We have validated the application performance models, the
power models, and the stability interval estimation using the
workloads in Figure 4. Figure 5 shows that our performance
models (LQNM) provide sufficient accuracy for (a) response
time and (b) utilization. The estimation error is approximately
5%. In this model validation, we use RUBiS-1 and RUBiS-2

with an interval of the workloads. As shown in Figure 4, the
interval from 16:52 to 17:14 represents the first flash crowd
in the scenario. While the Performance Manager generates a
series of configurations using models for given request rates,
we record estimated response times and CPU utilizations.
Then we compare them with experiment results. In these
experiments, we restart Mistral to measure values at each time
point separately for each configuration and request rate to
remove any noise caused by adaptations. Figure 5 (c) shows
the model accuracy for power consumption measured using
the same methodology as the response time and utilization
accuracy validation.

Figure 6 illustrates the accuracy of the stability interval es-
timation when deploying RUBiS-1 and RUBiS-2. The average
error is approximately 14%.

Finally, Figure 7 illustrates some of the adaptation costs
measured for our applications on our testbed. The figures
illustrate that adaptation costs are heavily influenced by the
workload. We also measure power overhead and duration
offline for shutting down/restarting hosts. Starting a host takes
around 90 sec and consumes around 80 watts while shut-down
takes 30 sec and consumes 20 watts. We assume that response
times on other machines are not changed during these actions.

C. Adaptation Comparison
To evaluate our approach, we compare Mistral’s results with

those of three different approaches, each of which solves the
tradeoff between two objectives among performance, power
consumption, and adaptation costs as follows:
Perf-Pwr addresses the tradeoff between performance and
power consumption, but ignores transient adaptation costs. We
use our Perf-Pwr optimizer described in Section IV-A. In this
approach, once a workload change is observed in a monitoring
interval, the optimizer chooses adaptation actions and executes
them.
Perf-Cost multiplexes a given fixed pool of resources to hosted
applications to maximize performance utility. We allocate
2 hosts per application; this allocation can deal with the
peak request rate in our scenario. This approach incorpo-
rates adaptation costs (adaptation duration and performance
overhead) into the optimization formulation in each control
window. However, it considers neither further power savings
by consolidating VMs to a smaller number of hosts, nor power
overhead during adaptations.
Pwr-Cost minimizes power consumption and adaptation costs
under the restriction that VMs’ CPU capacities for each re-
quest rate are given and static. These CPU capacities are large
enough that the target response time can be met. To compute
such VMs’ capacities, we modify the Perf-Pwr optimizer so
that it will not reduce the VM sizes below the capacity needed
to meet the target response times. Given these VMs’ capacities
at each execution, the Pwr-Cost optimizer first adjusts the
VMs’ capacities of the VMs in the current configuration to
match the new sizes. If the resulting VM CPU capacities
violate the capacity constraints on some host (the sum of VM
capacities on a host must be less than 100%), the VMs are
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Fig. 6: Accuracy of stability interval estimation
migrated starting from the smallest one until the constraints are
satisfied on all host. Finally, when no constraints are violated,
the algorithm uses VM migration to consolidate VMs on fewer
hosts if possible. During consolidation decision, it considers
the tradeoff between power saving through consolidation and
migration cost. Compared to Mistral, this approach never
allows response time goals to be missed in order to reduce
power usage or transient costs.

We compare these four approaches using RUBiS-1 and
RUBiS-2 as described in Section V-A. Figures 8 through 9
show the results of the comparison. As demonstrated by Figure
8 (a) and (b), the response times with Mistral are somewhat
higher than with other approaches, and it slightly violates the
performance objective when request rates peak since it uses a
maximum of 3 hosts out of the 4 to save power. However, due
to more frequent and intensive adaptations in other approaches
(shown as spikes in figures), performance violations with
Perf-Pwr and Pwr-Cost are more frequent than with Mistral.
Especially, the response times with Perf-Pwr fluctuate and then
remain high since it performs many more adaptations than
Mistral. Pwr-Cost is forced to execute migrations during the
peak request rates to meet the capacity constraints since it does
not trade off between performance and costs like Mistral.

Meanwhile, the overall power consumption with Mistral is
lower than with the other approaches as illustrated in Figure
8 (c). This is because Mistral uses fewer hosts and performs
fewer adaptations even under peak request rates. The curve
of Perf-Pwr shows that using 4 hosts at peak request rates
provides the optimal tradeoff between performance and power.
However, Mistral chooses configurations with only 2 or 3 hosts
since the cost of using 4 hosts would be too high. Pwr-Cost,
however, is forced to use 4 hosts when both applications’

request rates peak in order to host all the VMs with the
required VM CPU capacities.

Finally, Figure 9 shows that the total utility of Mistral is
indeed higher than the other approaches. For the duration
of the experiment, the cumulative utility of Mistral (152.3)
is higher than those of Perf-Pwr (-47.1), Perf-Cost (26.3),
and Pwr-Cost (93.9). Although Perf-Cost provides a better
response time behavior than Mistral, its utility is much lower
than Mistral’s since it consumes much more power. Thus,
Mistral meets the goal of maximizing overall utility, consisting
of performance and power utilities and transient costs, better
than the other approaches.

D. Cost of Search

Next, we illustrate the cost of the decision making itself
in terms of its power consumption, duration, and impact on
the total utility. Specifically, we demonstrate that our Self-
Aware search algorithm that is aware of its own execution
costs can indeed result in significant improvement of overall
utility. To measure the power consumption of Mistral’s search
algorithms, we connected only the host running Mistral to the
power meter and then ran Mistral in a simulation mode where
it only determines the action sequences to execute, but does
not execute the adaptation actions chosen. Figure 10 (a) shows
that the Mistral search algorithm consumes power up to 12 %
over the host’s idle power usage (i.e., 60 watts).

The next two experiments measured how the awareness
of its own execution costs impacts the search algorithms.
Figure 10(b) shows that the execution time of the naive
search approach is up to 4 time longer (around 24 sec) than
that of the Self-Aware search algorithm (around 5.5 sec) in
the most intensive search cases. The longer search not only
uses more power, but also keeps the system in the current
configuration, which is not necessary close to optimal for
the current workload, a longer time when the search for new
configuration is in progress.

Finally, we show that such cost awareness does indeed
improve the total utility. Figure 10 (c), based on a 2-application
scenario (RUBiS-1 and RUBiS-2), shows that the utility of
the naive approach is generally slightly lower than that of the
Self-Aware approach, although the Naive approach typically
executes more adaptation actions. The difference in the cumu-
lative utilities over the execution time period is significant,
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Fig. 7: Adaptation costs
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(a) RUBiS-1 Response Time
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(b) RUBiS-2 Response Time
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Fig. 8: Comparison of Control Strategies
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Fig. 9: Cumulative utility
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(b) Duration
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(c) Utility

Fig. 10: Cost of Search
with cumulated utilities of 135.3 (Naive) and 152.3 (Self-
Aware).

E. Scalability
Finally, we demonstrate how Mistral scales to larger num-

bers of applications and hosts and discuss its use in managing
large-scale data centers. We deploy up to 20 VMs of 4 RUBiS
applications to all given hosts (i.e., 8 hosts). For the 3-app
scenario, we add RUBiS-3 to the scenario used in the above



TABLE I: Search durations and utilities

2-app 3-app 4-app
#VMs / #hosts 10 / 4 15 / 6 20 / 8
Self-Aware (avg. duration) 3807.8 5669.9 7514.8
- 1st level 3737.6 4977.2 5956.8
- 2nd level 5287.4 8029.7 10797.4
Naive (avg. duration) 4341.4 11343.4 35155.8
- 1st level 4077.5 5798.7 11615.9
- 2nd level 13387.2 59345.6 250297.4
Mistral (total utility) 152.3 336.6 504.8
Ideal (total utility) 351.7 538.3 701.9

experiments and then for the 4-app scenario, we add RUBiS-
4. We configure Mistral to use two-level controller. Each 1st

level controllers operates with workload band of 0, manages a
subset of the hosts, and uses CPU tuning and VM migrations
within its managed subset. The 2nd level controller operates
with a workload band of 8 req/sec, controls the whole system,
and uses all the actions introduced in this paper. The 2-
app scenario uses one controller on each level (with the 1st

level one controlling all 4 machines), while the 3-app and 4-
app scenarios use 2 1st level controllers and one 2nd level
controller.

Table I summarizes results of 3 different scenarios. We
report the average search times for the Naive and the Self-
Aware controllers as well as the averages for each level’s
controllers. As the number of hosts and applications increase,
the search space of adaptation actions to consider increases ex-
ponentially. The search duration of the Naive search algorithm
illustrates the exponential increase. To tackle this problem,
our Self-Aware search algorithm restricts the search space
when necessary using simple technique based on weighted
Euclidean distances. The results show that the duration for
Self-Aware algorithm increases approximately linearly with
the number of machines, while generating reasonable utilities.
To estimate the optimality of our approach, we compare these
utilities to the ideal utilities generated by the simulated Perf-
Pwr optimizer that ignores adaptation costs. The results show
that the gap between the achieved and ideal utilities in each
scenario remains approximately constant.

These results have implications on using Mistral to man-
age an entire data center or a cloud platform. Centralized
optimization techniques are typically not scalable enough to
manage a large system consisting of 100s of machines in real-
time (e.g., execute every few minutes). Mistral can address
this challenge due to its ability to implement multi-level
hierarchical control. Specifically, local controllers managing
a few machines can execute relatively frequently (every few
minutes), while higher-level controllers can operate hourly or
daily on larger groups of machines, e.g., a rack or the whole
data center. We plan to integrate more adaptation actions that
need larger time-scale management, such as migration over
WAN and disk image migration between data centers, into
our framework.

VI. RELATED WORK

We categorize related work based on adaptation method-
ologies and objectives. Many efforts have tackled intelligent
power control using underlying hardware support such as pro-
cessor throttling and low-power DRAM states. In particular,
Dynamic voltage and frequency scaling of processors (DVFS)
has been adopted by many authors including [13], [14], [15],
[16], but mainly in single-server settings. Extending these
control algorithms to balance end-to-end performance across
multiple tiers and clusters remains a challenge. Nevertheless,
we believe that techniques such as DVFS are complementary
to ours and can be incorporated into the lowest level controllers
in our approach.

Some researchers have worked to maximize the use of a
given power budget across multiple machines and tiers. In
[3], the authors present a methodology for efficient power
provisioning that increases the number of services that can
be deployed within a given power budget. Govindan et al.
have tackled a similar problem using statistical multiplexing
methods to improve the power utilization in [17]. However,
they do not explicitly consider the power-performance tradeoff
nor any transient costs.

A number of projects have addressed different aspects of
the power-performance tradeoff. Gandhi et al. use queuing
models to find the optimal power allocation among servers
so as to minimize mean response time under a given power
budget in [18], while Kephart et al. address the tradeoff in [19]
using reinforcement learning over a decentralized architecture
in which power and performance managers cooperate. Chase
et al. discuss turning servers on and off for efficient power
management in [20]. However, these approaches have not
considered adaptation costs which, as we have shown, can
have a significant impact on overall utility. Similar to our
approach, Chen et al. consider some adaptation costs (time
overheads and wear-and-tear) [14], but they do not consider
process migration and consolidation.

The authors of [21] propose a technique that exploits the
hypervisor’s ability to limit hardware usage of VMs and
control power consumption of individual VMs in a fine-
grained manner. The mechanism can be integrated with our
approach as an adaptation action to achieve further power
savings at an aggregated level.

Recently, a number of power management systems have
been proposed based on virtualization techniques, including
[22], [23], [5], [24], [6], that share some adaptation methods
with our approach. Tolia et al. demonstrate the ability of such
techniques to optimize the performance-power tradeoff in two
case studies using COTS hardware [23]. Cardosa et al. control
min, max, and share parameters of VMs to manage the power-
performance tradeoff and develop constrained bin-packing
algorithms [24]. However, they do not consider benefits and
costs of VM migrations that can be used to further consolidate
servers by packing VMs into a smaller number of physical
machines in such virtualized environments.

Kusic et al. tackles a similar problem of achieving power



efficiency while maintaining the desired performance by con-
solidating servers, and also explicitly deals with transient
costs [22]. While they consider the potential excessive costs
caused by high workload variations in their problem formu-
lation, they only consider a single type of adaptation (turning
on/off machines). Moreover, adding multiple actions to their
approach is not trivial and can lead to significant challenges
with scalability.

The pMapper system [5] tackles power-cost tradeoffs under
a fixed performance constraint by using modified bin-packing
algorithms to minimize migration costs while packing VMs
in a small number of machines. Our Pwr-Cost approach is
inspired by pMapper. Similarly, Sanjay et al. perform VM
placement to save power without degrading performance [6].
They also consider adaptation costs to improve system stability
in their distributed architecture. However, their focus is on
developing an extensible architecture to coordinate various
management objectives, rather than solving tradeoffs between
those objectives.

VII. CONCLUSIONS

Managing large computer systems (e.g., data centers,
clouds) with complex multitier distributed applications is
becoming increasing important and challenging due to often
conflicting goals of meeting performance objectives, saving
power, and managing the cost of management decisions and
actions. In this paper, we have presented Mistral, a control
architecture that optimizes total utility that includes applica-
tion utility due to meeting/missing performance objectives,
power costs, and transient adaptation costs. We demonstrate
experimentally that Mistral provides better overall utility than
a number of alternative controllers that consider only a subset
of these factors. To our knowledge, our self-aware search
algorithm is the first one to consider the cost of the search itself
in its decision making. We demonstrate experimentally that
such self-awareness does indeed improve overall total utility.
Mistral can also be configured as a multi-level hierarchical
controller enabling its potential application in large scale
systems.
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