
Bullet: High Bandwidth Data Dissemination
Using an Overlay Mesh

Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat∗
Department of Computer Science

Duke University

{dkostic,razor,albrecht,vahdat}@cs.duke.edu

ABSTRACT
In recent years, overlay networks have become an effective alter-
native to IP multicast for efficient point to multipoint communi-
cation across the Internet. Typically, nodes self-organize with the
goal of forming an efficient overlay tree, one that meets perfor-
mance targets without placing undue burden on the underlying
network. In this paper, we target high-bandwidth data distribu-
tion from a single source to a large number of receivers. Applica-
tions include large-file transfers and real-time multimedia stream-
ing. For these applications, we argue that an overlay mesh, rather
than a tree, can deliver fundamentally higher bandwidth and re-
liability relative to typical tree structures. This paper presents
Bullet, a scalable and distributed algorithm that enables nodes
spread across the Internet to self-organize into a high bandwidth
overlay mesh. We construct Bullet around the insight that data
should be distributed in a disjoint manner to strategic points in
the network. Individual Bullet receivers are then responsible for
locating and retrieving the data from multiple points in parallel.
Key contributions of this work include: i) an algorithm that

sends data to different points in the overlay such that any data
object is equally likely to appear at any node, ii) a scalable and
decentralized algorithm that allows nodes to locate and recover
missing data items, and iii) a complete implementation and eval-
uation of Bullet running across the Internet and in a large-scale
emulation environment reveals up to a factor two bandwidth im-
provements under a variety of circumstances. In addition, we find
that, relative to tree-based solutions, Bullet reduces the need to
perform expensive bandwidth probing. In a tree, it is critical that
a node’s parent delivers a high rate of application data to each
child. In Bullet however, nodes simultaneously receive data from
multiple sources in parallel, making it less important to locate
any single source capable of sustaining a high transmission rate.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.4.3 [Information Systems Applications]: Com-
munications Applications

∗This research is supported in part by the National Sci-
ence Foundation (EIA-99772879, ITR-0082912), Hewlett
Packard, IBM, Intel, and Microsoft. In addition, Albrecht
is supported by an NSF fellowship and Vahdat is supported
by an NSF CAREER award (CCR-9984328).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

General Terms
Experimentation, Management, Performance

Keywords
Bandwidth, Overlays, Peer-to-peer

1. INTRODUCTION
In this paper, we consider the following general problem.

Given a sender and a large set of interested receivers spread
across the Internet, how can we maximize the amount of
bandwidth delivered to receivers? Our problem domain in-
cludes software or video distribution and real-time multime-
dia streaming. Traditionally, native IP multicast has been
the preferred method for delivering content to a set of re-
ceivers in a scalable fashion. However, a number of con-
siderations, including scale, reliability, and congestion con-
trol, have limited the wide-scale deployment of IP multi-
cast. Even if all these problems were to be addressed, IP
multicast does not consider bandwidth when constructing
its distribution tree. More recently, overlays have emerged
as a promising alternative to multicast for network-efficient
point to multipoint data delivery.
Typical overlay structures attempt to mimic the structure

of multicast routing trees. In network-layer multicast how-
ever, interior nodes consist of high speed routers with limited
processing power and extensibility. Overlays, on the other
hand, use programmable (and hence extensible) end hosts as
interior nodes in the overlay tree, with these hosts acting as
repeaters to multiple children down the tree. Overlays have
shown tremendous promise for multicast-style applications.
However, we argue that a tree structure has fundamental
limitations both for high bandwidth multicast and for high
reliability. One difficulty with trees is that bandwidth is
guaranteed to be monotonically decreasing moving down
the tree. Any loss high up the tree will reduce the band-
width available to receivers lower down the tree. A number
of techniques have been proposed to recover from losses and
hence improve the available bandwidth in an overlay tree [2,
6]. However, fundamentally, the bandwidth available to any
host is limited by the bandwidth available from that node’s
single parent in the tree.
Thus, our work operates on the premise that the model

for high-bandwidth multicast data dissemination should be
re-examined. Rather than sending identical copies of the
same data stream to all nodes in a tree and designing a
scalable mechanism for recovering from loss, we propose that
participants in a multicast overlay cooperate to strategically

282

transmit disjoint data sets to various points in the network.
Here, the sender splits data into sequential blocks. Blocks
are further subdivided into individual objects which are in
turn transmitted to different points in the network. Nodes
still receive a set of objects from their parents, but they are
then responsible for locating peers that hold missing data
objects. We use a distributed algorithm that aims to make
the availability of data items uniformly spread across all
overlay participants. In this way, we avoid the problem of
locating the “last object”, which may only be available at a
few nodes. One hypothesis of this work is that, relative to a
tree, this model will result in higher bandwidth—leveraging
the bandwidth from simultaneous parallel downloads from
multiple sources rather than a single parent—and higher
reliability—retrieving data from multiple peers reduces the
potential damage from a single node failure.
To illustrate Bullet’s behavior, consider a simple three

node overlay with a root R and two children A and B. R has
1 Mbps of available (TCP-friendly) bandwidth to each of A
and B. However, there is also 1 Mbps of available bandwidth
between A and B. In this example, Bullet would transmit a
disjoint set of data at 1 Mbps to each of A and B. A and B
would then each independently discover the availability of
disjoint data at the remote peer and begin streaming data
to one another, effectively achieving a retrieval rate of 2
Mbps. On the other hand, any overlay tree is restricted to
delivering at most 1 Mbps even with a scalable technique
for recovering lost data.
Any solution for achieving the above model must maintain

a number of properties. First, it must be TCP friendly [15].
No flow should consume more than its fair share of the bot-
tleneck bandwidth and each flow must respond to congestion
signals (losses) by reducing its transmission rate. Second, it
must impose low control overhead. There are many pos-
sible sources of such overhead, including probing for avail-
able bandwidth between nodes, locating appropriate nodes
to “peer” with for data retrieval and redundantly receiving
the same data objects from multiple sources. Third, the al-
gorithm should be decentralized and scalable to thousands
of participants. No node should be required to learn or
maintain global knowledge, for instance global group mem-
bership or the set of data objects currently available at all
nodes. Finally, the approach must be robust to individual
failures. For example, the failure of a single node should
result only in a temporary reduction in the bandwidth de-
livered to a small subset of participants; no single failure
should result in the complete loss of data for any significant
fraction of nodes, as might be the case for a single node
failure “high up” in a multicast overlay tree.
In this context, this paper presents the design and eval-

uation of Bullet, an algorithm for constructing an overlay
mesh that attempts to maintain the above properties. Bul-
let nodes begin by self-organizing into an overlay tree, which
can be constructed by any of a number of existing tech-
niques [1, 18, 21, 24, 34]. Each Bullet node, starting with the
root of the underlying tree, then transmits a disjoint set of
data to each of its children, with the goal of maintaining uni-
form representativeness of each data item across all partici-
pants. The level of disjointness is determined by the band-
width available to each of its children. Bullet then employs
a scalable and efficient algorithm to enable nodes to quickly
locate multiple peers capable of transmitting missing data
items to the node. Thus, Bullet layers a high-bandwidth

mesh on top of an arbitrary overlay tree. Depending on the
type of data being transmitted, Bullet can optionally employ
a variety of encoding schemes, for instance Erasure codes [7,
26, 25] or Multiple Description Coding (MDC) [17], to effi-
ciently disseminate data, adapt to variable bandwidth, and
recover from losses. Finally, we use TFRC [15] to transfer
data both down the overlay tree and among peers. This en-
sures that the entire overlay behaves in a congestion-friendly
manner, adjusting its transmission rate on a per-connection
basis based on prevailing network conditions.
One important benefit of our approach is that the band-

width delivered by the Bullet mesh is somewhat independent
of the bandwidth available through the underlying overlay
tree. One significant limitation to building high bandwidth
overlay trees is the overhead associated with the tree con-
struction protocol. In these trees, it is critical that each
participant locates a parent via probing with a high level
of available bandwidth because it receives data from only
a single source (its parent). Thus, even once the tree is
constructed, nodes must continue their probing to adapt to
dynamically changing network conditions. While bandwidth
probing is an active area of research [20, 35], accurate re-
sults generally require the transfer of a large amount of data
to gain confidence in the results. Our approach with Bullet
allows receivers to obtain high bandwidth in aggregate us-
ing individual transfers from peers spread across the system.
Thus, in Bullet, the bandwidth available from any individ-
ual peer is much less important than in any bandwidth-
optimized tree. Further, all the bandwidth that would nor-
mally be consumed probing for bandwidth can be reallo-
cated to streaming data across the Bullet mesh.
We have completed a prototype of Bullet running on top

of a number of overlay trees. Our evaluation of a 1000-node
overlay running across a wide variety of emulated 20,000
node network topologies shows that Bullet can deliver up to
twice the bandwidth of a bandwidth-optimized tree (using
an offline algorithm and global network topology informa-
tion), all while remaining TCP friendly. We also deployed
our prototype across the PlanetLab [31] wide-area testbed.
For these live Internet runs, we find that Bullet can deliver
comparable bandwidth performance improvements. In both
cases, the overhead of maintaining the Bullet mesh and lo-
cating the appropriate disjoint data is limited to 30 Kbps per
node, acceptable for our target high-bandwidth, large-scale
scenarios.
The remainder of this paper is organized as follows. Sec-

tion 2 presents Bullet’s system components including Ran-
Sub, informed content delivery, and TFRC. Section 3 then
details Bullet, an efficient data distribution system for band-
width intensive applications. Section 4 evaluates Bullet’s
performance for a variety of network topologies, and com-
pares it to existing multicast techniques. Section 5 places
our work in the context of related efforts and Section 6
presents our conclusions.

2. SYSTEM COMPONENTS
Our approach to high bandwidth data dissemination cen-

ters around the techniques depicted in Figure 1. First, we
split the target data stream into blocks which are further
subdivided into individual (typically packet-sized) objects.
Depending on the requirements of the target applications,
objects may be encoded [17, 26] to make data recovery more
efficient. Next, we purposefully disseminate disjoint objects

283

S

A C

Original data stream:

1 2 3 4 5 6

B

1 2 3 5 1 3 4 6 2 4 5 6

TFRC to determine
available BW

D E

1 2 5 1 3 4

Figure 1: High-level view of Bullet’s operation.

to different clients at a rate determined by the available
bandwidth to each client. We use the equation-based TFRC
protocol to communicate among all nodes in the overlay in
a congestion responsive and TCP friendly manner.
Given the above techniques, data is spread across the over-

lay tree at a rate commensurate with the available band-
width in the overlay tree. Our overall goal however is to
deliver more bandwidth than would otherwise be available
through any tree. Thus, at this point, nodes require a scal-
able technique for locating and retrieving disjoint data from
their peers. In essence, these perpendicular links across the
overlay form a mesh to augment the bandwidth available
through the tree. In Figure 1, node D only has sufficient
bandwidth to receive 3 objects per time unit from its par-
ent. However, it is able to locate two peers, C and E, who
are able to transmit “missing” data objects, in this exam-
ple increasing delivered bandwidth from 3 objects per time
unit to 6 data objects per time unit. Locating appropriate
remote peers cannot require global state or global commu-
nication. Thus, we propose the periodic dissemination of
changing, uniformly random subsets of global state to each
overlay node once per configurable time period. This ran-
dom subset contains summary tickets of the objects available
at a subset of the nodes in the system. Each node uses this
information to request data objects from remote nodes that
have significant divergence in object membership. It then at-
tempts to establish a number of these peering relationships
with the goals of minimizing overlap in the objects received
from each peer and maximizing the total useful bandwidth
delivered to it.
In the remainder of this section, we provide brief back-

ground on each of the techniques that we employ as funda-
mental building blocks for our work. Section 3 then presents
the details of the entire Bullet architecture.

2.1 Data Encoding
Depending on the type of data being distributed through

the system, a number of data encoding schemes can improve
system efficiency. For instance, if multimedia data is being
distributed to a set of heterogeneous receivers with variable
bandwidth, MDC [17] allows receivers obtaining different
subsets of the data to still maintain a usable multimedia
stream. For dissemination of a large file among a set of
receivers, Erasure codes enable receivers not to focus on re-
trieving every transmitted data packet. Rather, after ob-

taining a threshold minimum number of packets, receivers
are able to decode the original data stream. Of course, Bul-
let is amenable to a variety of other encoding schemes or
even the “null” encoding scheme, where the original data
stream is transmitted best-effort through the system.
In this paper, we focus on the benefits of a special class

of erasure-correcting codes used to implement the “digital
fountain” [7] approach. Redundant Tornado [26] codes are
created by performing XOR operations on a selected num-
ber of original data packets, and then transmitted along
with the original data packets. Tornado codes require any
(1+ε)k correctly received packets to reconstruct the original
k data packets, with the typically low reception overhead (ε)
of 0.03 − 0.05. In return, they provide significantly faster
encoding and decoding times. Additionally, the decoding
algorithm can run in real-time, and the reconstruction pro-
cess can start as soon as sufficiently many packets have ar-
rived. Tornado codes require a predetermined stretch factor
(n/k, where n is the total number of encoded packets), and
their encoding time is proportional to n. LT codes [25] re-
move these two limitations, while maintaining a low recep-
tion overhead of 0.05.

2.2 RanSub
To address the challenge of locating disjoint content within

the system, we use RanSub [24], a scalable approach to dis-
tributing changing, uniform random subsets of global state
to all nodes of an overlay tree. RanSub assumes the pres-
ence of some scalable mechanism for efficiently building and
maintaining the underlying tree. A number of such tech-
niques are described in [1, 18, 21, 24, 34].
RanSub distributes random subsets of participating nodes

throughout the tree using collect and distribute messages.
Collect messages start at the leaves and propagate up the
tree, leaving state at each node along the path to the root.
Distribute messages start at the root and travel down the
tree, using the information left at the nodes during the previ-
ous collect round to distribute uniformly random subsets to
all participants. Using the collect and distribute messages,
RanSub distributes a random subset of participants to each
node once per epoch. The lower bound on the length of an
epoch is determined by the time it takes to propagate data
up then back down the tree, or roughly twice the height of
the tree. For appropriately constructed trees, the minimum
epoch length will grow with the logarithm of the number of
participants, though this is not required for correctness.
As part of the distribute message, each participant sends

a uniformly random subset of remote nodes, called a dis-
tribute set, down to its children. The contents of the dis-
tribute set are constructed using the collect set gathered
during the previous collect phase. During this phase, each
participant sends a collect set consisting of a random subset
of its descendant nodes up the tree to the root along with
an estimate of its total number of descendants. After the
root receives all collect sets and the collect phase completes,
the distribute phase begins again in a new epoch.
One of the key features of RanSub is the Compact oper-

ation. This is the process used to ensure that membership
in a collect set propagated by a node to its parent is both
random and uniformly representative of all members of the
sub-tree rooted at that node. Compact takes multiple fixed-
size subsets and the total population represented by each
subset as input, and generates a new fixed-size subset. The

284

A

CSC={Cs},
CSD={Ds}

CSF={Fs},
CSG={Gs}

CSB={Bs,Cs,Ds},
CSE={Es,Fs,Gs}

B

C

E

D GF

B

C

A

E

D GF

DSE={As,Bs,Cs,
Ds}

DSB={As,Es,Fs,Gs}

DSG={As,Bs,Cs,
Ds,Es,Fs}

DSD={As,Bs,
Cs,Es,Fs,Gs}

DSF={As,Bs,Cs,
Ds,Es,Gs}

DSC={As,Bs,
Ds,Es,Fs,Gs}

Figure 2: This example shows the two phases of the RanSub protocol that occur in one epoch. The collect
phase is shown on the left, where the collect sets are traveling up the overlay to the root. The distribute
phase on the right shows the distribute sets traveling down the overlay to the leaf nodes.

members of the resulting set are uniformly random repre-
sentatives of the input subset members.
RanSub offers several ways of constructing distribute sets.

For our system, we choose the RanSub-nondescendants op-
tion. In this case, each node receives a random subset con-
sisting of all nodes excluding its descendants. This is ap-
propriate for our download structure where descendants are
expected to have less content than an ancestor node in most
cases.
A parent creates RanSub-nondescendants distribute sets

for each child by compacting collect sets from that child’s
siblings and its own distribute set. The result is a distribute
set that contains a random subset representing all nodes in
the tree except for those rooted at that particular child. We
depict an example of RanSub’s collect-distribute process in
Figure 2. In the figure, AS stands for node A’s state.

2.3 Informed Content Delivery Techniques
Assuming we can enable a node to locate a peer with

disjoint content using RanSub, we need a method for recon-
ciling the differences in the data. Additionally, we require
a bandwidth-efficient method with low computational over-
head. We chose to implement the approximate reconciliation
techniques proposed in [6] for these tasks in Bullet.
To describe the content, nodes maintain working sets. The

working set contains sequence numbers of packets that have
been successfully received by each node over some period of
time. We need the ability to quickly discern the resemblance
between working sets from two nodes and decide whether a
fine-grained reconciliation is beneficial. Summary tickets,
or min-wise sketches [5], serve this purpose. The main idea
is to create a summary ticket that is an unbiased random
sample of the working set. A summary ticket is a small
fixed-size array. Each entry in this array is maintained by
a specific permutation function. The goal is to have each
entry populated by the element with the smallest permuted
value. To insert a new element into the summary ticket, we
apply the permutation functions in order and update array
values as appropriate.
The permutation function can be thought of as a special-

ized hash function. The choice of permutation functions
is important as the quality of the summary ticket depends

directly on the randomness properties of the permutation
functions. Since we require them to have a low computa-
tional overhead, we use simple permutation functions, such
as Pj(x) = (ax+b)mod|U |, where U is the universe size (de-
pendant on the data encoding scheme). To compute the re-
semblance between two working sets, we compute the num-
ber of summary ticket entries that have the same value, and
divide it by the total number of entries in the summary tick-
ets. Figure 3 shows the way the permutation functions are
used to populate the summary ticket.

12 10 2

27

7

2

18

19

40

1

W
or

ki
ng

 s
et

14

42

17

33

38

15

12

P1

33

29

28

44

57

15

P2

22

28

45

61

14

51

Pn…

…

Summary ticket

minminmin

10

2

Figure 3: Example showing a sample summary
ticket being constructed from the working set.

To perform approximate fine-grain reconciliation, a peer
A sends its digest to peer B and expects to receive pack-
ets not described in the digest. For this purpose, we use a
Bloom filter [4], a bit array of size m with k independent
associated hash functions. An element s from the set of
received keys S = {so, s2, . . . , sn−1} is inserted into the fil-
ter by computing the hash values h0, h1, . . . , hk−1 of s and
setting the bits in the array that correspond to the hashed

285

values. To check whether an element x is in the Bloom filter,
we hash it using the hash functions and check whether all
positions in the bit array are set. If at least one is not set,
we know that the Bloom filter does not contain x.
When using Bloom filters, the insertion of different ele-

ments might cause all the positions in the bit array corre-
sponding to an element that is not in the set to be nonzero.
In this case, we have a false positive. Therefore, it is possible
that peer B will not send a packet to peer A even though
A is missing it. On the other hand, a node will never send
a packet that is described in the Bloom filter, i.e. there
are no false negatives. The probability of getting a false
positive pf on the membership query can be expressed as a
function of the ratio m

n
and the number of hash functions

k: pf = (1− e−kn/m)k. We can therefore choose the size of
the Bloom filter and the number of hash functions that will
yield a desired false positive ratio.

2.4 TCP Friendly Rate Control
Although most traffic in the Internet today is best served

by TCP, applications that require a smooth sending rate
and that have a higher tolerance for loss often find TCP’s
reaction to a single dropped packet to be unnecessarily se-
vere. TCP Friendly Rate Control, or TFRC, targets unicast
streaming multimedia applications with a need for less dras-
tic responses to single packet losses [15]. TCP halves the
sending rate as soon as one packet loss is detected. Alterna-
tively, TFRC is an equation-based congestion control pro-
tocol that is based on loss events, which consist of multiple
packets being dropped within one round-trip time. Unlike
TCP, the goal of TFRC is not to find and use all avail-
able bandwidth, but instead to maintain a relatively steady
sending rate while still being responsive to congestion.
To guarantee fairness with TCP, TFRC uses the response

function that describes the steady-state sending rate of TCP
to determine the transmission rate in TFRC. The formula
of the TCP response function [27] used in TFRC to describe
the sending rate is:

T = s

R
q

2p
3 +tRT O(3

q
3p
8)p(1+32p2)

This is the expression for the sending rate T in bytes/second,
as a function of the round-trip time R in seconds, loss event
rate p, packet size s in bytes, and TCP retransmit value
tRTO in seconds.
TFRC senders and receivers must cooperate to achieve

a smooth transmission rate. The sender is responsible for
computing the weighted round-trip time estimate R between
sender and receiver, as well as determining a reasonable re-
transmit timeout value tRTO . In most cases, using the sim-
ple formula tRTO = 4R provides the necessary fairness with
TCP. The sender is also responsible for adjusting the send-
ing rate T in response to new values of the loss event rate
p reported by the receiver. The sender obtains a new mea-
sure for the loss event rate each time a feedback packet is
received from the receiver. Until the first loss is reported,
the sender doubles its transmission rate each time it receives
feedback just as TCP does during slow-start.
The main role of the receiver is to send feedback to the

sender once per round-trip time and to calculate the loss
event rate included in the feedback packets. To obtain the
loss event rate, the receiver maintains a loss interval array
that contains values for the last eight loss intervals. A loss

interval is defined as the number of packets received cor-
rectly between two loss events. The array is continually
updated as losses are detected. A weighted average is com-
puted based on the sum of the loss interval values, and the
inverse of the sum is the reported loss event rate, p.
When implementing Bullet, we used an unreliable version

of TFRC. We wanted a transport protocol that was con-
gestion aware and TCP friendly. Lost packets were more
easily recovered from other sources rather than waiting for
a retransmission from the initial sender. Hence, we elimi-
nate retransmissions from TFRC. Further, TFRC does not
aggressively seek newly available bandwidth like TCP, a de-
sirable trait in an overlay tree where there might be multiple
competing flows sharing the same links. For example, if a
leaf node in the tree tried to aggressively seek out new band-
width, it could create congestion all the way up to the root
of the tree. By using TFRC we were able to avoid these
scenarios.

3. BULLET
Bullet is an efficient data distribution system for band-

width intensive applications. While many current overlay
network distribution algorithms use a distribution tree to
deliver data from the tree’s root to all other nodes, Bul-
let layers a mesh on top of an original overlay tree to in-
crease overall bandwidth to all nodes in the tree. Hence,
each node receives a parent stream from its parent in the
tree and some number of perpendicular streams from chosen
peers in the overlay. This has significant bandwidth impact
when a single node in the overlay is unable to deliver ade-
quate bandwidth to a receiving node.
Bullet requires an underlying overlay tree for RanSub to

deliver random subsets of participants’s state to nodes in
the overlay, informing them of a set of nodes that may be
good candidates for retrieving data not available from any
of the node’s current peers and parent. While we also use
the underlying tree for baseline streaming, this is not critical
to Bullet’s ability to efficiently deliver data to nodes in the
overlay. As a result, Bullet is capable of functioning on
top of essentially any overlay tree. In our experiments, we
have run Bullet over random and bandwidth-optimized trees
created offline (with global topological knowledge). Bullet
registers itself with the underlying overlay tree so that it is
informed when the overlay changes as nodes come and go or
make performance transformations in the overlay.
As with streaming overlays trees, Bullet can use standard

transports such as TCP and UDP as well as our implemen-
tation of TFRC. For the remainder of this paper, we assume
the use of TFRC since we primarily target streaming high-
bandwidth content and we do not require reliable or in-order
delivery. For simplicity, we assume that packets originate at
the root of the tree and are tagged with increasing sequence
numbers. Each node receiving a packet will optionally for-
ward it to each of its children, depending on a number of
factors relating to the child’s bandwidth and its relative po-
sition in the tree.

3.1 Finding Overlay Peers
RanSub periodically delivers subsets of uniformly random

selected nodes to each participant in the overlay. Bullet re-
ceivers use these lists to locate remote peers able to transmit
missing data items with good bandwidth. RanSub messages
contain a set of summary tickets that include a small (120

286

bytes) summary of the data that each node contains. Ran-
Sub delivers subsets of these summary tickets to nodes every
configurable epoch (5 seconds by default). Each node in the
tree maintains a working set of the packets it has received
thus far, indexed by sequence numbers. Nodes associate
each working set with a Bloom filter that maintains a sum-
mary of the packets received thus far. Since the Bloom filter
does not exceed a specific size (m) and we would like to limit
the rate of false positives, Bullet periodically cleans up the
Bloom filter by removing lower sequence numbers from it.
This allows us to keep the Bloom filter population n from
growing at an unbounded rate. The net effect is that a
node will attempt to recover packets for a finite amount of
time depending on the packet arrival rate. Similarly, Bullet
removes older items that are not needed for data reconstruc-
tion from its working set and summary ticket.
We use the collect and distribute phases of RanSub to

carry Bullet summary tickets up and down the tree. In our
current implementation, we use a set size of 10 summary
tickets, allowing each collect and distribute to fit well within
the size of a non-fragmented IP packet. Though Bullet sup-
ports larger set sizes, we expect this parameter to be tunable
to specific applications’ needs. In practice, our default size
of 10 yields favorable results for a variety of overlays and
network topologies. In essence, during an epoch a node re-
ceives a summarized partial view of the system’s state at
that time. Upon receiving a random subset each epoch, a
Bullet node may choose to peer with the node having the
lowest similarity ratio when compared to its own summary
ticket. This is done only when the node has sufficient space
in its sender list to accept another sender (senders with lack-
luster performance are removed from the current sender list
as described in section 3.4). Once a node has chosen the
best node it sends it a peering request containing the re-
questing node’s Bloom filter. Such a request is accepted by
the potential sender if it has sufficient space in its receiver
list for the incoming receiver. Otherwise, the send request
is rejected (space is periodically created in the receiver lists
as further described in section 3.4).

3.2 Recovering Data From Peers
Assuming it has space for the new peer, a recipient of the

peering request installs the received Bloom filter and will
periodically transmit keys not present in the Bloom filter
to the requesting node. The requesting node will refresh its
installed Bloom filters at each of its sending peers periodi-
cally. Along with the fresh filter, a receiving node will also
assign a portion of the sequence space to each of its senders.
In this way, a node is able the reduce the likelihood that two
peers simultaneously transmit the same key to it, wasting
network resources. A node divides the sequence space in its
current working set among each of its senders uniformly.
As illustrated in Figure 4, a Bullet receiver views the data

space as a matrix of packet sequences containing s rows,
where s is its current number of sending peers. A receiver pe-
riodically (every 5 seconds by default) updates each sender
with its current Bloom filter and the range of sequences cov-
ered in its Bloom filter. This identifies the range of packets
that the receiver is currently interested in recovering. Over
time, this range shifts as depicted in Figure 4-b). In addi-
tion, the receiving node assigns to each sender a row from
the matrix, labeled mod. A sender will forward packets to

b)

Mod = 3 �����������������
�����������������
�����������������
�����������������

7

1
2

8

a)

Senders = 7Mod = 2

Low

High

Time

�����������������
�����������������
�����������������
�����������������

Figure 4: A Bullet receiver views data as a matrix
of sequenced packets with rows equal to the number
of peer senders it currently has. It requests data
within the range (Low, High) of sequence numbers
based on what it has received. a) The receiver re-
quests a specific row in the sequence matrix from
each sender. b) As it receives more data, the range
of sequences advances and the receiver requests dif-
ferent rows from senders.

the receiver that have a sequence number x such that x
modulo s equals the mod number. In this fashion, receivers
register to receive disjoint data from their sending peers.
By specifying ranges and matrix rows, a receiver is un-

likely to receive duplicate data items, which would result in
wasted bandwidth. A duplicate packet, however, may be re-
ceived when a parent recovers a packet from one of its peers
and relays the packet to its children (and descendants). In
this case, a descendant would receive the packet out of order
and may have already recovered it from one of its peers. In
practice, this wasteful reception of duplicate packets is tol-
erable; less than 10% of all received packets are duplicates
in our experiments.

3.3 Making Data Disjoint
We now provide details of Bullet’s mechanisms to increase

the ease by which nodes can find disjoint data not provided
by parents. We operate on the premise that the main chal-
lenge in recovering lost data packets transmitted over an
overlay distribution tree lies in finding the peer node hous-
ing the data to recover. Many systems take a hierarchi-
cal approach to this problem, propagating repair requests
up the distribution tree until the request can be satisfied.
This ultimately leads to scalability issues at higher levels in
the hierarchy particularly when overlay links are bandwidth-
constrained.
On the other hand, Bullet attempts to recover lost data

from any non-descendant node, not just ancestors, thereby
increasing overall system scalability. In traditional overlay
distribution trees, packets are lost by the transmission trans-
port and/or the network. Nodes attempt to stream data as
fast as possible to each child and have essentially no control
over which portions of the data stream are dropped by the
transport or network. As a result, the streaming subsys-
tem has no control over how many nodes in the system will
ultimately receive a particular portion of the data. If few
nodes receive a particular range of packets, recovering these
pieces of data becomes more difficult, requiring increased
communication costs, and leading to scalability problems.
In contrast, Bullet nodes are aware of the bandwidth achiev-

able to each of its children using the underlying transport. If

287

a child is unable to receive the streaming rate that the par-
ent receives, the parent consciously decides which portion of
the data stream to forward to the constrained child. In ad-
dition, because nodes recover data from participants chosen
uniformly at random from the set of non-descendants, it is
advantageous to make each transmitted packet recoverable
from approximately the same number of participant nodes.
That is, given a randomly chosen subset of peer nodes, it is
with the same probability that each node has a particular
data packet. While not explicitly proven here, we believe
that this approach maximizes the probability that a lost
data packet can be recovered, regardless of which packet is
lost. To this end, Bullet distributes incoming packets among
one or more children in hopes that the expected number of
nodes receiving each packet is approximately the same.
A node pmaintains for each child, i, a limiting and sending

factor, lfi and sfi. These factors determine the proportion
of p’s received data rate that it will forward to each child.
The sending factor sfi is the portion of the parent stream
(rate) that each child should “own” based on the number
of descendants the child has. The more descendants a child
has, the larger the portion of received data it should own.
The limiting factor lfi represents the proportion of the par-
ent rate beyond the sending factor that each child can han-
dle. For example, a child with one descendant, but high
bandwidth would have a low sending factor, but a very high
limiting factor. Though the child is responsible for owning
a small portion of the received data, it actually can receive
a large portion of it.
Because RanSub collects descendant counts di for each

child i, Bullet simply makes a call into RanSub when sending
data to determine the current sending factors of its children.
For each child i out of k total, we set the sending factor to
be:

sfi =
diPk

j=1 dj
.

In addition, a node tracks the data successfully transmit-
ted via the transport. That is, Bullet data transport sock-
ets are non-blocking; successful transmissions are send at-
tempts that are accepted by the non-blocking transport. If
the transport would block on a send (i.e., transmission of the
packet would exceed the TCP-friendly fair share of network
resources), the send fails and is counted as an unsuccessful
send attempt. When a data packet is received by a parent,
it calculates the proportion of the total data stream that
has been sent to each child, thus far, in this epoch. It then
assigns ownership of the current packet to the child with
sending proportion farthest away from its sfi as illustrated
in Figure 5.
Having chosen the target of a particular packet, the parent

attempts to forward the packet to the child. If the send is
not successful, the node must find an alternate child to own
the packet. This occurs when a child’s bandwidth is not ad-
equate to fulfill its responsibilities based on its descendants
(sfi). To compensate, the node attempts to deterministi-
cally find a child that can own the packet (as evidenced by
its transport accepting the packet). The net result is that
children with more than adequate bandwidth will own more
of their share of packets than those with inadequate band-
width. In the event that no child can accept a packet, it
must be dropped, corresponding to the case where the sum
of all children bandwidths is inadequate to serve the received

foreach child in children {
if ((child->sent / total_sent)

< child->sending_factor)
target_child = child;

}

if (!senddata(target_child->addr,
msg, size, key)) {

// send succeeded
target_child->sent++;
target_child->child_filter.insert(got_key);
sent_packet = 1;

}

foreach child in children {
should_send = 0;
if (!sent_packet) // transfer ownership

should_send = 1;
else // test for available bandwidth

if (key % (1.0/child->limiting_factor) == 0)
should_send = 1;

if (should_send) {
if (!senddata(child->addr,

msg, size, key)) {
if (!sent_packet) // i received ownership

child->sent++;
else

increase(child->limiting_factor);
child->child_filter.insert(got_key);
sent_packet = 1;

}
else // send failed

if (sent_packet) // was for extra bw
decrease(child->limiting_factor);

}
}

Figure 5: Pseudo code for Bullet’s disjoint data send
routine

stream. While making data more difficult to recover, Bullet
still allows for recovery of such data to its children. The
sending node will cache the data packet and serve it to its
requesting peers. This process allows its children to poten-
tially recover the packet from one of their own peers, to
whom additional bandwidth may be available.
Once a packet has been successfully sent to the owning

child, the node attempts to send the packet to all other
children depending on the limiting factors lfi. For each child
i, a node attempts to forward the packet deterministically if
the packet’s sequence modulo 1/lfi is zero. Essentially, this
identifies which lfi fraction of packets of the received data
stream should be forwarded to each child to make use of the
available bandwidth to each. If the packet transmission is
successful, lfi is increased such that one more packet is to
be sent per epoch. If the transmission fails, lfi is decreased
by the same amount. This allows children limiting factors
to be continuously adjusted in response to changing network
conditions.
It is important to realize that by maintaining limiting fac-

tors, we are essentially using feedback from children (by ob-
serving transport behavior) to determine the best data to
stop sending during times when a child cannot handle the
entire parent stream. In one extreme, if the sum of chil-
dren bandwidths is not enough to receive the entire parent
stream, each child will receive a completely disjoint data
stream of packets it owns. In the other extreme, if each

288

child has ample bandwidth, it will receive the entire parent
stream as each lfi would settle on 1.0. In the general case,
our owning strategy attempts to make data disjoint among
children subtrees with the guiding premise that, as much as
possible, the expected number of nodes receiving a packet is
the same across all packets.

3.4 Improving the Bullet Mesh
Bullet allows a maximum number of peering relationships.

That is, a node can have up to a certain number of receivers
and a certain number of senders (each defaults to 10 in our
implementation). A number of considerations can make the
current peering relationships sub-optimal at any given time:
i) the probabilistic nature of RanSub means that a node may
not have been exposed to a sufficiently appropriate peer, ii)
receivers greedily choose peers, and iii) network conditions
are constantly changing. For example, a sender node may
wind up being unable to provide a node with very much
useful (non-duplicate) data. In such a case, it would be
advantageous to remove that sender as a peer and find some
other peer that offers better utility.
Each node periodically (every few RanSub epochs) eval-

uates the bandwidth performance it is receiving from its
sending peers. A node will drop a peer if it is sending too
many duplicate packets when compared to the total number
of packets received. This threshold is set to 50% by default.
If no such wasteful sender is found, a node will drop the
sender that is delivering the least amount of useful data to
it. It will replace this sender with some other sending peer
candidate, essentially reserving a trial slot in its sender list.
In this way, we are assured of keeping the best senders seen
so far and will eliminate senders whose performance deteri-
orates with changing network conditions.
Likewise, a Bullet sender will periodically evaluate its re-

ceivers. Each receiver updates senders of the total received
bandwidth. The sender, knowing the amount of data it has
sent to each receiver, can determine which receiver is bene-
fiting the least by peering with this sender. This corresponds
to the one receiver acquiring the least portion of its band-
width through this sender. The sender drops this receiver,
creating an empty slot for some other trial receiver. This is
similar to the concept of weans presented in [24].

4. EVALUATION
We have evaluated Bullet’s performance in real Internet

environments as well as the ModelNet [37] IP emulation
framework. While the bulk of our experiments use Mod-
elNet, we also report on our experience with Bullet on the
PlanetLab Internet testbed [31]. In addition, we have im-
plemented a number of underlying overlay network trees
upon which Bullet can execute. Because Bullet performs
well over a randomly created overlay tree, we present re-
sults with Bullet running over such a tree compared against
an offline greedy bottleneck bandwidth tree algorithm using
global topological information described in Section 4.1.
All of our implementations leverage a common develop-

ment infrastructure called MACEDON [33] that allows for
the specification of overlay algorithms in a simple domain-
specific language. It enables the reuse of the majority of
common functionality in these distributed systems, includ-
ing probing infrastructures, thread management, message
passing, and debugging environment. As a result, we be-
lieve that our comparisons qualitatively show algorithmic

differences rather than implementation intricacies. Our im-
plementation of the core Bullet logic is under 1000 lines of
code in this infrastructure.
Our ModelNet experiments make use of 50 2Ghz Pentium-

4’s running Linux 2.4.20 and interconnected with 100 Mbps
and 1 Gbps Ethernet switches. For the majority of these
experiments, we multiplex one thousand instances (overlay
participants) of our overlay applications across the 50 Linux
nodes (20 per machine). In ModelNet, packet transmissions
are routed through emulators responsible for accurately em-
ulating the hop-by-hop delay, bandwidth, and congestion of
a network topology. In our evaluations, we used four 1.4Ghz
Pentium III’s running FreeBSD-4.7 as emulators. This plat-
form supports approximately 2-3 Gbps of aggregate simul-
taneous communication among end hosts. For most of our
ModelNet experiments, we use 20,000-node INET-generated
topologies [10]. We randomly assign our participant nodes
to act as clients connected to one-degree stub nodes in the
topology. We randomly select one of these participants to
act as the source of the data stream.
Propagation delays in the network topology are calculated

based on the relative placement of the network nodes in the
plane by INET. Based on the classification in [8], we clas-
sify network links as being Client-Stub, Stub-Stub, Transit-
Stub, and Transit-Transit depending on their location in
the network. We restrict topological bandwidth by setting
the bandwidth for each link depending on its type. Each
type of link has an associated bandwidth range from which
the bandwidth is chosen uniformly at random. By changing
these ranges, we vary bandwidth constraints in our topolo-
gies. For our experiments, we created three different ranges
corresponding to low, medium, and high bandwidths relative
to our typical streaming rates of 600-1000 Kbps as speci-
fied in Table 1. While the presented ModelNet results are
restricted to two topologies with varying bandwidth con-
straints, the results of experiments with additional topolo-
gies all show qualitatively similar behavior.
We do not implement any particular coding scheme for

our experiments. Rather, we assume that either each se-
quence number directly specifies a particular data block and
the block offset for each packet, or we are distributing data
within the same block for LT Codes, e.g., when distributing
a file.

4.1 Offline Bottleneck Bandwidth Tree

One of our goals is to determine Bullet’s performance rel-
ative to the best possible bandwidth-optimized tree for a
given network topology. This allows us to quantify the pos-
sible improvements of an overlay mesh constructed using
Bullet relative to the best possible tree. While we have not
yet proven this, we believe that this problem is NP-hard.
Thus, in this section we present a simple greedy offline algo-
rithm to determine the connectivity of a tree likely to deliver
a high level of bandwidth. In practice, we are not aware of
any scalable online algorithms that are able to deliver the
bandwidth of an offline algorithm. At the same time, trees
constructed by our algorithm tend to be “long and skinny”
making them less resilient to failures and inappropriate for
delay sensitive applications (such as multimedia streaming).
In addition to any performance comparisons, a Bullet mesh
has much lower depth than the bottleneck tree and is more
resilient to failure, as discussed in Section 4.6.

289

Topology classifica-
tion

Client-Stub Stub-Stub Transit-Stub Transit-Transit

Low bandwidth 300-600 500-1000 1000-2000 2000-4000
Medium bandwidth 800-2800 1000-4000 1000-4000 5000-10000
High bandwidth 1600-5600 2000-8000 2000-8000 10000-20000

Table 1: Bandwidth ranges for link types used in our topologies expressed in Kbps.

Specifically, we consider the following problem: given com-
plete knowledge of the topology (individual link latencies,
bandwidth, and packet loss rates), what is the overlay tree
that will deliver the highest bandwidth to a set of predeter-
mined overlay nodes? We assume that the throughput of
the slowest overlay link (the bottleneck link) determines the
throughput of the entire tree. We are, therefore, trying to
find the directed overlay tree with the maximum bottleneck
link. Accordingly, we refer to this problem as the overlay
maximum bottleneck tree (OMBT). In a simplified case, as-
suming that congestion only exists on access links and there
are no lossy links, there exists an optimal algorithm [23].
In the more general case of contention on any physical link,
and when the system is allowed to choose the routing path
between the two endpoints, this problem is known to be
NP-hard [12], even in the absence of link losses. For the
purposes of this paper, our goal is to determine a “good”
overlay streaming tree that provides each overlay partic-
ipant with substantial bandwidth, while avoiding overlay
links with high end-to-end loss rates.
We make the following assumptions:

1. The routing path between any two overlay participants
is fixed. This closely models the existing overlay net-
work model with IP for unicast routing.

2. The overlay tree will use TCP-friendly unicast connec-
tions to transfer data point-to-point.

3. In the absence of other flows, we can estimate the
throughput of a TCP-friendly flow using a steady-state
formula [27].

4. When several (n) flows share the same bottleneck link,
each flow can achieve throughput of at most c

n
, where

c is the physical capacity of the link.

Given these assumptions, we concentrate on estimating
the throughput available between two participants in the
overlay. We start by calculating the throughput using the
steady-state formula. We then “route” the flow in the net-
work, and consider the physical links one at a time. On
each physical link, we compute the fair-share for each of the
competing flows. The throughput of an overlay link is then
approximated by the minimum of the fair-shares along the
routing path, and the formula rate. If some flow does not
require the same share of the bottleneck link as other com-
peting flows (i.e., its throughput might be limited by losses
elsewhere in the network), then the other flows might end
up with a greater share than the one we compute. We do
not account for this, as the major goal of this estimate is
simply to avoid lossy and highly congested physical links.
More formally, we define the problem as follows:

Overlay Maximum Bottleneck Tree (OMBT).
Given a physical network represented as a graph G = (V,E),

set of overlay participants P ⊂ V , source node (s ∈ P),
bandwidth B : E → R+, loss rate L : E → [0, 1], prop-
agation delay D : E → R+ of each link, set of possible
overlay links O = {(v, w) | v, w ∈ P, v �= w}, routing table
RT : O × E → {0, 1}, find the overlay tree T = {o | o ∈ O}
(|T | = |P | − 1, ∀v ∈ P there exists a path ov = s❀ v) that
maximizes

min
o|o∈T

(min(f(o), min
e|e∈o

b(e)

|{p | p ∈ T, e ∈ p}|))

where f(o) is the TCP steady-state sending rate, com-
puted from round-trip time d(o) =

P
e∈o d(e) +

P
e∈o′ d(e)

(given overlay link o = (v, w), o′ = (w, v)), and loss rate
l(o) = 1 −Qe∈o (1− l(e)). We write e ∈ o to express that
link e is included in the o’s routing path (RT (o, e) = 1).
Assuming that we can estimate the throughput of a flow,

we proceed to formulate a greedy OMBT algorithm. This
algorithm is non-optimal, but a similar approach was found
to perform well [12].
Our algorithm is similar to the Widest Path Heuristic

(WPH) [12], and more generally to Prim’s MST algorithm [32].
During its execution, we maintain the set of nodes already in
the tree, and the set of remaining nodes. To grow the tree,
we consider all the overlay links leading from the nodes in
the tree to the remaining nodes. We greedily pick the node
with the highest throughput overlay link. Using this overlay
link might cause us to route traffic over physical links tra-
versed by some other tree flows. Since we do not re-examine
the throughput of nodes that are already in the tree, they
might end up being connected to the tree with slower over-
lay links than initially estimated. However, by attaching the
node with the highest residual bandwidth at every step, we
hope to lessen the effects of after-the-fact physical link shar-
ing. With the synthetic topologies we use for our emulation
environment, we have not found this inaccuracy to severely
impact the quality of the tree.

4.2 Bullet vs. Streaming
We have implemented a simple streaming application that

is capable of streaming data over any specified tree. In our
implementation, we are able to stream data through over-
lay trees using UDP, TFRC, or TCP. Figure 6 shows av-
erage bandwidth that each of 1000 nodes receives via this
streaming as time progresses on the x-axis. In this exam-
ple, we use TFRC to stream 600 Kbps over our offline bot-
tleneck bandwidth tree and a random tree (other random
trees exhibit qualitatively similar behavior). In these exper-
iments, streaming begins 100 seconds into each run. While
the random tree delivers an achieved bandwidth of under 100
Kbps, our offline algorithm overlay delivers approximately
400 Kbps of data. For this experiment, bandwidths were
set to the medium range from Table 1. We believe that any
degree-constrained online bandwidth overlay tree algorithm
would exhibit similar (or lower) behavior to our bandwidth-

290

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bottleneck bandwidth tree
Random tree

Figure 6: Achieved bandwidth over time for TFRC
streaming over the bottleneck bandwidth tree and
a random tree.

optimized overlay. Hence, Bullet’s goal is to overcome this
bandwidth limit by allowing for the perpendicular reception
of data and by utilizing disjoint data flows in an attempt to
match or exceed the performance of our offline algorithm.
To evaluate Bullet’s ability to exceed the bandwidth achiev-

able via tree distribution overlays, we compare Bullet run-
ning over a random overlay tree to the streaming behavior
shown in Figure 6. Figure 7 shows the average bandwidth
received by each node (labeled Useful total) with standard
deviation. The graph also plots the total amount of data
received and the amount of data a node receives from its
parent. For this topology and bandwidth setting, Bullet
was able to achieve an average bandwidth of 500 Kbps,
fives times that achieved by the random tree and more than
25% higher than the offline bottleneck bandwidth algorithm.
Further, the total bandwidth (including redundant data) re-
ceived by each node is only slightly higher than the useful
content, meaning that Bullet is able to achieve high band-
width while wasting little network resources. Bullet’s use
of TFRC in this example ensures that the overlay is TCP
friendly throughout. The average per-node control overhead
is approximately 30 Kbps. By tracing certain packets as
they move through the system, we are able to acquire link
stress estimates of our system. Though the link stress can
be different for each packet since each can take a different
path through the overlay mesh, we average link stress due
to each traced packet. For this experiment, Bullet has an
average link stress of approximately 1.5 with an absolute
maximum link stress of 22.
The standard deviation in most of our runs is fairly high

because of the limited bandwidth randomly assigned to some
Client-Stub and Stub-Stub links. We feel that this is con-
sistent with real Internet behavior where clients have widely
varying network connectivity. A time slice is shown in Fig-
ure 8 that plots the CDF of instantaneous bandwidths that
each node receives. The graph shows that few client nodes
receive inadequate bandwidth even though they are band-
width constrained. The distribution rises sharply starting at
approximately 500 Kbps. The vast majority of nodes receive
a stream of 500-600 Kbps.
We have evaluated Bullet under a number of bandwidth

constraints to determine how Bullet performs relative to the

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Raw total
Useful total

From parent

Figure 7: Achieved bandwidth over time for Bullet
over a random tree.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

of
 n

od
es

Bandwidth(Kbps)

Figure 8: CDF of instantaneous achieved bandwidth
at time 430 seconds.

available bandwidth of the underlying topology. Table 1 de-
scribes representative bandwidth settings for our streaming
rate of 600 Kbps. The intent of these settings is to show a
scenario where more than enough bandwidth is available to
achieve a target rate even with traditional tree streaming,
an example of where it is slightly not sufficient, and one in
which the available bandwidth is quite restricted. Figure 9
shows achieved bandwidths for Bullet and the bottleneck
bandwidth tree over time generated from topologies with
bandwidths in each range.
In all of our experiments, Bullet outperforms the bottle-

neck bandwidth tree by a factor of up to 100%, depending on
how much bandwidth is constrained in the underlying topol-
ogy. In one extreme, having more than ample bandwidth,
Bullet and the bottleneck bandwidth tree are both able to
stream at the requested rate (600 Kbps in our example). In
the other extreme, heavily constrained topologies allow Bul-
let to achieve twice the bandwidth achievable via the bot-
tleneck bandwidth tree. For all other topologies, Bullet’s
benefits are somewhere in between. In our example, Bullet
running over our medium-constrained bandwidth topology
is able to outperform the bottleneck bandwidth tree by a
factor of 25%. Further, we stress that we believe it would

291

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bullet - High Bandwidth
Bottleneck tree - High Bandwidth

Bullet - Medium Bandwidth
Bottleneck tree - Medium Bandwidth

Bullet - Low Bandwidth
Bottleneck tree - Low Bandwidth

Figure 9: Achieved bandwidth for Bullet and bot-
tleneck tree over time for high, medium, and low
bandwidth topologies.

be extremely difficult for any online tree-based algorithm to
exceed the bandwidth achievable by our offline bottleneck
algorithm that makes use of global topological information.
For instance, we built a simple bandwidth optimizing overlay
tree construction based on Overcast [21]. The resulting dy-
namically constructed trees never achieved more than 75%
of the bandwidth of our own offline algorithm.

4.3 Creating Disjoint Data
Bullet’s ability to deliver high bandwidth levels to nodes

depends on its disjoint transmission strategy. That is, when
bandwidth to a child is limited, Bullet attempts to send
the “correct” portions of data so that recovery of the lost
data is facilitated. A Bullet parent sends different data to
its children in hopes that each data item will be readily
available to nodes spread throughout its subtree. It does
so by assigning ownership of data objects to children in a
manner that makes the expected number of nodes holding
a particular data object equal for all data objects it trans-
mits. Figure 10 shows the resulting bandwidth over time
for the non-disjoint strategy in which a node (and more im-
portantly, the root of the tree) attempts to send all data to
each of its children (subject to independent losses at individ-
ual child links). Because the children transports throttle the
sending rate at each parent, some data is inherently sent dis-
jointly (by chance). By not explicitly choosing which data
to send its child, this approach deprives Bullet of 25% of its
bandwidth capability, when compared to the case when our
disjoint strategy is enabled in Figure 7.

4.4 Epidemic Approaches
In this section, we explore how Bullet compares to data

dissemination approaches that use some form of epidemic
routing. We implemented a form of “gossiping”, where a
node forwards non-duplicate packets to a randomly chosen
number of nodes in its local view. This technique does not
use a tree for dissemination, and is similar to lpbcast [14] (re-
cently improved to incorporate retrieval of data objects [13]).
We do not disseminate packets every T seconds; instead we
forward them as soon as they arrive.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Raw total
Useful total

From parent

Figure 10: Achieved bandwidth over time using non-
disjoint data transmission.

We also implemented a pbcast-like [2] approach for re-
trieving data missing from a data distribution tree. The
idea here is that nodes are expected to obtain most of their
data from their parent. Nodes then attempt to retrieve any
missing data items through gossiping with random peers.
Instead of using gossiping with a fixed number of rounds for
each packet, we use anti-entropy with a FIFO Bloom filter
to attempt to locate peers that hold any locally missing data
items.
To make our evaluation conservative, we assume that nodes

employing gossip and anti-entropy recovery are able to main-
tain full group membership. While this might be difficult in
practice, we assume that RanSub [24] could also be applied
to these ideas, specifically in the case of anti-entropy re-
covery that employs an underlying tree. Further, we also
allow both techniques to reuse other aspects of our imple-
mentation: Bloom filters, TFRC transport, etc. To reduce
the number of duplicate packets, we use less peers in each
round (5) than Bullet (10). For our configuration, we exper-
imentally found that 5 peers results in the best performance
with the lowest overhead. In our experiments, increasing
the number of peers did not improve the average bandwidth
achieved throughout the system. To allow TFRC enough
time to ramp up to the appropriate TCP-friendly sending
rate, we set the epoch length for anti-entropy recovery to 20
seconds.
For these experiments, we use a 5000-node INET topology

with no explicit physical link losses. We set link bandwidths
according to the medium range from Table 1, and randomly
assign 100 overlay participants. The randomly chosen root
either streams at 900 Kbps (over a random tree for Bul-
let and greedy bottleneck tree for anti-entropy recovery), or
sends packets at that rate to randomly chosen nodes for gos-
siping. Figure 11 shows the resulting bandwidth over time
achieved by Bullet and the two epidemic approaches. As ex-
pected, Bullet comes close to providing the target bandwidth
to all participants, achieving approximately 60 percent more
then gossiping and streaming with anti-entropy. The two
epidemic techniques send an excessive number of duplicates,
effectively reducing the useful bandwidth provided to each
node. More importantly, both approaches assign equal sig-
nificance to other peers, regardless of the available band-

292

0

500

1000

1500

2000

0 50 100 150 200 250 300

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Push gossiping raw
Streaming w/AE raw

Bullet raw
Bullet useful

Push gossiping useful
Streaming w/AE useful

Figure 11: Achieved bandwidth over time for Bullet
and epidemic approaches.

width and the similarity ratio. Bullet, on the other hand,
establishes long-term connections with peers that provide
good bandwidth and disjoint content, and avoids most of
the duplicates by requesting disjoint data from each node’s
peers.

4.5 Bullet on a Lossy Network
To evaluate Bullet’s performance under more lossy net-

work conditions, we have modified our 20,000-node topolo-
gies used in our previous experiments to include random
packet losses. ModelNet allows the specification of a packet
loss rate in the description of a network link. Our goal by
modifying these loss rates is to simulate queuing behavior
when the network is under load due to background network
traffic.
To effect this behavior, we first modify all non-transit links

in each topology to have a packet loss rate chosen uniformly
random from [0, 0.003] resulting in a maximum loss rate of
0.3%. Transit links are likewise modified, but with a max-
imum loss rate of 0.1%. Similar to the approach in [28],
we randomly designated 5% of the links in the topologies as
overloaded and set their loss rates uniformly random from
[0.05, 0.1] resulting in a maximum packet loss rate of 10%.
Figure 12 shows achieved bandwidths for streaming over
Bullet and using our greedy offline bottleneck bandwidth
tree. Because losses adversely affect the bandwidth achiev-
able over TCP-friendly transport and since bandwidths are
strictly monotonically decreasing over a streaming tree, tree-
based algorithms perform considerably worse than Bullet
when used on a lossy network. In all cases, Bullet delivers
at least twice as much bandwidth than the bottleneck band-
width tree. Additionally, losses in the low bandwidth topol-
ogy essentially keep the bottleneck bandwidth tree from de-
livering any data, an artifact that is avoided by Bullet.

4.6 Performance Under Failure
In this section, we discuss Bullet’s behavior in the face

of node failure. In contrast to streaming distribution trees
that must quickly detect and make tree transformations to
overcome failure, Bullet’s failure resilience rests on its ability
to maintain a higher level of achieved bandwidth by virtue
of perpendicular (peer) streaming. While all nodes under a
failed node in a distribution tree will experience a temporary

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bullet - High Bandwidth
Bullet - Medium Bandwidth

Bottleneck tree - High Bandwidth
Bottleneck tree - Medium Bandwidth

Bullet - Low Bandwidth
Bottleneck tree - Low Bandwidth

Figure 12: Achieved bandwidths for Bullet and bot-
tleneck bandwidth tree over a lossy network topol-
ogy.

disruption in service, Bullet nodes are able compensate for
this by receiving data from peers throughout the outage.
Because Bullet, and, more importantly, RanSub makes

use of an underlying tree overlay, part of Bullet’s failure
recovery properties will depend on the failure recovery be-
havior of the underlying tree. For the purposes of this dis-
cussion, we simply assume the worst-case scenario where an
underlying tree has no failure recovery. In our failure exper-
iments, we fail one of root’s children (with 110 of the total
1000 nodes as descendants) 250 seconds after data stream-
ing is started. By failing one of root’s children, we are able
to show Bullet’s worst-case performance under a single node
failure.
In our first scenario, we disable failure detection in Ran-

Sub so that after a failure occurs, Bullet nodes request data
only from their current peers. That is, at this point, Ran-
Sub stops functioning and no new peer relationships are cre-
ated for the remainder of the run. Figure 13 shows Bullet’s
achieved bandwidth over time for this case. While the aver-
age achieved rate drops from 500 Kbps to 350 Kbps, most
nodes (including the descendants of the failed root child) are
able to recover a large portion of the data rate.
Next, we enable RanSub failure detection that recognizes

a node’s failure when a RanSub epoch has lasted longer
than the predetermined maximum (5 seconds for this test).
In this case, the root simply initiates the next distribute
phase upon RanSub timeout. The net result is that nodes
that are not descendants of the failed node will continue to
receive updated random subsets allowing them to peer with
appropriate nodes reflecting the new network conditions. As
shown in Figure 14, the failure causes a negligible disruption
in performance. With RanSub failure detection enabled,
nodes quickly learn of other nodes from which to receive
data. Once such recovery completes, the descendants of the
failed node use their already established peer relationships
to compensate for their ancestor’s failure. Hence, because
Bullet is an overlay mesh, its reliability characteristics far
exceed that of typical overlay distribution trees.

4.7 PlanetLab
This section contains results from the deployment of Bul-

let over the PlanetLab [31] wide-area network testbed. For

293

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bandwidth received
Useful total

From parent

Figure 13: Bandwidth over time with a worst-case
node failure and no RanSub recovery.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bandwidth received
Useful total

From parent

Figure 14: Bandwidth over time with a worst-case
node failure and RanSub recovery enabled.

our first experiment, we chose 47 nodes for our deployment,
with no two machines being deployed at the same site. Since
there is currently ample bandwidth available throughout the
PlanetLab overlay (a characteristic not necessarily represen-
tative of the Internet at large), we designed this experiment
to show that Bullet can achieve higher bandwidth than an
overlay tree when the source is constrained, for instance in
cases of congestion on its outbound access link, or of over-
load by a flash-crowd.
We did this by choosing a root in Europe connected to

PlanetLab with fairly low bandwidth. The node we selected
was in Italy (cs.unibo.it) and we had 10 other overlay
nodes in Europe. Without global knowledge of the topology
in PlanetLab (and the Internet), we are, of course, unable
to produce our greedy bottleneck bandwidth tree for com-
parison. We ran Bullet over a random overlay tree for 300
seconds while attempting to stream at a rate of 1.5 Mbps.
We waited 50 seconds before starting to stream data to al-
low nodes to successfully join the tree. We compare the
performance of Bullet to data streaming over multiple hand-
crafted trees. Figure 15 shows our results for two such trees.
The “good” tree has all nodes in Europe located high in the
tree, close to the root. We used pathload [20] to measure the

0

200

400

600

800

1000

1200

0 50 100 150 200 250

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bullet
Good Tree
Worst Tree

Figure 15: Achieved bandwidth over time for Bullet
and TFRC streaming over different trees on Planet-
Lab with a root in Europe.

available bandwidth between the root and all other nodes.
Nodes with high bandwidth measurements were placed close
to the root. In this case, we are able to achieve a bandwidth
of approximately 300 Kbps. The “worst” tree was created
by setting the root’s children to be the three nodes with the
worst bandwidth characteristics from the root as measured
by pathload. All subsequent levels in the tree were set in
this fashion.
For comparison, we replaced all nodes in Europe from

our topology with nodes in the US, creating a topology that
only included US nodes with high bandwidth characteristics.
As expected, Bullet was able to achieve the full 1.5 Mbps
rate in this case. A well constructed tree over this high-
bandwidth topology yielded slightly lower than 1.5 Mbps,
verifying that our approach does not sacrifice performance
under high bandwidth conditions and improves performance
under constrained bandwidth scenarios.

5. RELATED WORK
Snoeren et al. [36] use an overlay mesh to achieve reli-

able and timely delivery of mission-critical data. In this
system, every node chooses n “parents” from which to re-
ceive duplicate packet streams. Since its foremost emphasis
is reliability, the system does not attempt to improve the
bandwidth delivered to the overlay participants by sending
disjoint data at each level. Further, during recovery from
parent failure, it limits an overlay router’s choice of parents
to nodes with a level number that is less than its own level
number.
The power of “perpendicular” downloads is perhaps best

illustrated by Kazaa [22], the popular peer-to-peer file swap-
ping network. Kazaa nodes are organized into a scalable, hi-
erarchical structure. Individual users search for desired con-
tent in the structure and proceed to simultaneously down-
load potentially disjoint pieces from nodes that already have
it. Since Kazaa does not address the multicast communica-
tion model, a large fraction of users downloading the same
file would consume more bandwidth than nodes organized
into the Bullet overlay structure. Kazaa does not use era-
sure coding; therefore it may take considerable time to locate
“the last few bytes.”

294

BitTorrent [3] is another example of a file distribution sys-
tem currently deployed on the Internet. It utilizes trackers
that direct downloaders to random subsets of machines that
already have portions of the file. The tracker poses a scala-
bility limit, as it continuously updates the systemwide distri-
bution of the file. Lowering the tracker communication rate
could hurt the overall system performance, as information
might be out of date. Further, BitTorrent does not employ
any strategy to disseminate data to different regions of the
network, potentially making it more difficult to recover data
depending on client access patterns. Similar to Bullet, Bit-
Torrent incorporates the notion of “choking” at each node
with the goal of identifying receivers that benefit the most
by downloading from that particular source.
FastReplica [11] addresses the problem of reliable and

efficient file distribution in content distribution networks
(CDNs). In the basic algorithm, nodes are organized into
groups of fixed size (n), with full group membership infor-
mation at each node. To distribute the file, a node splits
it into n equal-sized portions, sends the portions to other
group members, and instructs them to download the miss-
ing pieces in parallel from other group members. Since only
a fixed portion of the file is transmitted along each of the
overlay links, the impact of congestion is smaller than in the
case of tree distribution. However, since it treats all paths
equally, FastReplica does not take full advantage of high-
bandwidth overlay links in the system. Since it requires file
store-and-forward logic at each level of the hierarchy nec-
essary for scaling the system, it may not be applicable to
high-bandwidth streaming.
There are numerous protocols that aim to add reliability

to IP multicast. In Scalable Reliable Multicast (SRM) [16],
nodes multicast retransmission requests for missed packets.
Two techniques attempt to improve the scalability of this
approach: probabilistic choice of retransmission timeouts,
and organization of receivers into hierarchical local recovery
groups. However, it is difficult to find appropriate timer val-
ues and local scoping settings (via the TTL field) for a wide
range of topologies, number of receivers, etc. even when
adaptive techniques are used. One recent study [2] shows
that SRM may have significant overhead due to retransmis-
sion requests.
Bullet is closely related to efforts that use epidemic data

propagation techniques to recover from losses in the non-
reliable IP-multicast tree. In pbcast [2], a node has global
group membership, and periodically chooses a random sub-
set of peers to send a digest of its received packets. A node
that receives the digest responds to the sender with the
missing packets in a last-in, first-out fashion. Lbpcast [14]
addresses pbcast’s scalability issues (associated with global
knowledge) by constructing, in a decentralized fashion, a
partial group membership view at each node. The average
size of the views is engineered to allow a message to reach all
participants with high probability. Since lbpcast does not
require an underlying tree for data distribution and relies
on the push-gossiping model, its network overhead can be
quite high.
Compared to the reliable multicast efforts, Bullet behaves

favorably in terms of the network overhead because nodes
do not “blindly” request retransmissions from their peers.
Instead, Bullet uses the summary views it obtains through
RanSub to guide its actions toward nodes with disjoint con-
tent. Further, a Bullet node splits the retransmission load

between all of its peers. We note that pbcast nodes contain
a mechanism to rate-limit retransmitted packets and to send
different packets in response to the same digest. However,
this does not guarantee that packets received in parallel from
multiple peers will not be duplicates. More importantly, the
multicast recovery methods are limited by the bandwidth
through the tree, while Bullet strives to provide more band-
width to all receivers by making data deliberately disjoint
throughout the tree.
Narada [19] builds a delay-optimized mesh interconnect-

ing all participating nodes and actively measures the avail-
able bandwidth on overlay links. It then runs a standard
routing protocol on top of the overlay mesh to construct for-
warding trees using each node as a possible source. Narada
nodes maintain global knowledge about all group partici-
pants, limiting system scalability to several tens of nodes.
Further, the bandwidth available through a Narada tree is
still limited to the bandwidth available from each parent.
On the other hand, the fundamental goal of Bullet is to in-
crease bandwidth through download of disjoint data from
multiple peers.
Overcast [21] is an example of a bandwidth-efficient over-

lay tree construction algorithm. In this system, all nodes
join at the root and migrate down to the point in the tree
where they are still able to maintain some minimum level of
bandwidth. Bullet is expected to be more resilient to node
departures than any tree, including Overcast. Instead of a
node waiting to get the data it missed from a new parent,
a node can start getting data from its perpendicular peers.
This transition is seamless, as the node that is disconnected
from its parent will start demanding more missing packets
from its peers during the standard round of refreshing its
filters. Overcast convergence time is limited by probes to
immediate siblings and ancestors. Bullet is able to provide
approximately a target bandwidth without having a fully
converged tree.
In parallel to our own work, SplitStream [9] also has the

goal of achieving high bandwidth data dissemination. It op-
erates by splitting the multicast stream into k stripes, trans-
mitting each stripe along a separate multicast tree built us-
ing Scribe [34]. The key design goal of the tree construction
mechanism is to have each node be an intermediate node
in at most one tree (while observing both inbound and out-
bound node bandwidth constraints), thereby reducing the
impact of a single node’s sudden departure on the rest of
the system. The join procedure can potentially sacrifice the
interior-node-disjointness achieved by Scribe. Perhaps more
importantly, SplitStream assumes that there is enough avail-
able bandwidth to carry each stripe on every link of the tree,
including the links between the data source and the roots
of individual stripe trees independently chosen by Scribe.
To some extent, Bullet and SplitStream are complementary.
For instance, Bullet could run on each of the stripes to maxi-
mize the bandwidth delivered to each node along each stripe.
CoopNet [29] considers live content streaming in a peer-

to-peer environment, subject to high node churn. Conse-
quently, the system favors resilience over network efficiency.
It uses a centralized approach for constructing either ran-
dom or deterministic node-disjoint (similar to SplitStream)
trees, and it includes an MDC [17] adaptation framework
based on scalable receiver feedback that attempts to max-
imize the signal-to-noise ratio perceived by receivers. In
the case of on-demand streaming, CoopNet [30] addresses

295

the flash-crowd problem at the central server by redirecting
incoming clients to a fixed number of nodes that have previ-
ously retrieved portions of the same content. Compared to
CoopNet, Bullet provides nodes with a uniformly random
subset of the system-wide distribution of the file.

6. CONCLUSIONS
Typically, high bandwidth overlay data streaming takes

place over a distribution tree. In this paper, we argue that,
in fact, an overlay mesh is able to deliver fundamentally
higher bandwidth. Of course, a number of difficult chal-
lenges must be overcome to ensure that nodes in the mesh do
not repeatedly receive the same data from peers. This paper
presents the design and implementation of Bullet, a scalable
and efficient overlay construction algorithm that overcomes
this challenge to deliver significant bandwidth improvements
relative to traditional tree structures. Specifically, this pa-
per makes the following contributions:

• We present the design and analysis of Bullet, an over-
lay construction algorithm that creates a mesh over
any distribution tree and allows overlay participants
to achieve a higher bandwidth throughput than tradi-
tional data streaming. As a related benefit, we elimi-
nate the overhead required to probe for available band-
width in traditional distributed tree construction tech-
niques.

• We provide a technique for recovering missing data
from peers in a scalable and efficient manner. Ran-
Sub periodically disseminates summaries of data sets
received by a changing, uniformly random subset of
global participants.

• We propose a mechanism for making data disjoint and
then distributing it in a uniform way that makes the
probability of finding a peer containing missing data
equal for all nodes.

• A large-scale evaluation of 1000 overlay participants
running in an emulated 20,000 node network topol-
ogy, as well as experimentation on top of the Planet-
Lab Internet testbed, shows that Bullet running over
a random tree can achieve twice the throughput of
streaming over a traditional bandwidth tree.

Acknowledgments
We would like to thank David Becker for his invaluable help
with our ModelNet experiments and Ken Yocum for his help
with ModelNet emulation optimizations. In addition, we
thank our shepherd Barbara Liskov and our anonymous re-
viewers who provided excellent feedback.

7. REFERENCES
[1] Suman Banerjee, Bobby Bhattacharjee, and Christopher

Kommareddy. Scalable Application Layer Multicast. In
Proceedings of ACM SIGCOMM, August 2002.

[2] Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen
Xiao, Mihai Budiu, and Yaron Minsky. Bimodal Multicast.
ACM Transaction on Computer Systems, 17(2), May 1999.

[3] Bittorrent. http://bitconjurer.org/BitTorrent.
[4] Burton Bloom. Space/Time Trade-offs in Hash Coding

with Allowable Errors. Communication of ACM,
13(7):422–426, July 1970.

[5] Andrei Broder. On the Resemblance and Containment of
Documents. In Proceedings of Compression and Complexity
of Sequences (SEQUENCES’97), 1997.

[6] John W. Byers, Jeffrey Considine, Michael Mitzenmacher,
and Stanislav Rost. Informed Content Delivery Across
Adaptive Overlay Networks. In Proceedings of ACM
SIGCOMM, August 2002.

[7] John W. Byers, Michael Luby, Michael Mitzenmacher, and
Ashutosh Rege. A Digital Fountain Approach to Reliable
Distribution of Bulk Data. In SIGCOMM, pages 56–67,
1998.

[8] Ken Calvert, Matt Doar, and Ellen W. Zegura. Modeling
Internet Topology. IEEE Communications Magazine, June
1997.

[9] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, and Atul Singh.
Splitstream: High-bandwidth Content Distribution in
Cooperative Environments. In Proceedings of the 19th ACM
Symposium on Operating System Principles, October 2003.

[10] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott
Shenker, and Walter Willinger. Towards Capturing
Representative AS-Level Internet Topologies. In
Proceedings of ACM SIGMETRICS, June 2002.

[11] Ludmila Cherkasova and Jangwon Lee. FastReplica:
Efficient Large File Distribution within Content Delivery
Networks. In 4th USENIX Symposium on Internet
Technologies and Systems, March 2003.

[12] Reuven Cohen and Gideon Kaempfer. A Unicast-based
Approach for Streaming Multicast. In INFOCOM, pages
440–448, 2001.

[13] Patrick Eugster, Sidath Handurukande, Rachid Guerraoui,
Anne-Marie Kermarrec, and Petr Kouznetsov. Lightweight
Probabilistic Broadcast. To appear in ACM Transactions
on Computer Systems.

[14] Patrick Eugster, Sidath Handurukande, Rachid Guerraoui,
Anne-Marie Kermarrec, and Petr Kouznetsov. Lightweight
Probabilistic Broadcast. In Proceedings of The
International Conference on Dependable Systems and
Networks (DSN), 2001.

[15] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg
Widmer. Equation-based congestion control for unicast
applications. In SIGCOMM 2000, pages 43–56, Stockholm,
Sweden, August 2000.

[16] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven
McCanne, and Lixia Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level
Framing. IEEE/ACM Transactions on Networking,
5(6):784–803, 1997.

[17] Vivek K Goyal. Multiple Description Coding: Compression
Meets the Network. IEEE Signal Processing Mag., pages
74–93, May 2001.

[18] Yang hua Chu, Sanjay Rao, and Hui Zhang. A Case For
End System Multicast. In Proceedings of the ACM
Sigmetrics 2000 International Conference on Measurement
and Modeling of Computer Systems, June 2000.

[19] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui
Zhang. Enabling Conferencing Applications on the Internet
using an Overlay Multicast Architecture. In Proceedings of
ACM SIGCOMM, August 2001.

[20] Manish Jain and Constantinos Dovrolis. End-to-end
Available Bandwidth: Measurement Methodology,
Dynamics, and Relation with TCP Throughput. In
Proceedings of SIGCOMM 2002, New York, August 19–23
2002.

[21] John Jannotti, David K. Gifford, Kirk L. Johnson,
M. Frans Kaashoek, and Jr. James W. O’Toole. Overcast:
Reliable Multicasting with an Overlay Network. In
Proceedings of Operating Systems Design and
Implementation (OSDI), October 2000.

[22] Kazaa media desktop. http://www.kazaa.com.
[23] Min Sik Kim, Simon S. Lam, and Dong-Young Lee.

296

Optimal Distribution Tree for Internet Streaming Media.
Technical Report TR-02-48, Department of Computer
Sciences, University of Texas at Austin, September 2002.

[24] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht,
Abhijeet Bhirud, and Amin Vahdat. Using Random
Subsets to Build Scalable Network Services. In Proceedings
of the USENIX Symposium on Internet Technologies and
Systems, March 2003.

[25] Michael Luby. LT Codes. In In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002.

[26] Michael G. Luby, Michael Mitzenmacher, M. Amin
Shokrollahi, Daniel A. Spielman, and Volker Stemann.
Practical Loss-Resilient Codes. In Proceedings of the 29th
Annual ACM Symposium on the Theory of Computing
(STOC ’97), pages 150–159, New York, May 1997.
Association for Computing Machinery.

[27] Jitedra Padhye, Victor Firoiu, Don Towsley, and Jim
Krusoe. Modeling TCP Throughput: A Simple Model and
its Empirical Validation. In ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and
protocols for computer communication, pages 303–314,
Vancouver, CA, 1998.

[28] Venkata N. Padmanabhan, Lili Qiu, and Helen J. Wang.
Server-based Inference of Internet Link Lossiness. In
Proceedings of the IEEE Infocom, San Francisco, CA, USA,
2003.

[29] Venkata N. Padmanabhan, Helen J. Wang, and Philip A.
Chou. Resilient Peer-to-Peer Streaming. In Proceedings of
the 11th ICNP, Atlanta, Georgia, USA, 2003.

[30] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou,
and Kunwadee Sripanidkulchai. Distributing Streaming
Media Content Using Cooperative Networking. In
ACM/IEEE NOSSDAV, 2002.

[31] Larry Peterson, Tom Anderson, David Culler, and Timothy
Roscoe. A Blueprint for Introducing Disruptive Technology
into the Internet. In Proceedings of ACM HotNets-I,
October 2002.

[32] R. C. Prim. Shortest Connection Networks and Some
Generalizations. In Bell Systems Technical Journal, pages
1389–1401, November 1957.

[33] Adolfo Rodriguez, Sooraj Bhat, Charles Killian, Dejan
Kostić, and Amin Vahdat. MACEDON: Methodology for
Automatically Creating, Evaluating, and Designing Overlay
Networks. Technical Report CS-2003-09, Duke University,
July 2003.

[34] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro,
and Peter Druschel. SCRIBE: The Design of a Large-scale
Event Notification Infrastructure. In Third International
Workshop on Networked Group Communication, November
2001.

[35] Stefan Savage. Sting: A TCP-based Network Measurement
Tool. In Proceedings of the 2nd USENIX Symposium on
Internet Technologies and Systems (USITS-99), pages
71–80, Berkeley, CA, October 11–14 1999. USENIX
Association.

[36] Alex C. Snoeren, Kenneth Conley, and David K. Gifford.
Mesh-Based Content Routing Using XML. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), October 2001.

[37] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostić, Jeff Chase, and David Becker.
Scalability and Accuracy in a Large-Scale Network
Emulator. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI),
December 2002.

297

