
To appear inSIAM Journal on Scientific Computing

The algorithms described in this paper are implemented by the
‘METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System’.

METIS is available on WWW at URL: http://www.cs.umn.edu/˜metis

A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs ∗

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science
Minneapolis, MN 55455, Technical Report: 95-035

{karypis, kumar}@cs.umn.edu

Last updated on March 27, 1998 at 5:41pm

Abstract

Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of
the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition
for the original graph [4, 26]. From the early work it was clear that multilevel techniques held great promise; however,
it was not known if they can be made to consistently produce high quality partitions for graphs arising in a wide range
of application domains. We investigate the effectiveness of many different choices for all three phases: coarsening,
partition of the coarsest graph, and refinement. In particular, we present a new coarsening heuristic (called heavy-
edge heuristic) for which the size of the partition of the coarse graph is within a small factor of the size of the
final partition obtained after multilevel refinement. We also present a much faster variation of the Kernighan-Lin
algorithm for refining during uncoarsening. We test our scheme on a large number of graphs arising in various
domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show
that our scheme produces partitions that are consistently better than those produced by spectral partitioning schemes
in substantially smaller time. Also, when our scheme is used to compute fill reducing orderings for sparse matrices,
it produces orderings that have substantially smaller fill than the widely used multiple minimum degree algorithm.

Keywords: Graph Partitioning, Multilevel Partitioning Methods, Spectral Partitioning Methods, Fill
Reducing Ordering, Kernighan-Lin Heuristic, Parallel Sparse Matrix Algorithms.

∗This work was supported by Army Research Office contract DA/DAAH04-95-1-0538, NSF grant CCR-9423082, IBM Partenrship Award, and
by Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooper-
ative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008. Access to computing facilities was provided by AHPCRC,
Minnesota Supercomputer Institute, Cray Research Inc, and by the Pittsburgh Supercomputing Center. Related papers are available via WWW at
URL: http://www.cs.umn.edu/˜karypis

1

1 Introduction

Graph partitioning is an important problem that has extensive applications in many areas, including scientific comput-
ing, VLSI design, and task scheduling. The problem is to partition the vertices of a graph inp roughly equal parts,
such that the number of edges connecting vertices in different parts is minimized. For example, the solution of a sparse
system of linear equationsAx = b via iterative methods on a parallel computer gives rise to a graph partitioning prob-
lem. A key step in each iteration of these methods is the multiplication of a sparse matrix and a (dense) vector. A good
partition of the graph corresponding to matrixA can significantly reduce the amount of communication in parallel
sparse matrix-vector multiplication [32]. If parallel direct methods are used to solve a sparse system of equations, then
a graph partitioning algorithm can be used to compute a fill reducing ordering that lead to high degree of concurrency
in the factorization phase [32, 12]. The multiple minimum degree ordering used almost exclusively in serial direct
methods is not suitable for parallel direct methods, as it provides very little concurrency in the parallel factorization
phase.

The graph partitioning problem is NP-complete. However, many algorithms have been developed that find a reason-
ably good partition. Spectral partitioning methods are known to produce good partitions for a wide class of problems,
and they are used quite extensively [47, 46, 24]. However, these methods are very expensive since they require the
computation of the eigenvector corresponding to the second smallest eigenvalue (Fiedler vector). Execution time of
the spectral methods can be reduced if computation of the Fiedler vector is done by using a multilevel algorithm [2].
This multilevel spectral bisection algorithm (MSB) usually manages to speed up the spectral partitioning methods by
an order of magnitude without any loss in the quality of the edge-cut. However, even MSB can take a large amount
of time. In particular, in parallel direct solvers, the time for computing ordering using MSB can be several orders of
magnitude higher than the time taken by the parallel factorization algorithm, and thus ordering time can dominate the
overall time to solve the problem [18].

Another class of graph partitioning techniques uses the geometric information of the graph to find a good partition.
Geometric partitioning algorithms [23, 48, 37, 36, 38] tend to be fast but often yield partitions that are worse than those
obtained by spectral methods. Among the most prominent of these schemes is the algorithm described in [37, 36]. This
algorithm produces partitions that are provably within the bounds that exist for some special classes of graphs (that
includes graphs arising in finite element applications). However, due to the randomized nature of these algorithms,
multiple trials are often required (5 to 50) to obtain solutions that are comparable in quality to spectral methods.
Multiple trials do increase the time [16], but the overall runtime is still substantially lower than the time required by
the spectral methods. Geometric graph partitioning algorithms are applicable only if coordinates are available for the
vertices of the graph. In many problem areas (e.g., linear programming, VLSI), there is no geometry associated with
the graph. Recently, an algorithm has been proposed to compute coordinates for graph vertices [6] by using spectral
methods. But these methods are much more expensive and dominate the overall time taken by the graph partitioning
algorithm.

Another class of graph partitioning algorithms reduces the size of the graph (i.e., coarsen the graph) by collapsing
vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph.
These are called multilevel graph partitioning schemes [4, 7, 19, 20, 26, 10, 43]. Some researchers investigated
multilevel schemes primarily to decrease the partitioning time, at the cost of somewhat worse partition quality [43].
Recently, a number of multilevel algorithms have been proposed [4, 26, 7, 20, 10] that further refine the partition during
the uncoarsening phase. These schemes tend to give good partitions at a reasonable cost. Bui and Jones [4] use random
maximal matching to successively coarsen the graph down to a few hundred vertices; they partition the smallest graph
and then uncoarsen the graph level by level, applying Kernighan-Lin to refine the partition. Hendrickson and Leland
[26] enhance this approach by using edge and vertex weights to capture the collapsing of the vertex and edges. In
particular, this latter work showed that multilevel schemes can provide better partitions than spectral methods at lower
cost for a variety of finite element problems.

In this paper we build on the work of Hendrickson and Leland. We experiment with various parameters of multilevel
algorithms, and their effect on the quality of partition and ordering. We investigate the effectiveness of many different
choices for all three phases: coarsening, partition of the coarsest graph, and refinement. In particular, we present a

2

new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within
a small factor of the size of the final partition obtained after multilevel refinement. We also present a new variation
of the Kernighan-Lin algorithm for refining the partition during the uncoarsening phase that is much faster than the
Kernighan-Lin refinement used in [26].

We test our scheme on a large number of graphs arising in various domains including finite element methods, linear
programming, VLSI, and transportation. Our experiments show that our scheme consistently produces partitions that
are better than those produced by spectral partitioning schemes in substantially smaller timer (10 to 35 times faster
than multilevel spectral bisection1. Compared with the multilevel scheme of [26], our scheme is about two to seven
times faster, and is consistently better in terms of cut size. Much of the improvement in run time comes from our faster
refinement heuristic, and the improvement in quality is due to the heavy-edge heuristic used during coarsening.

We also used our graph partitioning scheme to compute fill reducing orderings for sparse matrices. Surprisingly,
our scheme substantially outperforms the multiple minimum degree algorithm [35], which is the most commonly used
method for computing fill reducing orderings of a sparse matrix.

Even though multilevel algorithms are quite fast compared to spectral methods, they can still be the bottleneck if
the sparse system of equations is being solved in parallel [32, 18]. The coarsening phase of these methods is relatively
easy to parallelize [29], but the Kernighan-Lin heuristic used in the refinement phase is very difficult to parallelize
[15]. Since both the coarsening phase and the refinement phase with the Kernighan-Lin heuristic take roughly the
same amount of time, the overall run-time of the multilevel scheme of [26] cannot be reduced significantly. Our new
faster methods for refinement reduce this bottleneck substantially. In fact our parallel implementation [29] of this
multilevel partitioning is able to get a speedup of as much as 56 on a 128-processor Cray T3D for moderate size
problems.

The remainder of the paper is organized as follows. Section 2 defines the graph partitioning problem and describes
the basic ideas of multilevel graph partitioning. Sections 3, 4, and 5 describe different algorithms for the coarsening,
initial partitioning, and the uncoarsening phase, respectively. Section 6 presents an experimental evaluation of the
various parameters of multilevel graph partitioning algorithms and compares their performance with that of multilevel
spectral bisection algorithm. Section 7 compares the quality of the orderings produced by multilevel nested dissection
to those produced by multiple minimum degree and spectral nested dissection. Section 9 provides a summary of the
various results. A short version of this paper appears in [28].

2 Graph Partitioning

Thek-waygraph partitioning problem is defined as follows: Given a graphG = (V, E) with |V | = n, partitionV
into k subsets,V1, V2, . . . , Vk such thatVi ∩ Vj = ∅ for i 6= j , |Vi | = n/k, and

⋃
i Vi = V , and the number of edges

of E whose incident vertices belong to different subsets is minimized. Thek-way graph partitioning problem can be
naturally extended to graphs that have weights associated with the vertices and the edges of the graph. In this case,
the goal is to partition the vertices intok disjoint subsets such that the sum of the vertex-weights in each subset is the
same, and the sum of the edge-weights whose incident vertices belong to different subsets is minimized. Ak-way
partition of V is commonly represented by a partition vectorP of lengthn, such that for every vertexv ∈ V , P[v]
is an integer between 1 andk, indicating the partition at which vertexv belongs. Given a partitionP, the number of
edges whose incident vertices belong to different subsets is called theedge-cutof the partition.

The efficient implementation of many parallel algorithms usually requires the solution to a graph partitioning prob-
lem, where vertices represent computational tasks, and edges represent data exchanges. Depending on the amount
of the computation performed by each task, the vertices are assigned a proportional weight. Similarly, the edges are
assigned weights that reflect the amount of data that needs to be exchanged. Ak-way partitioning of this computation
graph can be used to assign tasks tok processors. Since the partitioning assigns to each processor tasks whose total
weight is the same, the work is balanced amongk processors. Furthermore, since the algorithm minimizes the edge-cut
(subject to the balanced load requirements), the communication overhead is also minimized.

1We used the MSB algorithm in the Chaco [25] graph partitioning package to obtain the timings for MSB.

3

One such example is the sparse-matrix vector multiplicationy = Ax . Matrix An×n and vectorx is usually parti-
tioned along rows, with each of thep processors receivingn/p rows of A, and the correspondingn/p elements ofx
[32]. For matrixA ann-vertex graphG A, can be constructed such that each row of the matrix corresponds to a vertex,
and if rowi has a nonzero entry in columnj (i 6= j), then there is an edge between vertexi and vertexj . As discussed
in [32], any edges connecting vertices from two different partitions lead to communication for retrieving the value of
vectorx that is not local but is needed to perform the dot-product. Thus, in order to minimize the communication
overhead, we need to obtain ap-way partition ofG A, and then distribute the rows ofA according to this partition.

Another important application of recursive bisection is to find a fill reducing ordering for sparse matrix factorization
[12, 32, 22]. These algorithms are generally referred to as nested dissection ordering algorithms. Nested dissection
recursively splits a graph into almost equal halves by selecting a vertex separator until the desired number of partitions
are obtained. One way of obtaining a vertex separator is to first obtain a bisection of the graph and then compute a
vertex separator from the edge separator. The vertices of the graph are numbered such that at each level of recursion,
the separator vertices are numbered after the vertices in the partitions. The effectiveness and the complexity of a nested
dissection scheme depends on the separator computing algorithm. In general, small separators result in low fill-in.

Thek-way partition problem is frequently solved by recursive bisection. That is, we first obtain a 2-way partition
of V , and then we further subdivide each part using 2-way partitions. After logk phases, graphG is partitioned intok
parts. Thus, the problem of performing ak-way partition can be solved by performing a sequence of 2-way partitions
or bisections. Even though this scheme does not necessarily lead to optimal partition, it is used extensively due to its
simplicity [12, 22].

2.1 Multilevel Graph Bisection

The graphG can be bisected using a multilevel algorithm. The basic structure of a multilevel algorithm is very simple.
The graphG is first coarsened down to a few hundred vertices, a bisection of this much smaller graph is computed, and
then this partition is projected back towards the original graph (finer graph). At each step of the graph uncoarsening,
the partition is further refined. Since the finer graph has more degrees of freedom, such refinements usually decrease
the edge-cut. This process, is graphically illustrated in Figure 1.

Formally, a multilevel graph bisection algorithm works as follows: Consider a weighted graphG0 = (V0, E0), with
weights both on vertices and edges. A multilevel graph bisection algorithm consists of the following three phases.

Coarsening Phase
The graphG0 is transformed into a sequence of smaller graphsG1,G2, . . . ,Gm such that|V0| > |V1| > |V2| >
· · · > |Vm |.

Partitioning Phase
A 2-way partitionPm of the graphGm = (Vm, Em) is computed that partitionsVm into two parts, each contain-
ing half the vertices ofG0.

Uncoarsening Phase
The partitionPm of Gm is projected back toG0 by going through intermediate partitionsPm−1, Pm−2, . . . , P1, P0.

3 Coarsening Phase

During the coarsening phase, a sequence of smaller graphs, each with fewer vertices, is constructed. Graph coarsening
can be achieved in various ways. Some possibilities are shown in Figure 2.

In most coarsening schemes, a set of vertices ofGi is combined to form a single vertex of the next level coarser
graphGi+1. Let V v

i be the set of vertices ofGi combined to form vertexv of Gi+1. We will refer to vertexv as a
multinode. In order for a bisection of a coarser graph to be good with respect to the original graph, the weight of vertex
v is set equal to the sum of the weights of the vertices inV v

i . Also, in order to preserve the connectivity information
in the coarser graph, the edges ofv are the union of the edges of the vertices inV v

i . In the case where more than one
vertex ofV v

i contain edges to the same vertexu, the weight of the edge ofv is equal to the sum of the weights of these

4

G
G

1

projected partition
refined partition

C
o

a
rs

e
ni

ng
 P

ha
se

U
nc

o
a

rse
ning

 Pha
se

Initial Partitioning Phase

Multilevel Graph Bisection

G

G3

G2

G1

O

G

2G

O

4

G3

Figure 1: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph is successively
decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and during the uncoarsening phase,
the bisection is successively refined as it is projected to the larger graphs. During the uncoarsening phase the light lines indicate
projected partitions, and dark lines indicate partitions that were produced after refinement.

edges. This is useful when we evaluate the quality of a partition at a coarser graph. The edge-cut of the partition in a
coarser graph will be equal to the edge-cut of the same partition in the finer graph. Updating the weights of the coarser
graph is illustrated in Figure 2.

Two main approaches have been proposed for obtaining coarser graphs. The first approach is based on finding a
random matching and collapsing the matched vertices into a multinode [4, 26], while the second approach is based on
creating multinodes that are made of groups of vertices that are highly connected [7, 19, 20, 10]. The later approach
is suited for graphs arising in VLSI applications, since these graphs have highly connected components. However, for
graphs arising in finite element applications, most vertices have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In the rest of this section we describe the basic ideas behind
coarsening using matchings.

Given a graphGi = (Vi , Ei), a coarser graph can be obtained by collapsing adjacent vertices. Thus, the edge
between two vertices is collapsed and a multinode consisting of these two vertices is created. This edge collapsing
idea can be formally defined in terms of matchings. Amatchingof a graph, is a set of edges, no two of which are
incident on the same vertex. Thus, the next level coarser graphGi+1 is constructed fromGi by finding a matching
of Gi and collapsing the vertices being matched into multinodes. The unmatched vertices are simply copied over to
Gi+1. Since the goal of collapsing vertices using matchings is to decrease the size of the graphGi , the matching should
contain a large number of edges. For this reason,maximal matchingsare used to obtain the successively coarse graphs.
A matching is maximal if any edge in the graph that is not in the matching has at least one of its endpoints matched.
Note that depending on how matchings are computed, the number of edges belonging to the maximal matching may
be different. The maximal matching that has the maximum number of edges is calledmaximum matching. However,
because the complexity of computing a maximum matching [41] is in general higher than that of computing a maximal

5

1

1

2

2

1

1

1

1

1
1

1
1

1 1

1

1

1

1

11

1

1

1

1

11

1

5

3

3
3

2

2
1

1

4

4

44

4

1 1

1

1
1

1

2

5

1

1

1

2

2

1

11
1

1

2

2

2

2

5

2

2

2

Figure 2: Different ways to coarsen a graph.

matching, the latter are preferred.
Coarsening a graph using matchings preserves many properties of the original graph. IfG0 is (maximal) planar,

theGi is also (maximal) planar [34]. This property is used to show that the multilevel algorithm produces partitions
that are provably good for planar graphs [27].

Since maximal matchings are used to coarsen the graph, the number of vertices inGi+1 cannot be less than half
the number of vertices inGi ; thus, it will require at leastO(log(n/n′)) coarsening phases to coarsenG0 down to
a graph withn′ vertices. However, depending on the connectivity ofGi , the size of the maximal matching may be
much smaller than|Vi |/2. In this case, the ratio of the number of vertices fromGi to Gi+1 may be much smaller
than 2. If the ratio becomes lower than a threshold, then it is better to stop the coarsening phase. However, this type
of pathological condition usually arises after many coarsening levels, in which caseGi is already fairly small; thus,
aborting the coarsening does not affect the overall performance of the algorithm.

In the remaining sections we describe four ways that we used to select maximal matchings for coarsening.

Random Matching (RM) A maximal matching can be generated efficiently using a randomized algorithm. In
our experiments we used a randomized algorithm similar to that described in [4, 26]. The random maximal matching
algorithm is the following. The vertices are visited in random order. If a vertexu has not been matched yet, then
we randomly select one of its unmatched adjacent vertices. If such a vertexv exists, we include the edge(u, v) in
the matching and mark verticesu andv as being matched. If there is no unmatched adjacent vertexv, then vertexu
remains unmatched in the random matching. The complexity of the above algorithm isO(|E|).

Heavy Edge Matching (HEM) Random matching is a simple and efficient method to compute a maximal match-
ing and minimizes the number of coarsening levels in a greedy fashion. However, our overall goal is to find a partition
that minimizes the edge-cut. Consider a graphGi = (Vi , Ei), a matchingMi that is used to coarsenGi , and its coarser
graphGi+1 = (Vi+1, Ei+1) induced byMi . If A is a set of edges, defineW (A) to be the sum of the weights of the
edges inA. It can be shown that

W (Ei+1) = W (Ei)−W (Mi). (1)

Thus, the total edge-weight of the coarser graph is reduced by the weight of the matching. Hence, by selecting
a maximal matchingMi whose edges have a large weight, we can decrease the edge-weight of the coarser graph

6

by a greater amount. As the analysis in [27] shows, since the coarser graph has smaller edge-weight, it also has a
smaller edge-cut. Finding a maximal matching that contains edges with large weight is the idea behind theheavy-edge
matching. A heavy-edge matching is computed using a randomized algorithm similar to that for computing a random
matching described earlier. The vertices are again visited in random order. However, instead of randomly matching a
vertexu with one of its adjacent unmatched vertices, we matchu with the vertexv such that the weight of the edge
(u, v) is maximum over all valid incident edges (heavier edge). Note that this algorithm does not guarantee that the
matching obtained has maximum weight (over all possible matchings), but our experiments have shown that it works
very well. The complexity of computing a heavy-edge matching isO(|E|), which is asymptotically similar to that for
computing the random matching.

Light Edge Matching (LEM) Instead of minimizing the total edge weight of the coarser graph, one might try to
maximize it. From Equation 1, this is achieved by finding a matchingMi that has the smallest weight, leading to a
small reduction in the edge weight ofGi+1. This is the idea behind thelight-edge matching. It may seem that the
light-edge matching does not perform any useful transformation during coarsening. However, the average degree of
Gi+1 produced by LEM is significantly higher than that ofGi . This is important for certain partitioning heuristics
such a Kernighan-Lin [4], because they produce good partitions in small amount of time for graphs with high average
degree.

To compute a matching with minimal weight we only need to slightly modify the algorithm for computing the
maximal-weight matching in Section 3. Instead of selecting an edge(u, v) in the matching such that the weight of
(u, v) is the largest, we select an edge(u, v) such that its weight is the smallest. The complexity of computing the
minimum-weight matching is alsoO(|E|).

Heavy Clique Matching (HCM) A clique of an unweighted graphG = (V, E) is a fully connected subgraph of
G. Consider a set of verticesU of V (U ⊂ V). The subgraph ofG induced byU is defined asGU = (U, EU), such
that EU consists of all edges(v1, v2) ∈ E such that bothv1 andv2 belong inU . Looking at the cardinality ofU and
EU we can determined how closeU is to a clique. In particular, the ratio 2|EU |/(|U |(|U | − 1)) goes to one ifU is a
clique, and is small ifU is far from being a clique. We refer to this ratio asedge density.

Theheavy clique matchingscheme computes a matching by collapsing vertices that have high edge density. Thus,
this scheme computes a matching whose edge density is maximal. The motivation behind this scheme is that subgraphs
of G0 that are cliques or almost cliques will most likely not be cut by the bisection. So, by creating multinodes that
contain these subgraphs, we make it easier for the partitioning algorithm to find a good bisection. Note that this
scheme tries to approximate the graph coarsening schemes that are based on finding highly connected components
[7, 19, 20, 10].

As in the previous schemes for computing the matching, we compute the heavy clique matching using a randomized
algorithm. For the computation of edge density, so far we have only dealt with the case in which the vertices and edges
of the original graphG0 = (V0, E0) have unit weight. Consider a coarse graphGi = (Vi , Ei). For every vertex
u ∈ Vi , definevw(u) to be the weight of the vertex. Recall that this is equal to the sum of the weight of the vertices in
the original graph that have been collapsed intou. Definece(u) to be the sum of the weight of the collapsed edges of
u. These edges are those collapsed to form the multinodeu. Finally, for every edgee ∈ Ei defineew(e) be the weight
of the edge. Again, this is the sum of the weight of the edges that through the coarsening have been collapsed intoe.
Given these definitions, the edge density between verticesu andv is given by:

2(ce(u)+ ce(v)+ ew(u, v))

(vw(u) + vw(v))(vw(u) + vw(v) − 1)
. (2)

The randomized algorithm works as follows. The vertices are visited in a random order. An unmatched vertexu, is
matched with its unmatched adjacent vertexv such that the edge density of the multinode created by combiningu and
v is the largest among all possible multinodes involvingu and other unmatched adjacent vertices ofu. Note that HCM
is very similar to the HEM scheme. The only difference is that HEM matches vertices that are only connected with a
heavy edge irrespective of the contracted edge-weight of the vertices, whereas HCM matches a pair of vertices if they

7

are both connected using a heavy edge and if each of these two vertices have high contracted edge-weight.

4 Partitioning Phase

The second phase of a multilevel algorithm computes a high-quality bisection (i.e., small edge-cut)Pm of the coarse
graphGm = (Vm, Em) such that each part contains roughly half of the vertex weight of the original graph. Since
during coarsening, the weights of the vertices and edges of the coarser graph were set to reflect the weights of the
vertices and edges of the finer graph,Gm contains sufficient information to intelligently enforce the balanced partition
and the small edge-cut requirements.

A partition of Gm can be obtained using various algorithms such as (a) spectral bisection [47, 46, 2, 24], (b)
geometric bisection [37, 36] (if coordinates are available2), and (c) combinatorial methods [31, 3, 11, 12, 17, 5, 33, 21].
Since the size of the coarser graphGm is small (i.e., |Vm | < 100), this step takes a small amount of time.

We implemented four different algorithms for partitioning the coarse graph. The first algorithm uses the spectral
bisection. The other three algorithms are combinatorial in nature, and try to produce bisections with small edge-cut
using various heuristics. These algorithms are described in the next sections. We choose not to use geometric bisection
algorithms, since the coordinate information was not available for most of the test graphs.

4.1 Spectral Bisection (SB)

In the spectral bisection algorithm, the spectral information is used to partition the graph [47, 2, 26]. This algorithm
computes the eigenvectory corresponding to the second largest eigenvalue of the Laplacian matrixQ = D− A, where

ai, j =
{

ew(vi , v j) if (vi , v j) ∈ Em

0 otherwise

This eigenvector is called the Fiedler vector. The matrixD is diagonal such thatdi,i =∑ ew(vi , v j) for (vi , v j) ∈ Em .
Giveny, the vertex setVm is partitioned into two parts as follows. Letr be thei th element of they vector. LetP[j] = 1
for all vertices such thaty j ≤ r , and letP[j] = 2 for all the other vertices. Since we are interested in bisections of
equal size, the value ofr is chosen as the weighted median of the values ofyi .

The eigenvectory is computed using the Lanczos algorithm [42]. This algorithm is iterative and the number of
iterations required depends on the desired accuracy. In our experiments, we set the accuracy to 10−2 and the maximum
number of iterations to 100.

4.2 Kernighan-Lin Algorithm (KL)

The Kernighan-Lin algorithm [31] is iterative in nature. It starts with an initial bipartition of the graph. In each iteration
it searches for a subset of vertices, from each part of the graph such that swapping them leads to a partition with smaller
edge-cut. If such subsets exist, then the swap is performed and this becomes the partition for the next iteration. The
algorithm continues by repeating the entire process. If it cannot find two such subsets, then the algorithm terminates,
since the partition is at a local minimum and no further improvement can be made by the KL algorithm. Each iteration
of the KL algorithm described in [31] takesO(|E| log |E|) time. Several improvements to the original KL algorithm
have been developed. One such algorithm is by Fiduccia and Mattheyses [9] that reduces the complexity toO(|E|),
by using appropriate data structures.

The Kernighan-Lin algorithm finds locally optimal partitions when it starts with a good initial partition and when
the average degree of the graph is large [4]. If no good initial partition is known, the KL algorithm is repeated with
different randomly selected initial partitions, and the one that yields the smallest edge-cut is selected. Requiring
multiple runs can be expensive, especially if the graph is large. However, since we are only partitioning the much

2Coordinates for the vertices of the successive coarser graphs can be constructed by taking the midpoint of the coordinates of the combined
vertices.

8

smaller coarse graph, performing multiple runs requires very little time. Our experience has shown that the KL
algorithm requires only five to ten different runs to find a good partition.

Our implementation of the Kernighan-Lin algorithm is based on the algorithm described by Fiduccia and Matthey-
ses3 [9], with certain modifications that significantly reduce the run time. SupposeP is the initial partition of the
vertices ofG = (V, E). Thegain gv, of a vertexv is defined as the reduction on the edge-cut if vertexv moves from
one partition to the other. This gain is given by:

gv =
∑

(v,u)∈E∧P[v]6=P[u]
w(v, u) −

∑
(v,u)∈E∧P[v]=P[u]

w(v, u), (3)

wherew(v, u) is weight of edge(v, u). If gv is positive, then by movingv to the other partition the edge-cut decreases
by gv; whereas ifgv is negative, the edge-cut increases by the same amount. If a vertexv is moved from one partition
to the other, then the gains of the vertices adjacent tov may change. Thus, after moving a vertex, we need to update
the gains of its adjacent vertices.

Given this definition of gain, the KL algorithm then proceeds by repeatedly selecting from the larger part a vertex
v with the largest gain and moves it to the other part. After movingv, v is marked so it will not be considered again
in the same iteration, and the gains of the vertices adjacent tov are updated to reflect the change in the partition. The
original KL algorithm [9], continues moving vertices between the partitions, until all the vertices have been moved.
However, in our implementation, the KL algorithm terminates when the edge-cut does not decrease afterx vertex
moves. Since the lastx vertex moves did not decrease the edge-cut (they may have actually increased it), they are
undone. We found that settingx = 50 works quite well for our test cases. Note that terminating the KL iteration in
this fashion significantly reduces the run time of the KL iteration.

The efficient implementation of the above algorithm depends on the method that is used to compute the gains of the
graph and the type of data structure used to store these gains. The implementation of the KL algorithm is described in
Appendix A.3.

4.3 Graph Growing Algorithm (GGP)

Another simple way of bisecting the graph is to start from a vertex and grow a region around it in a breath-first fashion,
until half of the vertices have been included (or half of the total vertex weight) [12, 17, 39]. The quality of the graph
growing algorithm is sensitive to the choice of a vertex from which to start growing the graph, and different starting
vertices yield different edge-cuts. To partially solve this problem, we randomly select 10 vertices and we grow 10
different regions. The trial with the smaller edge-cut is selected as the partition. This partition is then further refined
by using it as the input to the KL algorithm. Again, becauseGm is very small, this step takes a small percentage of the
total time.

4.4 Greedy Graph Growing Algorithm (GGGP)

The graph growing algorithm described in the previous section grows a partition in a strict breadth-first fashion.
However, as in the KL algorithm, for each vertexv we can define the gain in the edge-cut obtained by insertingv into
the growing region. Thus, we can order the vertices of the graph’s frontier in non-decreasing order according to their
gain. Thus, the vertex with the largest decrease (or smallest increase) in the edge-cut is inserted first. When a vertex is
inserted into the growing partition, then the gains of its adjacent vertices already in the frontier are updated, and those
not in the frontier are inserted. Note that the data structures required to implement this scheme are essentially those
required by the KL algorithm. The only difference is that instead of precomputing all the gains for all the vertices, we
do so as these vertices are touched by the frontier.

This greedy algorithm is also sensitive to the choice of the initial vertex, but less so than GGP. In our implementation

3The algorithm described by Fiduccia and Mattheyses (FM) [9], is slightly different than that originally developed by Kernighan and Lin (KL)
[31]. The difference is that in each step, the FM algorithm moves a single vertex from one part to the other whereas the KL algorithm selects a pair
of vertices, one from each part, and moves them.

9

we randomly select four vertices as the starting point of the algorithm, and we select the partition with the smaller
edge-cut. In our experiments, we found that GGGP takes somewhat less time than GGP for partitioning the coarse
graph (because it requires fewer runs), and the initial cut found by the scheme is better than that found by GGP.

5 Uncoarsening Phase

During the uncoarsening phase, the partitionPm of the coarser graphGm is projected back to the original graph, by
going through the graphsGm−1,Gm−2, . . . ,G1. Since each vertex ofGi+1 contains a distinct subset of vertices of
Gi , obtainingPi from Pi+1 is done by simply assigning the set of verticesV v

i collapsed tov ∈ Gi+1 to the partition
Pi+1[v] (i.e., Pi [u] = Pi+1[v], ∀u ∈ V v

i).
Even thoughPi+1 is a local minimum partition ofGi+1, the projected partitionPi may not be at a local minimum

with respect toGi . SinceGi is finer, it has more degrees of freedom that can be used to improvePi , and decrease
the edge-cut. Hence, it may still be possible to improve the projected partition ofGi−1 by local refinement heuristics.
For this reason, after projecting a partition, a partition refinement algorithm is used. The basic purpose of a partition
refinement algorithm is to select two subsets of vertices, one from each part such that when swapped the resulting
partition has a smaller edge-cut. Specifically, ifA and B are the two parts of the bisection, a refinement algorithm
selectsA′ ⊂ A andB ′ ⊂ B such thatA\A′ ∪ B ′ andB\B ′ ∪ A′ is a bisection with a smaller edge-cut.

A class of algorithms that tend to produce very good results are those that are based on the Kernighan-Lin (KL)
partition algorithm described in Section 4.2. Recall that the KL algorithm starts with an initial partition and in each
iteration it finds subsetsA′ andB ′ with the above properties.

In the next sections we describe two different refinement algorithms that are based on similar ideas but differ in the
time they require to do the refinement. Details about the efficient implementation of these schemes can be found in
Appendix A.3.

5.1 Kernighan-Lin Refinement

The idea of Kernighan-Lin refinement is to use the projected partition ofGi+1 onto Gi as the initial partition for
the Kernighan-Lin algorithm described in Section 4.2. The reason is that this projected partition is already a good
partition; thus, KL will converge within a few iterations to a better partition. For our test cases, KL usually converges
within three to five iterations.

Since we are starting with a good partition, only a small number of vertex swaps will decrease the edge-cut and
any further swaps will increase the size of the cut (vertices with negative gains). Recall from Section 4.2, that in our
implementation, a single iteration of the KL algorithm stops as soon as 50 swaps are performed that do not decrease the
edge-cut. This feature reduces the runtime when KL is applied as a refinement algorithm, since only a small number
of vertices lead to edge-cut reductions. Our experimental results show that for our test cases this is usually achieved
after only a small percentage of the vertices have been swapped (less than 5%), which results in significant savings in
the total execution time of this refinement algorithm.

Since we terminate each pass of the KL algorithm when no further improvement can be made in the edge-cut, the
complexity of the KL refinement scheme described in the previous section is dominated by the time required to insert
the vertices into the appropriate data structures. Thus, even though we significantly reduced the number of vertices
that are swapped, the overall complexity does not change in asymptotic terms. Furthermore, our experience shows
that the largest decrease in the edge-cut is obtained during the first pass. In the KL(1) refinement algorithm, we take
advantage of that by running only a single iteration of the KL algorithm. This usually reduces the total time taken by
refinement by a factor of two to four (Section 6.3).

5.2 Boundary Kernighan-Lin Refinement

In both the KL and KL(1) refinement algorithms, we have to insert the gains of all the vertices in the data structures.
However, since we terminate both algorithms as soon as we cannot further reduce the edge-cut, most of this computa-
tion is wasted. Furthermore, due to the nature of the refinement algorithms, most of the nodes swapped by either the

10

KL or KL(1) algorithms are along the boundary of the cut, which is defined to be the vertices that have edges that are
cut by the partition.

In the boundary Kernighan-Lin refinement algorithm, we initially insert into the data structures the gains for only
the boundary vertices. As in the KL refinement algorithm, after we swap a vertexv, we update the gains of the adjacent
vertices ofv not yet being swapped. If any of these adjacent vertices become a boundary vertex due to the swap ofv,
we insert it into the data structures if they have positive gain. Notice that the boundary refinement algorithm is quite
similar to the KL algorithm, with the added advantage that only vertices are inserted into the data structures as needed
and no work is wasted.

As with KL, we have a choice of performing a single pass (boundary KL(1) refinement (BKL(1))) or multiple
passes (boundary Kernighan-Lin refinement (BKL)) until the refinement algorithm converges. As opposed to the non-
boundary refinement algorithms, the cost of performing multiple passes of the boundary algorithms is small, since
only the boundary vertices are examined.

To further reduce the execution time of the boundary refinement while maintaining the refinement capabilities of
BKL and the speed of BKL(1) one can combine these schemes into a hybrid scheme that we refer to it as BKL(*,1).
The idea behind the BKL(*,1) policy is to use BKL as long as the graph is small, and switch to BKL(1) when the
graph is large. The motivation for this scheme is that single vertex swaps in the coarser graphs lead to larger decreases
in the edge-cut than in the finer graphs. So by using BKL at these coarser graphs better refinement is achieved, and
because these graphs are very small (compared to the size of the original graph), the BKL algorithm does not require
a lot of time. For all the experiments presented in this paper, if the number of vertices in the boundary of the coarse
graph is less than 2% of the number of vertices in the original graph, refinement is performed using BKL, otherwise
BKL(1) is used. This choice of triggering condition relates the size of the partition boundary, which is proportional to
the cost of performing the refinement of a graph, with the original size of the graph to determine when it is inexpensive
to perform BKL relative to the size of the graph.

6 Experimental Results—Graph Partitioning

We evaluated the performance of the multilevel graph partitioning algorithm on a wide range of graphs arising in
different application domains. The characteristics of these matrices are described in Table 1. All the experiments were
performed on an SGI Challenge with 1.2GBytes of memory and 200MHz MIPS R4400 processor. All times reported
are in seconds. Since the nature of the multilevel algorithm discussed is randomized, we performed all experiments
with a fixed seed. Furthermore, the coarsening process ends when the coarse graph has fewer than 100 vertices.

As discussed in Sections 3, 4, and 5, there are many alternatives for each of the three different phases of a multilevel
algorithm. It is not possible to provide an exhaustive comparison of all these possible combinations without making
this paper unduly large. Instead, we provide comparisons of different alternatives for each phase after making a
reasonable choice for the other two phases.

6.1 Matching Schemes

We implemented the four matching schemes described in Section 3 and the results for a 32-way partition for some
matrices is shown in Table 2. These schemes are (a) random matching (RM), (b) heavy edge matching (HEM), (c)
light edge matching (LEM), and (d) heavy clique matching (HCM). For all the experiments, we used the GGGP
algorithm for the initial partition phase and the BKL(*,1) as the refinement policy during the uncoarsening phase. For
each matching scheme, Table 2 shows the edge-cut, the time required by the coarsening phase (CTime), and the time
required by the uncoarsening phase (UTime). UTime is the sum of the time spent in partitioning the coarse graph
(ITime), the time spent in refinement (RTime), and the time spent in projecting the partition of a coarse graph to the
next level finer graph (PTime).

In terms of the size of the edge-cut, there is no clear cut winner among the various matching schemes. The value
of 32EC for all schemes are within 5% of each other for most matrices. Out of these schemes, RM produces the best
partition for two matrices, HEM for six matrices, LEM for three, and HCM for one.

The time spent in coarsening does not vary significantly across different schemes. But RM and HEM requires the

11

Graph Name No. of Vertices No. of Edges Description
144 144649 1074393 3D Finite element mesh
4ELT 15606 45878 2D Finite element mesh
598A 110971 741934 3D Finite element mesh
ADD32 4960 9462 32-bit adder
AUTO 448695 3314611 3D Finite element mesh
BCSSTK30 28294 1007284 3D Stiffness matrix
BCSSTK31 35588 572914 3D Stiffness matrix
BCSSTK32 44609 985046 3D Stiffness matrix
BBMAT 38744 993481 2D Stiffness matrix
BRACK2 62631 366559 3D Finite element mesh
CANT 54195 1960797 3D Stiffness matrix
COPTER2 55476 352238 3D Finite element mesh
CYLINDER93 45594 1786726 3D Stiffness matrix
FINAN512 74752 261120 Linear programming
FLAP 51537 479620 3D Stiffness matrix
INPRO1 46949 1117809 3D Stiffness matrix
KEN-11 14694 33880 Linear programming
LHR10 10672 209093 Chemical engineering
LHR71 70304 1449248 Chemical engineering
M14B 214765 3358036 3D Finite element mesh
MAP1 267241 334931 Highway network
MAP2 78489 98995 Highway network
MEMPLUS 17758 54196 Memory circuit
PDS-20 33798 143161 Linear programming
PWT 36519 144793 3D Finite element mesh
ROTOR 99617 662431 3D Finite element mesh
S38584.1 22143 35608 Sequential circuit
SHELL93 181200 2313765 3D Stiffness matrix
SHYY161 76480 152002 CFD/Navier-Stokes
TORSO 201142 1479989 3D Finite element mesh
TROLL 213453 5885829 3D Stiffness matrix
VENKAT25 62424 827684 2D Coefficient matrix
WAVE 156317 1059331 3D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph partitioning and sparse matrix ordering algorithm.

least amount of time for coarsening, while LEM and HCM require the most (up to 30% more time than RM). This is
not surprising since RM looks for the first unmatched neighbor of a vertex (the adjacency lists are randomly permuted).
On the other hand, HCM needs to find the edge with the maximum edge density, and LEM produces coarser graphs
that have vertices with higher degree than the other three schemes; hence, LEM requires more time to both find a
matching and also to create the next level coarser graph. The coarsening time required by HEM is only slightly higher
(up to 4% more) than the time required by RM.

Comparing the time spent during uncoarsening, we see that both HEM and HCM require the least amount of time,
while LEM requires the most. In some cases, LEM requires as much as 7 times more time than either HEM or HCM.
This can be explained by the results shown in Table 3. This table shows the edge-cut of 32-way partition when no
refinement is performed (i.e., the final edge-cut is exactly the same as that found in the initial partition of the coarsest
graph). The edge-cut of LEM on the coarser graphs is significantly higher than that for either HEM or HCM. Because
of this, all three components of UTime increase for LEM relative to those of the other schemes. The ITime is higher
because the coarser graph has more edges, RTime increases because a large number of vertices need to be swapped
to reduce the edge-cut, and PTime increases because more vertices are along the boundary; which requires more
computation as described in Appendix A.3. The time spent during uncoarsening for RM is also higher than the time
required by the HEM scheme by up to 50% for some matrices for somewhat similar reasons.

From the discussion in the previous paragraphs we see that UTime is much smaller than CTime for HEM and
HCM, while UTime is comparable to CTime for RM and LEM. Furthermore, for HEM and HCM, as the problem size
increases UTime becomes an even smaller fraction of CTime. As discussed in the introduction, this is of particular
importance when the parallel formulation of the multilevel algorithm is considered [29].

As the experiments show, HEM is an excellent matching scheme that results in good initial partitions, and requires
the smallest overall run time. We selected the HEM as our matching scheme of choice because of its consistently good
behavior.

12

RM HEM LEM HCM
32EC CTime UTime 32EC CTime UTime 32EC CTime UTime 32EC CTime UTime

BCSSTK31 44810 5.93 2.46 45991 6.25 1.95 42261 7.65 4.90 44491 7.48 1.92
BCSSTK32 71416 9.21 2.91 69361 10.06 2.34 69616 12.13 6.84 71939 12.06 2.36
BRACK2 20693 6.06 3.41 21152 6.54 3.33 20477 6.90 4.60 19785 7.47 3.42

CANT 323.0K 19.70 8.99 323.0K 20.77 5.74 325.0K 25.14 23.64 323.0K 23.19 5.85
COPTER2 32330 5.77 2.95 30938 6.15 2.68 32309 6.54 5.05 31439 6.95 2.73

CYLINDER93 198.0K 16.49 5.25 198.0K 18.65 3.22 199.0K 21.72 14.83 204.0K 21.61 3.24
4ELT 1826 0.77 0.76 1894 0.80 0.78 1992 0.86 0.95 1879 0.92 0.74

INPRO1 78375 9.50 2.90 75203 10.39 2.30 76583 12.46 6.25 78272 12.34 2.30
ROTOR 38723 11.94 5.60 36512 12.11 4.90 37287 13.51 8.30 37816 14.59 5.10

SHELL93 84523 36.18 10.24 81756 37.59 8.94 82063 42.02 16.22 83363 43.29 8.54
TROLL 317.4K 62.22 14.16 307.0K 64.84 10.38 305.0K 81.44 70.20 312.8K 76.14 10.81
WAVE 73364 18.51 8.24 72034 19.47 7.24 70821 21.39 15.90 71100 22.41 7.20

Table 2: Performance of various matching algorithms during the coarsening phase. 32EC is the size of the edge-cut of a 32-way
partition, CTime is the time spent in coarsening, and UTime is the time spent during the uncoarsening phase.

RM HEM LEM HCM
BCSSTK31 144879 84024 412361 115471
BCSSTK32 184236 148637 680637 153945
BRACK2 75832 53115 187688 69370

CANT 817500 487543 1633878 521417
COPTER2 69184 59135 208318 59631

CYLINDER93 522619 286901 1473731 354154
4ELT 3874 3036 4410 4025

INPRO1 205525 187482 821233 141398
ROTOR 147971 110988 424359 98530

SHELL93 373028 237212 1443868 258689
TROLL 1095607 806810 4941507 883002
WAVE 239090 212742 745495 192729

Table 3: The size of the edge-cut for a 32-way partition when no refinement was performed, for the various matching schemes.

6.2 Initial Partition Algorithms

As described in Section 4, a number of algorithms can be used to partition the coarse graph. We have implemented the
following algorithms: (a) spectral bisection (SBP), (b) graph growing (GGP), and (c) greedy graph growing (GGGP).

The result of the partitioning algorithms for some matrices is shown in Table 4. These partitions were produced by
using the heavy-edge matching (HEM) during coarsening and the BKL(*,1) refinement policy during uncoarsening.
Four quantities are reported for each partitioning algorithm. These are: (a) the edge-cut of the initial partition of the
coarsest graph (IEC), (b) the edge-cut of the 2-way partition (2EC), (c) the edge-cut of a 32-way partition (32EC), and
(d) the combined time (IRTime) spent in partitioning (ITime) and refinement (RTime) for the 32-way partition (i.e.,
IRTime = ITime + RTime).

A number of interesting observations can be made from Table 4. The edge-cut of the initial partition (IEC) for the
GGGP scheme is consistently smaller than the other two schemes (4ELT is the only exception as SBP does slightly
better). SBP takes more time than GGP or GGGP to partition the coarse graph. But ITime for all these schemes
are fairly small (less than 20% of IRTime) in our experiments. Hence, much of the difference in the run time of the
three different initial partition schemes is due to refinement time associated with each. Furthermore, SBP produces
partitions that are significantly worse than those produced by GGP and GGGP (as it is shown in the IEC column of
Table 4). This happens because either the iterative algorithm used to compute the eigenvector does not converge within
the allowable number of iterations4, or the initial partition found by the spectral algorithm is far from a local minimum.

When the edge cut of the 2-way and 32-way partition is considered, the SBP scheme still does worse than GGP

4In our experiments we set the maximum number of iterations to 100.

13

SBP GGP GGGP
IEC 2EC 32EC IRTime IEC 2EC 32EC IRTime IEC 2EC 32EC IRTime

BCSSTK31 28305 3563 45063 2.74 7594 3563 43900 1.43 7325 3563 43991 1.40
BCSSTK32 17166 6006 74776 2.25 13506 6541 72745 1.70 11023 4856 68223 1.58
BRACK2 1771 846 22284 3.45 1508 774 21697 2.42 1335 765 20631 2.38

CANT 50211 18951 325394 4.18 41500 18941 326164 4.32 36542 18958 322709 3.46
COPTER2 14177 2883 31639 3.41 10301 2318 31947 1.91 7148 2191 30584 1.88

CYLINDER93 41934 21581 204752 2.71 32374 20621 201827 2.08 28956 20621 202702 2.01
4ELT 258 152 1788 1.0 274 153 1791 0.72 259 140 1755 0.70

INPRO1 18539 8146 79016 2.35 14575 7313 76190 1.59 13444 7455 74933 1.61
ROTOR 9869 2123 37006 4.75 6998 2123 39880 4.30 6479 2123 36379 3.36

SHELL93 49 0 91846 6.01 0 0 84197 5.02 0 0 82720 4.89
TROLL 138494 51845 318832 7.82 102518 48090 303842 6.37 95615 41817 312581 5.92
WAVE 56920 9987 74754 7.18 27020 9200 71774 4.84 24212 9086 71864 4.57

Table 4: Performance of various algorithms for performing the initial partition of the coarse graph.

and GGGP, although the relative difference in values of 2EC (and also 32EC) is smaller than it is for IEC. For the
2-way partition SBP performs better for only one matrix, and for the 32-way partition for none. Comparing GGGP
with GGP we see that, GGGP performs better than GGP for 9 matrices in the 2-way partition and for 9 matrices in
the 32-way partition. On the average for 32EC, SBP does 4.3% worse than GGGP and requires 47% more time, and
GGP does 2.4% worse than GGGP requiring 7.5% more time. Looking at the combined time required by partitioning
and refinement we see that GGGP, in all but one case, requires the least amount of time. This is because the initial
partition for GGGP is better than that for GGP; this good initial partition leads to less time spent in refinement during
the uncoarsening phase. In particular, for each matrix the performance for GGGP is better or very close to the best
scheme both in terms of edge-cut and runtime.

We also implemented the Kernighan-Lin partitioning algorithm (Section 4.2). Its performance was consistently
worse than that of GGGP in terms of IEC, and it also required more overall run time. Hence, we omitted these results
here.

In summary, the results in Table 4 show that GGGP consistently finds smaller edge-cuts than the other schemes,
and even requires slightly smaller run time. Furthermore, there is no advantage in choosing spectral bisection for
partitioning the coarse graph.

6.3 Refinement Policies

As described in Section 5, there are different ways that a partition can be refined during the uncoarsening phase. We
evaluated the performance of five refinement policies, in terms of partition quality as well as execution time. The
refinement policies that we evaluate are (a) single pass of Kernighan-Lin (KL(1)), (b) Kernighan-Lin refinement (KL),
(c) single pass of boundary Kernighan-Lin refinement (BKL(1)), (d) boundary Kernighan-Lin refinement (BKL), and
(e) the combination of BKL and BKL(1) (BKL(*,1)).

The result of these refinement policies for computing a 32-way partition of graphs corresponding to some of the
matrices in Table 1 is shown in Table 5. These partitions were produced by using the heavy-edge matching (HEM)
during coarsening and the greedy graph growing algorithm for initially partitioning the coarser graph.

A number of interesting conclusions can be drawn from Table 5. First, for each of the matrices and refinement
policies, the size of the edge-cut does not vary significantly for different refinement policies; all are within 15% of
the best refinement policy for that particular matrix. On the other hand, the time required by some refinement policies
does vary significantly. Some policies require up to 20 times more time than others. KL requires the most time while
BKL(1) requires the least.

Comparing KL(1) with KL, we see that KL performs better than KL(1) for 8 out of the 12 matrices. For these 8
matrices, the improvement is less than 5% on the average; however, the time required by KL is significantly higher
than that of KL(1). Usually, KL requires two to three times more time than KL(1).

Comparing the KL(1) and KL refinement schemes against their boundary variants, we see that the times required

14

KL(1) KL BKL(1) BKL BKL(*,1)
32EC RTime 32EC RTime 32EC RTime 32EC RTime 32EC RTime

BCSSTK31 45267 1.05 46852 2.33 46281 0.76 45047 1.91 45991 1.27
BCSSTK32 66336 1.39 71091 2.89 72048 0.96 68342 2.27 69361 1.47
BRACK2 22451 2.04 20720 4.92 20786 1.16 19785 3.21 21152 2.36

CANT 323.4K 3.30 320.5K 6.82 325.0K 2.43 319.5K 5.49 323.0K 3.16
COPTER2 31338 2.24 31215 5.42 32064 1.12 30517 3.11 30938 1.83

CYLINDER93 201.0K 1.95 200.0K 4.32 199.0K 1.40 199.0K 2.98 198.0K 1.88
4ELT 1834 0.44 1833 0.96 2028 0.29 1894 0.66 1894 0.66

INPRO1 75676 1.28 75911 3.41 76315 0.96 74314 2.17 75203 1.48
ROTOR 38214 4.98 38312 13.09 36834 1.93 36498 5.71 36512 3.20

SHELL93 91723 9.27 79523 52.40 84123 2.72 80842 10.05 81756 6.01
TROLL 317.5K 9.55 309.7K 27.4 314.2K 4.14 300.8K 13.12 307.0K 5.84
WAVE 74486 8.72 72343 19.36 71941 3.08 71648 10.90 72034 4.50

Table 5: Performance of five different refinement policies. All matrices have been partitioned in 32 parts. 32EC is the number of
edges crossing partitions, and RTime is the time required to perform the refinement.

by the boundary policies are significantly less than those required by their non-boundary counterparts. The time of
BKL(1) ranges from 29% to 75% of the time of KL(1), while the time of BKL ranges from 19% to 80% of the time
of KL. This seems quite reasonable, given that BKL(1) and BKL are more efficient implementations of KL(1) and
KL, respectively, that take advantage of the fact that the projected partition requires little refinement. But surprisingly,
BKL(1) and BKL lead to better edge-cut (than KL(1) and KL, respectively) in many cases. On the average, BKL(1)
performs similarly with KL(1), while BKL does better than KL by 2%. BKL(1) does better than KL(1) in 6 out of
the 12 matrices, and BKL does better than KL in 10 out the 12 matrices. Thus, overall the quality of the boundary
refinement policies is at least as good as that of their non-boundary counterparts.

The difference in quality between KL and BKL is because each algorithm inserts vertices into the KL data-structures
in a different order. At any given time, we may have more than one vertex with the same largest gain. Thus, a different
insertion order may lead to a different ordering of the vertices with the largest gain. Consequently, the KL and BKL
algorithms may move different subsets of vertices from one part to the other.

Comparing BKL(1) with BKL we see that the edge-cut is better for BKL for nearly all matrices, and the improve-
ment is relatively small (less than 4% on the average). However, the time required by BKL is always higher than
that of BKL(1) (in some cases up to four times higher). Thus, marginal improvement in the partition quality comes
at a significant increase in the refinement time. Comparing BKL(*,1) against BKL we see that its edge-cut is on the
average within 2% of that of BKL, while its runtime is significantly smaller than that of BKL and only somewhat
higher than that of BKL(1).

In summary, both the BKL and the BKL(*,1) refinement policies require substantially less time than KL, and pro-
duce smaller edge-cuts when coupled with the heavy-edge matching scheme. We believe that the BKL(*,1) refinement
policy strikes a good balance between small edge-cut and fast execution.

6.4 Comparison of Our Multilevel Scheme with Other Partitioning Schemes

The multilevel spectral bisection (MSB) [2] has been shown to be an effective method for partitioning unstructured
problems in a variety of applications. The MSB algorithm coarsens the graph down to a few hundred vertices using
random matching. It partitions the coarse graph using spectral bisection and obtains the Fiedler vector of the coarser
graph. During uncoarsening, it obtains an approximate Fiedler vector of the next level fine graph by interpolating the
Fiedler vector of the coarser graph, and computes a more accurate Fiedler vector using SYMMLQ [40]. By using
this multilevel approach, the MSB algorithm is able to compute the Fiedler vector of the graph in much less time than
that taken by the original spectral bisection algorithm. Note that MSB is a significantly different scheme than the
multilevel scheme that uses spectral bisection to partition the graph at the coarsest level. We used the MSB algorithm
in the Chaco [25] graph partitioning package to produce partitions for some of the matrices in Table 1 and compared
the results against the partitions produced by our multilevel algorithm that uses HEM during coarsening phase, GGGP

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

4E
LT

59
8A

ADD32

AUTO

BCSSTK30

BCSSTK31

BCSSTK32

BBM
AT

BRACK2

CANT

COPTER2

CYLL
IN

DER93

FIN
AN51

2
FLA

P

IN
PRO1

KEN-1
1

LH
R10

LH
R71

M
14

B

M
AP1

M
AP2

M
EM

PLU
S

PDS-2
0

PW
T

ROTOR

S38
58

4.
1

SHELL
93

SHYY16
1

TORSO

TROLL

VENKAT25

W
AVE

Our Multilevel vs Multilevel Spectral Bisection (MSB)

64 parts 128 parts 256 parts MSB (baseline)

Figure 3: Quality of our multilevel algorithm compared to the multilevel spectral bisection algorithm. For each matrix, the ratio of
the cut-size of our multilevel algorithm to that of the MSB algorithm is plotted for 64-, 128- and 256-way partitions. Bars under the
baseline indicate that our multilevel algorithm performs better.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

4E
LT

59
8A

ADD32

AUTO

BCSSTK30

BCSSTK31

BCSSTK32

BBM
AT

BRACK2

CANT

COPTER2

CYLL
IN

DER93

FIN
AN51

2
FLA

P

IN
PRO1

KEN-1
1

LH
R10

LH
R71

M
14

B

M
AP1

M
AP2

M
EM

PLU
S

PDS-2
0

PW
T

ROTOR

S38
58

4.
1

SHELL
93

SHYY16
1

TORSO

TROLL

VENKAT25

W
AVE

Our Multilevel vs Multilevel Spectral Bisection with Kernighan-Lin (MSB-KL)

64 parts 128 parts 256 parts MSB-KL (baseline)

Figure 4: Quality of our multilevel algorithm compared to the multilevel spectral bisection algorithm with Kernighan-Lin refinement.
For each matrix, the ratio of the cut-size of our multilevel algorithm to that of the MSB-KL algorithm is plotted for 64-, 128- and
256-way partitions. Bars under the baseline indicate that our multilevel algorithm performs better.

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

4E
LT

59
8A

ADD32

AUTO

BCSSTK30

BCSSTK31

BCSSTK32

BBM
AT

BRACK2

CANT

COPTER2

CYLL
IN

DER93

FIN
AN51

2
FLA

P

IN
PRO1

KEN-1
1

LH
R10

LH
R71

M
14

B

M
AP1

M
AP2

M
EM

PLU
S

PDS-2
0

PW
T

ROTOR

S38
58

4.
1

SHELL
93

SHYY16
1

TORSO

TROLL

VENKAT25

W
AVE

Our Multilevel vs Chaco Multilevel (Chaco-ML)

64 parts 128 parts 256 parts Chaco-ML (baseline)

Figure 5: Quality of our multilevel algorithm compared to the multilevel Chaco-ML algorithm. For each matrix, the ratio of the
cut-size of our multilevel algorithm to that of the Chaco-ML algorithm is plotted for 64-, 128- and 256-way partitions. Bars under the
baseline indicate that our multilevel algorithm performs better.

0

5

10

15

20

25

30

35

40

14
4

4E
LT

59
8A

ADD32

AUTO

BCSSTK30

BCSSTK31

BCSSTK32

BBM
AT

BRACK2

CANT

COPTER2

CYLL
IN

DER93

FIN
AN51

2
FLA

P

IN
PRO1

KEN-1
1

LH
R10

LH
R71

M
14

B

M
AP1

M
AP2

M
EM

PLU
S

PDS-2
0

PW
T

ROTOR

S38
58

4.
1

SHELL
93

SHYY16
1

TORSO

TROLL

VENKAT25

W
AVE

Relative Run-Times For 256-way Partition

Chaco-ML MSB MSB-KL Our Multilevel (baseline)

Figure 6: The time required to find a 256-way partition for Chaco-ML, MSB, and MSB-KL relative to the time required by our
multilevel algorithm.

17

during partitioning phase, and BKL(*,1) during the uncoarsening phase.
Figure 3 shows the relative performance of our multilevel algorithm compared to MSB. For each matrix we plot

the ratio of the edge-cut of our multilevel algorithm to the edge-cut of the MSB algorithm. Ratios that are less than
one indicate that our multilevel algorithm produces better partitions than MSB. From this figure we can see that for
all the problems, our algorithm produces partitions that have smaller edge-cuts than those produced by MSB. In some
cases, the improvement is as high as 70%. Furthermore, the time required by our multilevel algorithm is significantly
smaller than that required by MSB. Figure 6 shows the time required by different algorithms relative to that required
by our multilevel algorithm. From Figure 6, we see that compared with MSB, our algorithm is usually 10 times faster
for small problems, and 15 to 35 times faster for larger problems.

One way of improving the quality of MSB algorithm is to use the Kernighan-Lin algorithm to refine the partitions
(MSB-KL). Figure 4 shows the relative performance of our multilevel algorithm compared against the MSB-KL al-
gorithm. Comparing Figures 3 and 4 we see that the Kernighan-Lin algorithm does improve the quality of the MSB
algorithm. Nevertheless, our multilevel algorithm still produces better partitions than MSB-KL for many problems.
However, KL refinement further increases the run time of the overall scheme as shown in Figure 6, making the differ-
ence in the run time of MSB-KL and our multilevel algorithm even greater.

MSB MSB-KL Chaco-ML Our Multilevel
Matrix 64EC 128EC 256EC 64EC 128EC 256EC 64EC 128EC 256EC 64EC 128EC 256EC
144 96538 132761 184200 89272 122307 164305 89068 120688 161798 88806 120611 161563
4ELT 3303 5012 7350 2909 4567 6838 2928 4514 6869 2965 4600 6929
598A 68107 95220 128619 66228 91590 121564 75490 103514 133455 64443 89298 119699
ADD32 1267 1934 2728 705 1401 2046 738 1446 2104 675 1252 1929
AUTO 208729 291638 390056 203534 279254 370163 274696 343468 439090 194436 269638 362858
BCSSTK30 224115 305228 417054 211338 284077 387914 241202 318075 423627 190115 271503 384474
BCSSTK31 86244 123450 176074 67632 99892 143166 65764 98131 141860 65249 97819 140818
BCSSTK32 130984 185977 259902 109355 158090 225041 106449 153956 223181 106440 152081 222789
BBMAT 179282 250535 348124 54095 88133 129331 55028 89491 130428 55753 92750 132387
BRACK2 34464 49917 69243 30678 43249 61363 34172 46835 66944 29983 42625 60608
CANT 459412 598870 798866 444033 579907 780978 463653 592730 835811 442398 574853 778928
COPTER2 47862 64601 84934 45178 59996 78247 51005 65675 82961 43721 58809 77155
CYLINDER93 290194 431551 594859 285013 425474 586453 289837 417837 595055 289639 416190 590065
FINAN512 15360 27575 53387 13552 23564 43760 11753 22857 41862 11388 22136 40201
FLAP 35540 54407 80392 31710 50111 74937 31553 49390 74416 30741 49806 74628
INPRO1 125285 185838 264049 113651 172125 249970 113852 172875 249964 116748 171974 250207
KEN-11 20931 23308 25159 15809 19527 21540 14537 17417 19178 14257 16515 18101
LHR10 127778 148917 178160 59648 77694 137775 56667 79464 137602 58784 82336 139182
LHR71 540334 623960 722101 239254 292964 373948 204654 267197 350045 203730 260574 350181
M14B 124749 172780 232949 118186 161105 216869 120390 166442 222546 111104 156417 214203
MAP1 3546 6314 8933 2264 3314 5933 2564 4314 6933 1388 2221 3389
MAP2 1759 2454 3708 1308 1860 2714 1002 1570 2365 828 1328 2157
MEMPLUS 32454 33412 36760 19244 20927 24388 19375 21423 24796 17894 20014 23492
PDS-20 39165 48532 58839 28119 33787 41032 24083 29650 38104 23936 30270 38564
PWT 9563 13297 19003 9172 12700 18249 9166 12737 18268 9130 12632 18108
ROTOR 63251 88048 120989 54806 76212 105019 53804 75140 104038 53228 75010 103895
S38584.1 5381 7595 9609 2813 4364 6367 2468 4077 6076 2428 3996 5906
SHELL93 178266 238098 318535 126702 187508 271334 122501 191787 276979 124836 185323 269539
SHYY161 6641 9151 11969 4296 6242 9030 4133 6124 9984 4365 6317 9092
TORSO 413501 473397 522717 145149 186761 241020 168385 205393 257604 117997 160788 218155
TROLL 529158 706605 947564 455392 630625 851848 516561 691062 916439 453812 638074 864287
VENKAT25 50184 77810 116211 46019 72249 110331 45918 77889 114553 47514 73735 110312
WAVE 106858 142060 187192 98720 131484 172957 97558 128792 170763 97978 129785 171101

Table 6: The edge-cuts produced by the multilevel spectral bisection (MSB), multilevel spectral bisection followed by Kernighan-Lin
(MSB-KL), the multilevel algorithm implemented in Chaco (Chaco-ML), and our multilevel algorithm.

The graph partitioning package Chaco implements its own multilevel graph partitioning algorithm that is modeled
after the algorithm by Hendrickson and Leland [26, 25]. This algorithm, which we refer to as Chaco-ML, uses random
matching during coarsening, spectral bisection for partitioning the coarse graph, and Kernighan-Lin refinement every
other coarsening level during the uncoarsening phase. Figure 5 shows the relative performance of our multilevel algo-
rithms compared to Chaco-ML. From this figure we can see that our multilevel algorithm usually produces partitions
with smaller edge-cut than that of Chaco-ML. For some problems, the improvement of our algorithm is between 10%

18

to 45%. For the cases where Chaco-ML does better, it is only marginally better (less than 2%). Our algorithm is
usually two to seven times faster than Chaco-ML. Most of the savings come from the choice of refinement policy (we
use BKL(*,1)) which is usually four to six times faster than the Kernighan-Lin refinement implemented by Chaco-
ML. Note that we are able to use BKL(*,1) without much quality penalty only because we use the HEM coarsening
scheme. In addition, the GGGP used in our method for partitioning the coarser graph requires much less time than the
spectral bisection which is used in Chaco-ML. This makes a difference in those cases in which the graph coarsening
phase aborts before the number of vertices becomes very small. Also, for some problems, the Lanczos algorithm does
not converge, which explains the poor performance of Chaco-ML for graphs such as MAP1.

Table 6 shows the edge-cuts for 64-way, 128-way, and 256-way partition for different algorithms. Table 7 shows
the run time of different algorithms for finding a 256-way partition.

Matrix MSB MSB-KL Chaco-ML Our Multilevel
144 607.27 650.76 95.59 48.14
4ELT 24.95 26.56 7.01 3.13
598A 420.12 450.93 67.27 35.05
ADD32 18.72 21.88 4.23 1.63
AUTO 2214.24 2361.03 322.31 179.15
BCSSTK30 426.45 430.43 51.41 22.08
BCSSTK31 309.06 268.09 39.68 15.21
BCSSTK32 474.64 540.60 53.10 22.50
BBMAT 474.23 504.68 55.51 25.51
BRACK2 218.36 222.92 31.61 16.52
CANT 978.48 1167.87 108.38 47.70
COPTER2 185.39 194.71 31.92 16.11
CYLINDER93 671.33 697.85 91.41 39.10
FINAN512 311.01 340.01 31.00 17.98
FLAP 279.67 331.37 35.96 16.50
INPRO1 341.88 352.11 56.05 24.60
KEN-11 121.94 137.73 13.69 4.09
LHR10 142.58 168.26 18.95 8.08
LHR71 2286.36 2236.19 297.02 58.12
M14B 970.58 1033.82 140.34 74.04
MAP1 850.16 880.16 71.17 44.80
MAP2 195.09 196.34 22.41 11.76
MEMPLUS 117.89 133.05 36.87 4.32
PDS-20 249.93 256.90 20.85 11.16
PWT 70.09 76.67 16.22 7.16
ROTOR 550.35 555.12 59.46 29.46
S38584.1 178.11 199.96 14.11 4.72
SHELL93 1111.96 1004.01 153.86 71.59
SHYY161 129.99 142.56 29.82 10.13
TORSO 1053.37 1046.89 127.76 63.93
TROLL 3063.28 3360.00 302.15 132.08
VENKAT25 254.52 263.34 63.49 20.81
WAVE 658.13 673.45 90.53 44.55

Table 7: The time required to find a 256-way partition by the multilevel spectral bisection (MSB), multilevel spectral bisection
followed by Kernighan-Lin (MSB-KL), the multilevel algorithm implemented in Chaco (Chaco-ML), and our multilevel algorithm. All
times are in seconds.

7 Experimental Results—Sparse Matrix Ordering

The multilevel graph partitioning algorithm can be used to find a fill reducing ordering for a symmetric sparse matrix
via recursive nested dissection. In the nested dissection ordering algorithms, a vertex separator is computed from the
edge separator of a 2-way partition. LetS be the vertex separator and letA andB be the two parts of the vertex set of
G that are separated byS. In the nested dissection ordering,A is ordered first,B second, while the vertices inS are
numbered last. BothA andB are ordered by recursively applying nested dissection ordering. In our multilevel nested
dissection algorithm (MLND) a vertex separator is computed from an edge separator by finding the minimum vertex
cover [41, 44]. The minimum vertex cover has been found to produce very small vertex separators.

The overall quality of a fill reducing ordering depends on whether or not the matrix is factored on a serial or

19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

14
4

4E
LT

59
8A

AUTO

BCSSTK30

BCSSTK31

BCSSTK32

BRACK2

CANT

COPTER2

CYLL
IN

DER93

FIN
AN51

2
FLA

P

IN
PRO1

M
14

B
PW

T

ROTOR

SHELL
93

TORSO

TROLL

W
AVE

Our Multilevel Nested Disection vs Multiple Minimum Degree and Spectral Nested Disection

MLND SND MMD (baseline - number of flops)

Figure 7: Quality of our multilevel nested dissection relative to the multiple minimum degree, and the spectral nested dissection
algorithm. Bars under the baseline indicates that MLND performs better than MMD.

parallel computer. On a serial computer, a good ordering is the one that requires the smaller number of operations
during factorization. The number of operations required is usually related to the number of non-zeros in the Cholesky
factors. The fewer non-zeros usually lead to fewer operations. However, similar fills may have different operation
counts; hence, all comparisons in this section are only in terms of the number of operations. On a parallel computer,
a fill reducing ordering, besides minimizing the operation count, should also increase the degree of concurrency that
can be exploited during factorization. In general, nested dissection based orderings exhibit more concurrency during
factorization than minimum degree orderings [13, 35].

The minimum degree [13] ordering heuristic is the most widely used fill reducing algorithm that is used to order
sparse matrices for factorization on serial computers. The minimum degree algorithm has been found to produce very
good orderings. The multiple minimum degree algorithm [35] is the most widely used variant of minimum degree due
to its very fast runtime.

The quality of the orderings produced by our multilevel nested dissection algorithm (MLND) compared to that of
MMD is shown in Table 8 and Figure 7. For our multilevel algorithm, we used the HEM scheme during coarsening,
the GGGP scheme for partitioning the coarse graph and the BKL(*,1) refinement policy during the uncoarsening
phase. Looking at this figure we see that our algorithm produces better orderings for 18 out of the 21 test problems.
For the other three problems MMD does better. Also, from Figure 7 we see that MLND does consistently better as
the size of the matrices increases. In particular, for large finite element meshes, such asAUTO, MLND requires half
the amount of memory required by MMD, and 4.7 times fewer operations. When all 21 test matrices are considered,
MMD produces orderings that require a total of 4.81 teraflops, whereas the orderings produced by MLND require only
1.23 teraflops. Thus, the ensemble of 21 matrices can be factored roughly 3.9 times faster if ordered with MLND.

However, another, even more important, advantage of MLND over MMD, is that it produces orderings that exhibit
significantly more concurrency than MMD. The elimination trees produced by MMD (a) exhibit little concurrency
(long and slender), and (b) are unbalanced so that subtree-to-subcube mappings lead to significant load imbalances [32,
12, 18]. On the other hand, orderings based on nested dissection produce orderings that have both more concurrency
and better balance [30, 22]. Therefore, when the factorization is performed in parallel, the better utilization of the
processors can cause the ratio of the run time of parallel factorization algorithms running ordered using MMD and that
using MLND to be substantially higher than the ratio of their respective operation counts.

The MMD algorithm is usually two to three times faster than MLND for ordering the matrices in Table 1. How-
ever, efforts to parallelize the MMD algorithm have had no success [14]. In fact, the MMD algorithm appears to be

20

Matrix MMD SND MLND
144 2.4417e+11 7.6580e+10 6.4756e+10
4ELT 1.8720e+07 2.6381e+07 1.6089e+07
598A 6.4065e+10 2.5067e+10 2.2659e+10
AUTO 2.8393e+12 7.8352e+11 6.0211e+11
BCSSTK30 9.1665e+08 1.8659e+09 1.3822e+09
BCSSTK31 2.5785e+09 2.6090e+09 1.8021e+09
BCSSTK32 1.1673e+09 3.9429e+09 1.9685e+09
BRACK2 3.3423e+09 3.1463e+09 2.4973e+09
CANT 4.1719e+10 2.9719e+10 2.2032e+10
COPTER2 1.2004e+10 8.6755e+09 7.0724e+09
CYLINDER93 6.3504e+09 5.4035e+09 5.1318e+09
FINAN512 5.9340e+09 1.1329e+09 1.7301e+08
FLAP 1.4246e+09 9.8081e+08 8.0528e+08
INPRO1 1.2653e+09 2.1875e+09 1.7999e+09
M14B 2.0437e+11 9.3665e+10 7.6535e+10
PWT 1.3819e+08 1.3919e+08 1.3633e+08
ROTOR 3.1091e+10 1.8711e+10 1.1311e+10
SHELL93 1.5844e+10 1.3844e+10 8.0177e+09
TORSO 7.4538e+11 3.1842e+11 1.8538e+11
TROLL 1.6844e+11 1.2844e+11 8.6914e+10
WAVE 4.2290e+11 1.5351e+11 1.2602e+11

Table 8: The number of operations required to factor various matrices when ordered with multiple minimum degree (MMD), spectral
nested dissection (SND), and our multilevel nested dissection (MLND).

inherently serial in nature. On the other hand, the MLND algorithm is amenable to parallelization. In [29] we present
a parallel formulation of our MLND algorithm that achieves a speedup of as much as 57 on 128-processor Cray T3D
(over the serial algorithm running on a single T3D processor) for some graphs.

Spectral nested dissection (SND) [45] can be used for ordering matrices for parallel factorization. The SND algo-
rithm is based on the spectral graph partitioning algorithm described in Section 4.1. We have implemented the SND
algorithm described in [45]. As in the case of MLND, the minimum vertex cover algorithm was used to compute a
vertex separator from the edge separator. The quality of the orderings produced by our multilevel nested dissection
algorithm compared to that of the spectral nested dissection algorithm is also shown in Figure 7. From this figure
we can see that MLND produces orderings that are better than SND for all 21 test matrices. The total number of
operations required to factor the matrices ordered using SND is 1.68 teraflops which is 37% more than the of MLND.
However, as discussed in Section 6.4, the runtime of SND is substantially higher than that of MLND. Also, SND
cannot be parallelized any better than MLND [29, 1]; therefore, it will always be slower than MLND.

8 Characterization of Different Graph Partitioning Schemes

Due to the importance of the problem, a large number of graph partitioning schemes have been developed. These
schemes differ widely in the edge-cut quality produced, run time, degree of parallelism, and applicability to certain
kind of graphs. Often, it is not clear as to which scheme is better under what scenarios. In this section, we categorize
these properties of some graph partitioning algorithms that are commonly used in finite element applications. This
task is quite difficult, as it is not possible to precisely model the properties of the graph partitioning algorithms.
Furthermore, we don’t have enough data on the edge-cut quality and run time for a common pool of benchmark graphs.
This paper presents extensive comparisons of multilevel scheme with MSB and MSB-KL. Limited comparison with
other schemes can be made by looking at the edge-cut quality and run time for graphs that are used in this paper as
well as in the evaluation of other schemes elsewhere. We try to make reasonable assumptions whenever enough data is
not available. For the sake of simplicity, we have chosen to represent each property in terms of a small discrete scale.
In absence of extensive data, we could not have done any better anyway.

In Table 9 we show three different variations of spectral partitioning [47, 46, 26, 2], the multilevel partitioning
described in this paper, the levelized nested dissection [11], the Kernighan-Lin partition [31], the coordinate nested

21

dissection (CND) [23], two variations of the inertial partition [38, 25], and two variants of geometric partitioning
[37, 36, 16].

1

1

1 no

no

no

no

yes

yes

no

no

no

Multilevel Partitioning

Kernighan-Lin

Inertial

Inertial-KL

no

Num
be

r o
f T

ria
ls

Nee
ds

 C
oo

rd
ina

te
s

Geometric Partitioning

yes

Deg
re

e
of

 P
ar

all
eli

sm

Qua
lity

Lo
ca

l V
iew

Glob
al

View

Levelized Nested Dissection

Coordinate Nested Dissection

Mulitlevel Spectral Bisection-KL

Run
 T

im
e

Geometric Partitioning-KL

yes

yes

yes

yes

50 yes

yes10

Multilevel Spectral Bisection

1

1

1

10

Spectral Bisection

1

1

50

1

1

10

50

1

Table 9: Characteristics of various graph partitioning algorithms.

For each graph partitioning algorithm, Table 9 shows a number of characteristics. The first column shows the
number of trials that are often performed for each partitioning algorithm. For example, for Kernighan-Lin, different
trials can be performed each starting with a random partition of the graph. Each trial is a different run of the partitioning
algorithm, and the overall partition is determined as the best of these multiple trials. As we can see from this table,
some algorithms require only a single trial either because, multiple trials will give the same partition (i.e., the algorithm
is deterministic), or the single trial gives very good results (as in the case of multilevel graph partitioning). However,
for some schemes like Kernighan-Lin and geometric partitioning, different trials yield significantly different edge-cuts
because these schemes are highly sensitive to the initial partition. Hence, these schemes usually require multiple trials
in order to produce good quality partitions. For multiple trials, we only show the case of 10 and 50 trials, as often
the quality saturates beyond 50 trials, or the run time becomes too large. The second column shows whether the
partitioning algorithm requires coordinates for the vertices of the graph. Some algorithms such as CND and Inertial
can work only if coordinate information is available. Others only require the set of vertices and edges connecting
them.

The third column of Table 9 shows the relative quality of the partitions produced by the various schemes. Each
additional circle corresponds to roughly 10% improvement in the edge-cut. The edge-cut quality for CND serves as the
base, and it is shown with one circle. Schemes with two circles for quality should find partitions that are roughly 10%
better than CND. This column shows that the quality of the partitions produced by our multilevel graph partitioning
algorithm and the multilevel spectral bisection with Kernighan-Lin is very good. The quality of geometric partitioning

22

with Kernighan-Lin refinement is also equally good, when around 50 or more trials are performed5. The quality of
the other schemes is worse than the above three by various degrees. Note that for both Kernighan-Lin partitioning and
geometric partitioning the quality improves as the number of trials increases.

The reason for the differences in the quality of the various schemes can be understood if we consider the degree of
quality as a sum of two quantities that we refer to aslocal viewandglobal view. A graph partitioning algorithm has a
local view of the graph if it is able to do localized refinement. According to this definition, all the graph partitioning
algorithms that use at various stages of their execution variations of the Kernighan-Lin partitioning algorithm possess
this local view, whereas the other graph partitioning algorithms do not. Global view refers to the extent that the graph
partitioning algorithm takes into account the structure of the graph. For instance, spectral bisection algorithms take
into account only global information of the graph by minimizing the edge-cut in the continuous approximation of
the discrete problem. On the other hand, schemes such as a single trial of Kernighan-Lin, utilize no graph structural
information, since it starts from a random bisection. Schemes that require multiple trials, improve the amount of
global graph structure they exploit as the number of trials increases. Note that the sum of circles for global and local
view columns is equal to the number of circles for quality for various algorithms. The global view of multilevel graph
partitioning is among the highest of that of the other schemes. This is because the multilevel graph partitioning captures
global graph structure at two different levels. First, it captures global structure through the process of coarsening [27],
and second, it captures global structure during the initial graph partitioning by performing multiple trials.

The sixth column of Table 9 shows the relative time required by different graph partitioning schemes. CND,
inertial, and geometric partitioning with one trial require relatively small amount of time. We show the run time of
these schemes by one square. Each additional square corresponds to roughly a factor of 10 increase in the run time. As
we can see, spectral graph partition schemes require several orders of magnitude more time than the faster schemes.
However, the quality of the partitions produced by the faster schemes is relatively poor. The quality of the geometric
partitioning scheme can be improved by increasing the number of trials and/or by using the Kernighan-Lin algorithm,
both of which significantly increase the run time of this scheme. On the other hand, multilevel graph partitioning
requires moderate amount of time, and produces partitions of very high quality.

The degree of parallelizability of different schemes differs significantly and is depicted by a number of triangles in
the seventh column of Table 9. One triangle means that the scheme is largely sequential, two triangles means that the
scheme can exploit a moderate amount of parallelism, and three triangles means that the scheme can be parallelized
quite effectively. Schemes that require multiple trials are inherently parallel, as different trials can be done on different
processors. In contrast, a single trial of Kernighan-Lin is very difficult to parallelize [15], and appears inherently
serial in nature. Multilevel schemes that do not rely upon Kernighan-Lin [29] and the spectral bisection scheme are
moderately parallel in nature. As discussed in [29], the asymptotic speedup for these schemes is bounded byO(

√
p).

O(p) speedup can be obtained in these schemes only if the graph is nearly well partitioned among processors. This can
happen if the graph arises from an adaptively refined mesh. Schemes that rely on coordinate information do not seem
to have this limitation, and in principle it appears that these schemes can be parallelized quite effectively. However,
all available parallel formulation of these schemes [23, 8] obtained no better speedup than obtained for the multilevel
scheme in [29].

9 Conclusion and Direction for Future Research

Our experiments with multilevel schemes have shown that they work quite well for many different types of coarsening,
initial partition, and refinement schemes. In particular, all the coarsening schemes we experimented with, provide
a good global view of the graph, and the Kernighan-Lin algorithm or its variants used for refinement during the
uncoarsening phase provide a good local view. Due to the combined global and local view provided by the coarsening
and refinement schemes, the choice of the algorithm used to partition the coarse graph seems to have relatively small
effect on the overall quality of the partition. In particular, there seems to be no advantage gained by using spectral

5This conclusion is an extrapolation of the results presented in [16] where it was shown that the geometric partitioning with 30 trials (default
geometric) produces partitions comparable to that of multilevel spectral bisection without Kernighan-Lin refinement.

23

bisection for partitioning the coarsest graph. The multilevel algorithm when used to find a fill reducing ordering is
consistently better than spectral nested dissection, and substantially better than multiple minimum degree for large
graphs. The reason is that unlike the multilevel algorithm, the multiple minimum degree algorithm does not have a
global view of the graph, which is critical for good performance on large graphs. The multilevel algorithm that uses
HEM for coarsening and BKL(1) or BKL(*,1) for refinement can be parallelized effectively. The reason is that this
combination requires very little time for refinement, which is the most serial part of the algorithm. The coarsening
phase is relatively much easier to parallelize [29].

References
[1] Stephen T. Barnard and Horst Simon. A parallel implementation of multilevel recursive spectral bisection for application to

adaptive unstructured meshes. InProceedings of the seventh SIAM conference on Parallel Processing for Scientific Computing,
pages 627–632, 1995.

[2] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning
unstructured problems. InProceedings of the sixth SIAM conference on Parallel Processing for Scientific Computing, pages
711–718, 1993.

[3] Earl R. Barnes. An algorithm for partitioning the nodes of a graph.SIAM J. Algebraic Discrete Methods, 3(4):541–550,
December 1984.

[4] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In6th SIAM Conf. Parallel Processing for
Scientific Computing, pages 445–452, 1993.

[5] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algorithms with good average case behavior.Combi-
natorica, 7(2):171–191, 1987.

[6] Tony F. Chan, John R. Gilbert, and Shang-Hua Teng. Geometric spectral partitioning. Technical report, Xerox PARC Tech.
Report., 1994. Available at ftp://parcftp.xerox.com/pub/gilbert/index.html.

[7] Chung-Kuan Cheng and Yen-Chuen A. Wei. An improved two-way partitioning algorithm with stable performance.IEEE
Transactions on Computer Aided Design, 10(12):1502–1511, December 1991.

[8] Pedro Diniz, Steve Plimpton, Bruce Hendrickson, and Robert Leland. Parallel algorithms for dynamically partitioning un-
structured grids. InProceedings of the seventh SIAM conference on Parallel Processing for Scientific Computing, pages
615–620, 1995.

[9] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitions. InIn Proceedings 19th IEEE
Design Automation Conference, pages 175–181, 1982.

[10] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. InProceedings of IEEE International Conference
on Computer Aided Design, pages 520–523, 1990.

[11] A. George. Nested dissection of a regular finite-element mesh.SIAM Journal on Numerical Ananlysis, 10:345–363, 1973.

[12] A. George and J. W.-H. Liu.Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

[13] A. George and J. W.-H. Liu. The evolution of the minimum degree ordering algorithm.SIAM Review, 31(1):1–19, March
1989.

[14] Madhurima Ghose and Edward Rothberg. A parallel implementation of the multiple minimum degree ordering heuristic.
Technical report, Old Dominion University, Norfolk, VA, 1994.

[15] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor.International
Journal of Parallel Programming, (16):498–513, 1987.

[16] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partitioning: Implementation and experiments. In
Proceedings of International Parallel Processing Symposium, 1995.

[17] T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning. Technical report, Department of Computer
Science, University of Minnesota, Minneapolis, 1994.

[18] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithms for sparse matrix factor-
ization. Technical Report 94-63, Department of Computer Science, University of Minnesota, Minneapolis, MN,
1994. To appear inIEEE Transactions on Parallel and Distributed Computing. Available on WWW at URL
http://www.cs.umn.edu/˜karypis/papers/sparse-cholesky.ps.

24

[19] Lars Hagen and Andrew Kahng. Fast spectral methods for ratio cut partitioning and clustering. InProceedings of IEEE
International Conference on Computer Aided Design, pages 10–13, 1991.

[20] Lars Hagen and Andrew Kahng. A new approach to effective circuit clustering. InProceedings of IEEE International
Conference on Computer Aided Design, pages 422–427, 1992.

[21] S.W. Hammond.Mapping Unstructured Grid Problems to Massively Parallel Computers. PhD thesis, Rensselaer Polytechnic
Institute, Troy, New York, 1992.

[22] M. T. Heath, E. G.-Y. Ng, and Barry W. Peyton. Parallel algorithms for sparse linear systems.SIAM Review, 33:420–460,
1991. Also appears in K. A. Gallivan et al.Parallel Algorithms for Matrix Computations. SIAM, Philadelphia, PA, 1990.

[23] M. T. Heath and Padma Raghavan. A Cartesian parallel nested dissection algorithm.SIAM Journal of Matrix Analysis and
Applications, 16(1):235–253, 1995.

[24] Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning algorithm for mapping parallel computations.
Technical Report SAND92-1460, Sandia National Laboratories, 1992.

[25] Bruce Hendrickson and Robert Leland. The chaco user’s guide, version 1.0. Technical Report SAND93-2339, Sandia National
Laboratories, 1993.

[26] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301,
Sandia National Laboratories, 1993.

[27] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. Technical Report TR 95-037,
Department of Computer Science, University of Minnesota, 1995. Also available on WWW at URL
http://www.cs.umn.edu/˜karypis/papers/mlevelanalysis.ps. A short version appears in Supercomputing 95.

[28] G. Karypis and V. Kumar. Multilevel graph partition and sparse matrix ordering. InIntl. Conf. on Parallel Processing, 1995.
Available on WWW at URL http://www.cs.umn.edu/˜karypis/papers/mlevelserial.ps.

[29] G. Karypis and V. Kumar. A parallel algorithms for multilevel graph partitioning and sparse matrix ordering. Techni-
cal Report TR 95-036, Department of Computer Science, University of Minnesota, 1995. Also available on WWW at
URL http://www.cs.umn.edu/˜karypis/papers/mlevelparallel.ps. A short version appears in Intl. Parallel Processing Sym-
posium 1996.

[30] George Karypis, Anshul Gupta, and Vipin Kumar. A parallel formulation of interior point algorithms. InSupercomputing 94,
1994. Available on WWW at URL http://www.cs.umn.edu/˜karypis/papers/interior-point.ps.

[31] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell System Technical Journal,
1970.

[32] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.Introduction to Parallel Computing: Design and Analysis
of Algorithms. Benjamin/Cummings Publishing Company, Redwood City, CA, 1994.

[33] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with
applications to approximation algorithms. In29th Annual Symposium on Foundations of Computer Science, pages 422–431,
1988.

[34] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.SIAM Journal on Applied Mathematics, 36:177–189,
1979.

[35] J. W.-H. Liu. Modification of the minimum degree algorithm by multiple elimination.ACM Transactions on Mathematical
Software, 11:141–153, 1985.

[36] Gary L. Miller, Shang-Hua Teng, W. Thurston, and Stephen A. Vavasis. Automatic mesh partitioning. In A. George, John R.
Gilbert, and J. W.-H. Liu, editors,Sparse Matrix Computations: Graph Theory Issues and Algorithms. (An IMA Workshop
Volume). Springer-Verlag, New York, NY, 1993.

[37] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach to graph separators. InProceedings
of 31st Annual Symposium on Foundations of Computer Science, pages 538–547, 1991.

[38] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent computers. In A. K. Noor, editor,
American Soc. Mech. Eng, pages 291–307, 1986.

[39] Jr. P. Ciarlet and F. Lamour. On the validity of a front-oriented approach to partitioning large sparse graphs with a connectivity
constraint. Technical Report 94-37, Computer Science Department, UCLA, Los Angeles, CA, 1994.

[40] C. C. Paige and M. A. Saunders. Solution to sparse indefinite systems of linear equations.SIAM Journal on Numerical
Ananlysis, 12:617–629, 1974.

[41] Christos H. Papadimitriou and Kenneth Steiglitz.Combinatorial Optimization. Prentice Hall, Englewood Cliffs, NJ, 1982.

25

[42] B. N. Parlett.The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980.

[43] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox. Graph contraction and physical optimization methods: a quality-
cost tradeoff for mapping data on parallel computers. InInternational Conference of Supercomputing, 1993.

[44] A. Pothen and C-J. Fan. Computing the block triangular form of a sparse matrix.ACM Transactions on Mathematical
Software, 1990.

[45] Alex Pothen, H. D. Simon, and Lie Wang. Spectral nested dissection. Technical Report 92-01, Computer Science Department,
Pennsylvania State University, University Park, PA, 1992.

[46] Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast implementation of spectral nested dissection.
In Supercomputing ’92 Proceedings, pages 42–51, 1992.

[47] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs.SIAM Journal of
Matrix Analysis and Applications, 11(3):430–452, 1990.

[48] P. Raghavan. Line and plane separators. Technical Report UIUCDCS-R-93-1794, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL 61801, February 1993.

A Implementation Framework

The multilevel algorithm described in Section 2.1 consists of a number of different algorithms. Efficient implementa-
tion of these algorithms and good methods of passing information between the various phases is essential to the overall
fast execution of the algorithm. In the next sections we briefly describe the algorithms and data structures we used for
the implementation of the algorithm.

A.1 Graph Data Structure

The data structure used to store graphG = (V, E) consists of two arrays. The first array calledVtxsstores information
about the vertices while the second array calledAdjncystores the adjacency lists of the vertices. For each vertexv ∈ V ,
Vtxs[v] contains the following five quantities:

vwgt the weight ofv.

nedges the size of the adjacency list ofv.

iedges the index intoAdjncythat is the beginning of the adjacency list ofv.

cewgt the weight of the edges that have been contracted to createv (if v is a multinode).

adjwgt the sum of the weight of the edges adjacent tov.

These quantities are used during different phases of the multilevel algorithm, and greatly improve the performance of
the multilevel algorithm. Also, as the next section shows, they are computed incrementally during coarsening, hence
they do not increase the overall run time of the algorithm.

A.2 Coarsening Phase

Each coarsening phase consists of two different stages. During the first stage (matching stage), a matching is computed
using either the RM, HEM, LEM, or HCM schemes, while during the second stage (contraction stage), a coarser graph
is created by contracting the vertices as dictated by the matching.

The output of the matching stage, is two vectorsMatch andMap, such that for each vertexv, Match[v] stores
the vertex with whichv has been matched, andMap[v] stores the label ofv in the coarser graph. If during the
matching stage, vertexv remains unmatched, thenMatch[v] = v. Note that for every pair of matched vertices,(v, u),
Map[v] =Map[u]. Initially, the vectorMatch is initialized to indicate that all vertices are unmatched. Since all the
matching schemes use randomized algorithms, a random permutation vector is created to guide the order at which
vertices are visited. As the vertices are visited in random order, they are assigned consecutive labels.

26

The RM matching scheme requires that a vertex is randomly matched with one if its unmatched adjacent vertices.
To avoid having to traverse the entire adjacency list to find all the unmatched vertices and then randomly select one of
them, we initially permute the adjacency lists of all the vertices ofG0 randomly. By doing that we only have to look
for the first unmatched vertex, since the randomization ofG0 coupled with the random visitation order ensures good
randomization.

During the contraction step, theMatch, andMap vectors are used to contract the graph. Letv1, v2 be two vertices
that have been matched. The label of the contracted vertex isu1 =Map[v1]. The vertices adjacent tou1 are given by

Ad j (u1) =
(
{Map[x]|x ∈ Ad j (v1)}

⋃
{Map[x]|x ∈ Ad j (v2)}

)
− {u1},

and the weight of an edge(u1, u2) is given by

w(u1, u2) =
∑

x
{w(v1, x)|Map[x] = u2} +

∑
x
{w(v2, x)|Map[x] = u2}.

To efficiently implement the above operation for all matched vertices, we use a table to keep track of the vertices seen
so far. These data structures allow us to implement graph contraction by visiting each edge only once; thus, graph
contraction takes time proportional to the number of edges.

Also, while computing the adjacency list for each vertexu1 in the coarser graph, we also compute the remaining
three quantities associated with each vertex (i.e., vwgt, cewgt, andadjwgt). Thevwgtof u1 is computed as the sum of
thevwgts ofv1 andv2. Thecewgtof u1 is computed as the sum of thecewgts ofv1 andv2, plus the weight of the edge
connecting these vertices. Finally theadjwgtof u1 is computed sum of theadjwgts ofv1 andv2, minus the weight of
the edge connecting them.

A.3 Uncoarsening Phase

The uncoarsening phase consists of two separate stages. In the fist stage, the partitionPi+1 of the graphGi+1 is
projected back toGi (projection stage), and during the second stage,Pi is refined using one of the refinement schemes
described in Section 5 (refinement stage).

All the various partition refinement schemes described in Section 5 are based on swapping vertices between par-
titions based on the reduction in the edge-cut using variations of the Kernighan-Lin algorithm. As described in Sec-
tion 4.2, the selections made by the Kernighan-Lin algorithm are driven by the gain value of a vertex (Equation 3).
The gain values are often computed using two arraysI D andE D where for each vertexv,

I D[v] =
∑

(v,u)∈E∧P[v]=P[u]
w(v, u), and E D[v] =

∑
(v,u)∈E∧P[v]6=P[u]

w(v, u). (4)

The valueI D[v] is called theinternal degreeof v, and is the sum of the edge-weights of the adjacent vertices ofv

that are in the same partition asv, and the value ofE D[v] is called theexternal degreeof v and is the sum of the
edge-weights of the adjacent vertices ofv that are at a different partition. Given these arrays, the gain of a vertexv is
given bygv = E D[v] − I D[v]. Note that the edge-cut of a partition is given by 0.5

∑
v E D[v], and vertexv belongs

at the boundary if and only ifE D[v] > 0.
In our implementation, after partitioning the coarse graphGm using one of the algorithms described in Section 4,

the internal and external degrees of the vertices ofGm are computed using Equation 4. This is the only time that these
quantities are computed explicitly. The internal and external degrees of all other graphsGi with i < m, are computed
incrementally during the projection stage. This is done as follows. Consider vertexv ∈ Vi and letv1 andv2 be the
vertices ofVi−1 that where combined intov. Depending on the values ofI D[v], andE D[v] we have three different
cases.

E D[v] = 0
In this case,E D[v1] = 0 andI D[v1] is equal to the sum of the edge-weights ofv1. Similarly E D[v2] = 0 and
I D[v2] is equal to the sum of the edge-weights ofv2.

27

I D[v] = 0
In this caseI D[v1] and I D[v2] is equal to the weight of the edge(v1, v2) that can be computed from the
difference of the contracted edge weights ofv1, v2, andv. The value forE D[v1] (E D[v2]) is equal to the sum
of the edge-weights ofv1 (v2) minusI D[v1] (I D[v2]).

E D[v] > 0 and I D[v] > 0
In this case the value ofI D[v1] and E D[v1] are computed explicitly, and the values ofI D[v2] and E D[v2]
are computed as a difference of those forv1 andv. SpecificallyE D[v2] = E D[v] − E D[v1], andI D[v2] =
I D[v] − I D[v1] − w(v1, v2).

Thus, only when vertexv is at the partition boundary we need to explicitly compute its internal and/or external
degrees. Since boundary vertices are a small percentage of the total number of vertices, computing the internal and
external degrees during projection results in dramatic speed improvements. During the refinement stage, the internal
and external degrees are kept consistent with respect to the partition. This is done by updating the degrees of the
vertices adjacent to the one just being moved from one partition to the other (a computation that is required by the
Kernighan-Lin algorithm), and by rolling back any speculative computation at the end of the refinement algorithm.

Given the above framework, the boundary refinement algorithms described in Section 5.2 require inserting into the
data structures only the vertices whose external degree is positive.

A.4 Data Structures for Kernighan-Lin

As discussed in Section 4.2, the efficiency of the KL algorithm depends on the data structure used to store the gains of
the vertices that have not been swapped yet. In our algorithm, for each partition, depending on the level of the coarse
graph, we use either a doubly-linked list of gain buckets, or a table of gain-buckets.

The doubly-linked list is maintained in a decreasing gain order. Vertices with the same gain are inserted in the same
gain-bucket. The table of gain-buckets, contains an entry for each possible value of the gain, and is effective when the
range of values is small. This is usually the case forGi wheni is small. Wheni is large (coarser graphs), the range of
values that the gain can get is high, making this implementation more expensive that the one that uses linked-lists.

Each gain-bucket is implemented as a doubly-linked list and contains the vertices that have a particular gain. An
auxiliary table is used that stores for each vertexv a pointer to the node of the gain-bucket that storesv. This table
allow us to locate the gain-bucket’s node for a vertex in constant time.

When the gains are stored using a doubly-linked list of gain-buckets, extracting the maximum gain vertex takes
constant time, however, inserting a vertex takes time linear to the size of the doubly-linked list. However, when using
an array of gain-buckets, inserting a vertex takes constant time, but extracting the vertex with the maximum gain may
sometimes take more than constant time.

In the implementation of the boundary KL algorithm, the method that is used to store the boundary vertices is also
important. One possibility is to not store the boundary vertices anywhere, and simply determine them during each
iteration of the boundary KL algorithm. Determining if a vertex is on the boundary is simple since, its external degree
is greater than zero. However, in doing so, we make the complexity of the boundary KL algorithm to be in the order
of the number of vertices, even when the boundary is very small. In our implementation, we use a hash-table to store
the boundary vertices. A vertex is in the boundary if it is stored in the hash-table. The size of the hash-table is set to
be twice the size of the boundary of the next level finer graph. During BKL, any vertices that move away from the
boundary are removed from the hash-table, and any vertices that move to the boundary are inserted in the hash-table.

28

