
Toward Practical Query Pricing with QueryMarket

Paraschos Koutris, Prasang Upadhyaya,
Magdalena Balazinska, Bill Howe, and Dan Suciu

University of Washington, Seattle, WA
{pkoutris,prasang,magda,billhowe,suciu}@cs.washington.edu

ABSTRACT
We develop a new pricing system, QueryMarket, for flexible
query pricing in a data market based on an earlier theo-
retical framework (Koutris et al., PODS 2012). To build
such a system, we show how to use an Integer Linear Pro-
gramming formulation of the pricing problem for a large
class of queries, even when pricing is computationally hard.
Further, we leverage query history to avoid double charging
when queries purchased over time have overlapping informa-
tion, or when the database is updated. We then present a
technique that fairly shares revenue when multiple sellers are
involved. Finally, we implement our approach in a prototype
and evaluate its performance on several query workloads.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational Databases

General Terms
Algorithms, Economics

Keywords
Data Pricing, Integer Linear Programming

1. INTRODUCTION
Data is increasingly sold and bought online. Apart from

websites that sell data that they collect on their own [3,
5, 8], several web-based marketplace services have recently
emerged: Azure Data Marketplace [1] and Infochimps [7] are
primary examples. These marketplace services offer a pub-
lic platform where data providers can upload and sell their
data and data consumers can purchase it. However, the pric-
ing schemes that are currently used to price data are either
simplistic (a seller offers the whole dataset or parts of the
dataset for fixed prices) or not flexible (only a limited class
of queries is allowed). This limitation is problematic since
recent work [17] demonstrated that buyers are interested in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

purchasing specific and complex information that requires
combining subsets of data from multiple sources. In the ab-
sence of more flexible pricing schemes, buyers are forced to
purchase supersets of the data they need.

In this work, we design and build a new system, called
the QueryMarket, as a back-end engine to price and manage
data in a marketplace service. QueryMarket enables practi-
cal and flexible pricing schemes: It enables sellers to upload
their data and specify a set of price points in the form of
selection queries over that data. Buyers can then purchase
complex queries over all the data available for sale, thus hav-
ing the flexibility to buy exactly the information needed. A
buyer simply specifies her query and the system automati-
cally computes the best set of selection queries to purchase
in order to answer her query, given the current database in-
stance and her past purchases. In prior work [13, 14] we
studied the theory of flexible query pricing and showed that
all but the simplest queries are hard to price. The main
challenges for implementing a pricing system is thus to (1)
guarantee the efficient computation of prices for a large class
of queries and (2) support the necessary functionality that
a practical data marketplace requires, which includes sup-
port for updates, queries over data from multiple vendors
and avoiding double-charging for the same data. This pa-
per takes an important first step toward addressing these
two core challenges and outlines future work necessary to
achieving a full-featured practical query pricing system.

In QueryMarket, the price the price depends only on the
information content of the query, and not on the compu-
tational cost. Once the system computes a price, it fairly
remunerates the various data providers involved in the trans-
action. Moreover, over time a data consumer is buying sev-
eral queries, so the QueryMarket system must avoid double-
charging the buyer for purchasing the same data. To achieve
this, the system identifies redundant information between
queries and adjusts the price accordingly. Hence, the price
of a query also depends on the query history of a user. Since
it is often the case that users ask closely related queries over
a session, incorporating past purchases to avoid overcharg-
ing is a fundamental requirement. Finally, as users purchase
data, sellers may add to it or may update it. QueryMarket
supports various policies for selling updates, including pro-
viding updates for free and charging for updates in propor-
tion to the amount of changed information.

The next example presents a practical case for pricing and
discusses the challenges and requirements for QueryMarket.

Example 1.1. Our running example concerns selling
data on word translation and word frequency. For any pair

613

of languages, e.g. English, German, there exists a table
Ten,de(w1, w2). An entry Ten,de(‘thanks’,‘danke’) means that
‘thanks’ in English translates to ‘danke’ in German. Such
data is currently sold through the Azure Marketplace [2],
where the price depends on characters per month purchased.
For example, 4 million characters per month cost $40.

Moreover, the dataset contains tables with frequency data
about unigrams and bigrams for various genres (e.g. fic-
tion, newspaper, music): UF (w, genre, freq, rank) and
BF (w1, w2, genre, freq, rank). Such data is currently sold
in [9] in a slightly different format. Both datasets can be
purchased for $250 each (or subsets for a lower price).

In current systems, our data consumer, Alice, can access
this dataset in limited ways. The tables UF,BF can only be
bought in large chunks of words, even if Alice is interested
in asking the frequency of a single word. The translation
dataset enables translations of single words or text: for ex-
ample, Alice can ask for the German translation of the word
‘thanks’: Q1(x) = Ten,de(′thanks′, x). However, Alice may
be interested in more complex queries that combine multiple
tables. Using the concise Datalog notation, the queries are:

Q2(x, y) = Tde,en(x, y), Tde,fr(x, y)

Q3() = UF (‘rock‘, ‘music‘, f1, y), UF (‘pop‘, ‘music‘, f2, z), f1 > f2

Q4(x, y) = UF (x, ‘math‘, z, r), Ten,de(x, y), r ≤ 100

Q5(x) = Ten,de(x, x) ∨ Ten,fr(x, x) ∨ Ten,sp(x, x)

Query Q2 asks for all German words with identical En-
glish and French translations: ‘Polizei’ is such an example,
since its English/French translation is ‘police’. Q3 asks if
the word ‘rock’ appears in the genre ‘music’ more frequently
than ‘pop’. Q4 asks for the German translation of the top
100 English math words. Finally, Q5 asks for any English
words such that its Spanish, German or French translation
coincides with it. Obviously, in each case, Alice would like
to pay only for the information content of that particular
query. This is not possible in today’s data markets, forcing
Alice to buy entire datasets so as to answer complex queries.

Additionally, multiple vendors may be necessary to answer
each one of Alice’s queries. For example, one seller ST may
offer table T while another seller SUF,BF may sell the UF
and BF tables. Today’s data market services force users to
purchase data separately from each vendor involved.

Alice will also issue multiple queries over time. These
queries may have overlapping information contents, for ex-
ample, Alice may later decide that she needs the top 250
math words in English and issue query

Q6(x, y) = UF (x, ‘math‘, z, r), Ten,de(x, y), r ≤ 250

similar to Q4. More subtle, if Alice issues Q5 after Q4, some
of the same Ten,de(x, y) tuples may need to be purchased for
both queries. Ideally, Alice should not pay for information
that she previously purchased. Today’s data markets, how-
ever, commonly ignore any purchase history.

Finally, the data may change over time. For example, the
ranks and frequencies of various words may be updated and
new words may be added. Today’s marketplace services do
not provide support for selling data updates.

QueryMarket is the first pricing system that supports the
pricing of the above queries and also handles the other key
technical challenges. Our main contributions in this paper
can be summarized as follows.
An Implementation of the Static Pricing Frame-

work. (Section 4) With our pricing scheme the seller speci-

fies base prices for selection queries and the system then au-
tomatically computes the price of any user query. As argued
in prior work [13], the pricing function must be arbitrage-
free, meaning that no query can be answered from a set of
cheaper queries. However, computing an arbitrage-free pric-
ing function is NP-hard for a large class of practical queries,
like those shown in Example 1.1. Thus, to design a sys-
tem that prices an arbitrary query in reasonable time, we
propose to formulate the pricing problem as an Integer Lin-
ear Program (ILP) and then call a state-of-the-art solver
to compute the price. We show how to construct the ILP
for a large class of queries, that includes unions of conjunc-
tive queries (the class of SELECT-PROJECT-JOIN queries
with disjunctions in SQL), query bundles and interpreted
constraints (which add unary predicates for selections, theta
joins, and even user-defined functions). We further describe
how to incorporate additional knowledge about the data (in
the form of key constraints) to the price computation.

This approach gives us a powerful tool to price a large
subclass of SQL queries (with the exception of negation and
aggregation). We further discuss several optimizations that
minimize the size of the ILP to gain performance.

Pricing in a Dynamic Setting. (Section 5) Second,
we study the case where a data consumer issues a series
of queries over the database. In this case, there may be
overlapping information between queries, a fact that reduces
the information gain of a buyer. For example, if Alice issues
first Q4 and then Q5, there may be a word that needs to be
translated in both queries: in this case, it is fair to ask Alice
to pay once. We propose and evaluate several methods to
incorporate the query history of a user when computing the
price. In particular, we show that one of our techniques is
not only efficient to implement, but also captures well the
information gain of the data consumer.

We further use query history to cope with pricing for dy-
namic databases, i.e. databases where the data is updated
(e.g. the word frequency set may count the frequency of
word in Twitter during a 24 hour window).

Revenue sharing. (Section 6) Finally, we discuss an
extension of the basic single-vendor scenario, and consider
the case when the data is contributed by multiple vendors.
The buyer issues a query that integrates data from multiple
vendors, and the challenge is to allocate the revenue fairly
between the sellers. We present a solution to this problem,
which only adds a modest amount of complexity over the
basic pricing scheme for a single vendor, while ensuring that
the revenue is shared fairly between sellers.

Prototype Implementation and Evaluation. (Sec-
tion 7) We implement the above techniques in a prototype
pricing system called QueryMarket and evaluate their per-
formance on real data, as described in Example 1.1.

Organization. In Section 2, we review the pricing frame-
work from our prior work [13]. In Section 4, we show how to
implement pricing as an ILP and to optimize its construc-
tion. Section 5 discusses and compares our solutions for
incorporating query history in pricing. Finally, in Section 7
we present and discuss our experimental findings.

2. BACKGROUND: PRICING FRAME-
WORK

In prior work [13], we introduced a flexible data pricing
framework, which requires that data sellers specify a small

614

number of distinct price points for the data. It then uses
these price points to automatically derive the price of any
query submitted by buyers. The key objective is to limit the
amount of work done by sellers, yet enable buyers to pur-
chase and pay for personalized data products. A key concept
of our framework and related frameworks [15] is that prices
should be arbitrage-free. We adopt here the same princi-
pled approach to pricing; in this section we review briefly
arbitrage-free pricing, following our prior work [13].

In the framework that we adopt, a data seller sells queries
over a database D. Instead of specifying a price for every
possible query, the seller instead specifies a set of explicit
price points S = {(V1, p1), . . . , (Vk, pk)}, where a pair (Vi, pi)
denotes that the seller wishes to sell the view Vi over the
database D for a price pi. For example, a seller may decide
to sell the set of words with any given rank for $1: then there
is a parameterized view, Vk(w, g, f, r) = UF (w, g, f, r), r =
k, for each rank k. Thus, S contains a pair (Vk, $1) for
every rank k. Even better, the prices can depend on the
rank, e.g. the seller charges $1 when the rank k is lower
than 10, charges $0.50 when the rank is between 10 and 99,
and charges only $0.10 for ranks 100 and up.

When the system receives a request by a data consumer to
answer a query Q, it automatically computes a price pSD(Q).
In fact, the framework defines the pricing function more gen-
erally, for an entire query bundle Q = {Q1, . . . , Qk}, i.e. it
allows the buyer to purchase simultaneously a set of queries,
which will be priced together. This can be cheaper than pric-
ing the queries separately, since it avoids double charging for
overlapping information between queries. The pricing func-
tion must agree with the price points set by the seller, and,
in addition, must satisfy the following properties:

Arbitrage-free: Whenever a query bundle Q can be an-
swered entirely from the query bundles V1, . . . ,Vk, then it
must hold that:

pSD(Q) ≤
∑

i=1,...,k

pSD(Vi) (1)

If this condition fails, then there exists an arbitrage situ-
ation: the buyer who wants to purchase Q has no incentive
for paying the official price pSD(Q); instead she will purchase
the view bundles V1, . . . ,Vk and derive the answer to Q her-
self. Key in this definition is the concept of answerability,
also called determinacy [18, 13]: a query bundle Q can be
answered from the queries in the bundle V = V1 ∪ . . .∪Vk,
in notation D ` V � Q, if there exists a function that,
given the answers to all queries in V, computes the answers
to all queries in Q. Thus, there exists some way for the
buyer to answer Q from V, without access to the database
D. The function needs to be correct only in the current state
of the database D. In the rest of the paper, we will use the
following alternative characterization of determinacy [13]: a
set of views V determines a query Q, D ` V � Q, if for
any database D′ such that V(D′) = V(D), Q(D) = Q(D′).

For example, if V has two views, R 1 S and S 1 T , and
Q has one query, R 1 S 1 T , then for any database, D `
V � Q: indeed, to answer Q, simply perform a natural join
of the two views. An arbitrage-free pricing function must be
such that pSD(Q) ≤ pSD(V). On the other hand, if we modify
the two views to project out some attributes in S, then, in
general, V no longer determines Q, since the query can not
be recovered from the views. In this case, the system may
charge more for Q than for V. However, assume that, in the

current state of the database, one of the views is empty: then
we have determinacy again, D ` V � Q, because a savvy
buyer can infer from Π(R 1 S) = ∅ that R 1 S 1 T = ∅, and
the system must ensure pSD(Q) ≤ pSD(V). Thus, even if the
seller defines the price points independently of the database
D (only dependent on the priced views), an arbitrage-free
pricing function may depend indirectly on the database.

Discount-free: The prices offer no additional discounts
than the ones specified by the data seller; equivalently, the
pricing function is maximum among arbitrage-free prices.

A pricing function with such properties (if it exists) can
be computed using the arbitrage-price. Recall that S are the
price points explicitly defined by the seller. The support of
a query bundle is:

suppSD(Q) ={C ⊆ S | D ` {Vi | (Vi, pi) ∈ C}� Q} (2)

The support is the set of all subsets of price-points C ⊆ S
that are sufficient to answer Q.

Definition 2.1 (Arbitrage-price). The arbitrage-
price of a query bundle Q is:

pSD(Q) = min
C∈suppS

D
(Q)

∑
(Vi,pi)∈C

pi (3)

The arbitrage-price represents the strategy of a savvy buyer:
to purchase Q, buy the cheapest support C for Q, meaning
the cheapest set of views that determine Q. The arbitrage-
price is always arbitrage free [13]; moreover, if it agrees
with the seller’s price points, then it is also the unique
arbitrage-free, discount-free pricing function consistent with
the seller’s constraints. In other words, a pricing system
must always compute the arbitrage price, Equation 3. No-
tice also that the arbitrage-price by definition is independent
of the query plan that is used to compute the query.

Example 2.2. Continuing Example 1.1, we describe how
a data seller, Bob, sets the price points for the data set.
We will use selections as price points. Consider first Ten,de.
Bob charges $0.01 for every selection query of the form
Va(x, y) = σx=a(Ten,de(x, y)), for any word a. He charges
$0.02 for each selection of the form σy=a(Ten,de(x, y)). Es-
sentially, a data consumer will pay $0.01 to translate any
English word to a German word, and $0.02 for the inverse.

As for the word frequency dataset, Bob prices two kinds of
selections for the table UF : σw=a(UF (w, g, f, r)) for $0.05,
whereas the price of σr=n(UF (w, g, f, r)) depends on the
rank. For the table BF , Bob chooses to price each selection
on 2 attributes: σw1=a,w2=b(BF (w1, w2, g, f, r)) for $0.1.

Under such price points, one can show (using results
in [13]) that Q2 can be priced efficiently in PTIME. How-
ever, Q4 is NP-hard to price. Further, the pricing complexity
of queries such as Q3 or Q5 is not formally known.

For the rest of the paper, we consider a database D, and
allow the data seller to specify the price points only as se-
lection queries over a single or multiple columns, as in Ex-
ample 2.2. We assume that, for each column X of table R
that the seller has specified prices, there exists a finite do-
main, denoted by ColR.X : this column1 is known to both
1The notion of a column should not be confused by the
notion of the domain or the active domain of the database.
To illustrate the distinction, consider a relation attribute
representing English words. The domain is the set of strings
of a given length, the active domain is the set of words in
the database, the column is the set of all English words.

615

the seller and the buyer, and D is required to include values
only from this column. The seller can specify explicit prices
only for the values in the appropriate column. For a value
a ∈ Col(R.X), the explicit price of the selection σR.X=a will
be denoted by p(σR.X=a).

For each relation, we only require that at least one (and
not necessarily all) attribute be priced. We also require that,
for any priced attribute, prices are set for all values in the
column. Otherwise, the price of the relation itself cannot be
specified. For a relation R, let att pr(R) denote the set of
attributes that are priced by the seller; then, att pr(R) 6= ∅.

2.1 Alternative Pricing Models
We compare the framework presented above with two sim-

ple pricing schemes: (a) pay-per-tuple, and (b) sell only the
pre-defined priced views. The comparison will be performed
across three dimensions: system infrastructure, customer
satisfaction and revenue for the seller.

In pay-per-tuple the buyer pays a uniform price for each
output tuple. This is simple to implement and predictable:
the more tuples returned, the higher the price. How-
ever, this scheme cannot put a price on negative infor-
mation, which can be valuable. For example, a finan-
cial analyst sells stock recommendations, StrongBuy(symb),
and a user retrieves these stocks and their current price,
q(x, y) = StrongBuy(x), List(x, y). The query returns few
answers, yet the user must pay dearly for them. The list
of all stocks List(symb,price) is a superset of the query,
but is freely available or cheap. Clearly, paying the same
price per tuple makes no sense here from the seller’s per-
spective. A more refined version of this scheme can dif-
ferentiate the price paid for each tuple by charging each
tuple depending on its provenance. While this fixes our
toy example, it fails in more complex scenarios, e.g. when
the user intersects the recommendations of two analysts,
q(x) = StrongBuy1(x), StrongBuy2(x). The absence of a
stock from either recommendation is valuable important in-
formation, yet it is not captured by the provenance.

In fixed-views, the buyer can only purchase the views that
are listed by the seller; if she needs to answer a query that is
not on the list, she needs to determine herself which views
to buy in order to answer her query. One advantage is that
users obtain the entire views that determine their query
and not just the final answer, at no additional cost and
they may reuse these views for future queries. However,
it is possible to achieve the same advantage in QueryMar-
ket by recording the user’s query history, Section 5. On
the other hand, the fixed-views scheme, although simple to
deploy, has three disadvantages. First, it moves the bur-
den of computing the optimal set of views from the market
maker to the buyer, who has to either do this manually
(which is impractical), or could use a tool but that would
be equivalent to our QueryMarket, simply running on the
client rather than the server. Second, determining the opti-
mal set of views to compute a query requires access to the
current state of the database. For example, if the query is
q(x) = StrongBuy1(x), StrongBuy2(x) and stock A is not
recommended by the second analyst, the buyer should buy
only the information from the second analyst, and not have
to pay the first analyst: QueryMarket can determine that,
since it has access to the data, but the buyer does not. Fi-
nally, since the buyer cannot compute the optimal set of
views to answer a query, she may later discover a cheaper

way to buy the same query: this may become obvious by
inspecting the views that she purchased, or she may learn
this from another user. Such differential pricing is poorly re-
ceived by customers and should be avoided at all costs [19].

To summarize, simpler pricing schemes either fail to cap-
ture the pricing needs of the seller or may defer the non-
trivial problem of selecting the views to generate an answer
to the buyer and hence making them impractical for buyers.

3. PROBLEM FORMULATION
We aim to develop a practical system for query-based data

pricing. We build on the above theoretical framework and,
to build a system, address the following three challenges.

Problem 1: Practical pricing of a large class of
queries.

As discussed above, only a small class of queries (a sub-
set of Conjunctive Queries) can be priced in PTIME. All
other queries are NP-hard, even when price points are sim-
ple selection queries over single attributes. Our goal with
building the QueryMarket system is to overcome this chal-
lenge and show that computing the price is a feasible task
for a large class of queries common in practice. In particular,
we demonstrate in Section 7 that our approach can price a
large variety of queries over a real dataset in a few seconds.

We focus on the class of queries that can be expressed
as Unions of Conjunctive Queries (UCQs) with interpreted
predicates. This class of queries is of particular interest be-
cause it captures a large part of SQL (except for negations
and aggregations): it captures SELECT-PROJECT-JOIN
(SPJ) queries including theta joins, disjunctions, and con-
junctions. Our approach also supports the pricing of user-
defined functions. In our system, a user submits a query
of the form Q(x1, . . . , x`) = R1(. . .), . . . , Rn(. . .), where the
head Q of the query contains a (possibly empty) subset of
variables from the query body. Each atom Ri in the query
body is either a relation for sale available in the database D
or the head of another rule in the query.

In order to compute prices, we take advantage of efficient
state-of-the-art ILP solvers (e.g. GLPK, CPLEX, Mosek; we
used GLPK [6] in Section 7) by casting the pricing problem
as an integer linear program. Let us recall that to price the
query, the system must compute the minimum-cost support
for that query (Equation 3). The objective function of the
ILP is then to minimize

∑
(Vi,pi)∈S pixi, where (Vi, pi)

are all the price points in S and xi is an indicator variable
capturing whether the view Vi is being purchased to answer
the query Q. The constraints of the ILP are expressed over
the variables xi and must be such that the set of purchased
views forms a support for the query. The challenge is in
determining how these constraints should be stated in order
to achieve that goal.

Problem 2: Handle system dynamism.
The second problem that we address in the QueryMar-

ket is that of system dynamism. First, we consider the
problem of pricing a sequence of query bundles, S =
〈Q1,Q2, . . . ,Qk〉, where the buyer purchases one query bun-
dle Qi ∈ S at a time until all bundles in the sequence have
been purchased. The ideal price that the buyer would like
to pay is equal to purchasing all the bundles at once, namely
pSD(Q1:k), where Q1:k =

⋃
i=1,...,k Qi. But if she issues the

616

queries one by one (over time), her total price is
∑

i p
S
D(Qi).

By arbitrage-freeness, the ideal price never exceeds the to-
tal price, and sometimes it can be strictly less, because it
avoids double charging the buyer for the same data item;
in an extreme case, if the buyer asks the same query re-
peatedly, Q1 = . . . = Qk = Q, then the ideal price is
pSD(Q1:k) = pSD(Q) (this follows from arbitrage-freeness),
while the total price is k times larger. One would like the
pricing system to account for past queries, and always charge
the buyer the ideal prices, thus avoiding double charging.
We demonstrate, however, that, in a dynamic setting, this
is computationally too expensive, and propose a set of al-
ternatives that closely approximate this ideal goal.

Second, we consider the problem of updates to the
database D. We propose a flexible mechanism that enables
sellers to determine their preferred pricing strategy for up-
dated views that have previously been purchased by a buyer.
To price updates, sellers define a function pu(V) ≤ p(V) for
each view. This function can be equal to zero or can be
non-zero and can depend on a variety of parameters includ-
ing time or the extent of the updates to V .

Problem 3: Ensure fairness of revenue sharing.
Finally, we consider an extension of the setting, where

the data is contributed by multiple sellers. Thus, when a
buyer issues a query, her answer integrates information from
multiple vendors, and the issue is how to share the revenue
fairly among the vendors. The arbitrage-free pricing func-
tion (Equation 3) is ignorant of multiple sellers: it finds a
set of price points C of minimal total price, whose views are
sufficient to answer the query. However, the set C is often
not unique, and different choices correspond to wildly dif-
ferent ways of splitting the revenues between sellers. For
a simple example, if the buyer purchases σp(R) 1 σq(S),
and the result is empty because both σp(R) and σq(S) are
empty, then her payment can either be sent to the vendor
of R (to pay for the information that R contains no records
satisfying the predicate p), or to the vendor of S. A data
market service must ensure fairness for the revenue sharing
between sellers. In Section 6, we demonstrate that ignoring
this problem by arbitrarily picking a solution can easily lead
to unfairness, and develop a policy, FairShare, that ensures
that each seller will be treated fairly in terms of revenue.

4. A PRACTICAL IMPLEMENTATION OF
THE STATIC PRICING FRAMEWORK

In this section, we describe an efficient implementation of
the pricing framework in the setting where a user issues a
single query bundle for pricing.

4.1 ILP for Full Conjunctive Queries
The first step of the construction is to show how to con-

struct the ILP for a full conjunctive query. In Datalog ter-
minology, a full CQ is a query where every variable appears
in the head. For example, Q2 (Section 1) is a full CQ.

Given a full CQ Q(x1, . . . , xk), any tuple t ∈ Colx1 ×
· · ·×Colxk is a possible answer to Q (there are polynomially
many such answers). Let tR be the projection of a tuple t ∈
Q(D) on the relation R in Q. Also, let t[R.X] be the value
of t at position R.X. Moreover, we say that a set of selection
views V covers a tuple tR if for some priced attribute R.Y ∈
att pr(R), we have that σR.Y =a ∈ V and tR[R.Y] = a. As

an example, consider the set V = {σA=a1(R), σA=a1(S)}
from Table 1. V covers both tuples R(a1), S(a1, b), but not
the tuples S(a2, b), S(a3, b).

We now distinguish two cases depending on whether t ∈
Q(D) or not. If t ∈ Q(D), any set of views V that deter-
mines Q must make sure that any projection tR of t to an
atom R in Q belongs in RD. To achieve this, V must cover
tR. In the case where t /∈ Q(D), V must discover a witness
that t does not belong in the answer; in other words, V must
discover an atom R such that tR /∈ RD and V must cover tR.
This intuition is formally captured by the following theorem.

Theorem 4.1. Let Q(x1, . . . , xk) be a full CQ, D be a
database instance and V be a set of selection views s.t. D `
V � Q. Consider a tuple t ∈ Colx1 × · · · × Colxk .

1. If t ∈ Q(D), then for each atom R in Q, there ex-
ists some priced attribute R.X ∈ att pr(R) such that
σR.X=t[R.X] ∈ V.

2. If t /∈ Q(D), V includes at least one of the selections
σR.X=t[R.X], where R.X ∈ att pr(R) and tR /∈ D.

Proof. For (1), assume that the claim does not hold.
Then, for a tuple t ∈ Q(D), there exists an atom R such
that all selections of the form σR.X=t[R.X], for any R.X ∈
att pr(R), do not appear in V. Notice that tR ∈ D: consider
a database D′ where D = D′ − {R(tR)}. Clearly, V(D) =
V(D′), since tR does not belong in any of the views in V.
However, t /∈ Q(D′), a contradiction.

For (2), assume again that the claim does not hold. Then,
for any projection tR /∈ D, V does not include any of the
views σR.X=t[R.X], where R.X ∈ att pr(R). Let D′ be D ∪
{R(tR) | tR /∈ D}. Again, V(D) = V(D′), but now t ∈
Q(D′).

Exploiting Theorem 4.1, we can construct the linear pro-
gram as follows. We introduce a variable xR.X,a for each
selection of the form σR.X=a, where R.X ∈ att pr(R) and
a ∈ ColR.X . The variable xR.X,a takes values from {0, 1}: it
is 1 if the corresponding view is purchased, otherwise it is 0.
Hence, the objective of the lLP is to minimize the total price
captured by the following expression (where att(Q) denotes
the priced attributes of atoms in Q):

minimize
∑

R.X∈att(Q)

∑
a∈ColR.X

p(σR.X=a)xR.X,a

We next discuss how to add the constraints for the ILP.
There are two cases. (1) For each potential tuple t /∈ Q(D),
we need to add one constraint as follows:

∀t /∈ Q(D) :
∑

t.R/∈D,R.X∈att pr(R)

xR.X,t[R.X] ≥ 1

Notice that this forces, for any projection t.R /∈ D, any
solution to buy at least a selection view that will cover t.R.
(2) For each tuple t ∈ Q(D), and for each atom R in Q, we
add the following constraint:

∀t ∈ Q(D), ∀R ∈ atoms(Q) :
∑

R.X∈att pr(R)

xR.X,t[R.X] ≥ 1

This construction produces an ILP that solves pricing for
any full Conjunctive Query. Furthermore, notice that the
construction does not prohibit the existence of constants in
the CQ or self-joins (i.e. when a relation appears more than
once in the query).

617

Schema: R(A), S(A,B), T (A); Domains: ColA = {a1, a2, a3}, ColB = {b}; Database: R(a1), S(a1, b), S(a2, b), T (a1), T (a2)
Price points: p(σR.A=a1

), p(σR.A=a2
), . . . , p(σS.A=a1

), . . . , p(σS.B=b), . . . , p(σT.A=a1
), . . .

Objective Function:
∑3

i=1 p(σR.A=ai
)xR.A,ai

+
∑3

i=1 p(σS.A=ai
)xS.A,ai

+ p(σS.B=b)xR.B,b +
∑3

i=1 p(σT.A=ai
)xT.A,ai

Constraints: Query specific, as described below.
Type Query Generated ILP Constraints Intuition
Full Queries Q(u,v) =

R(u),S(u,v)
(a1, b) ∈ Q : xR.A,a1

≥ 1, xS.A,a1
+ xS.B,b ≥ 1

(a2, b) /∈ Q : xR.A,a2
≥ 1

(a3, b) /∈ Q : xR.A,a3
+ xS.A,a3

+ xS.B,b ≥ 1

(a1, b) is in the answer, so we must purchase both R(a1)
and S(a1, b) (by either buying σS.A=a1

or σS.A=b);
(a2, b) is not in the answer, and the only way to find this
out is to learn that R(a2) is not in the database; (a3, b)
is not in the answer, and we can learn this by learning
that either R(a3) or S(a3, b) is not in the database.

Projections Q(v) =
T(u),S(u,v)

(a1, b) ∈ Qf
: xT.A,a1

≥ z1, xS.A,a1
+ xS.B,b ≥ z1

(a2, b) ∈ Qf
: xT.A,a2

≥ z2, xS.A,a2
+ xS.B,b ≥ z2

b ∈ Q : z1 + z2 ≥ 1

To find out that b is in the answer, we need to learn
either about (a1, b) or (a2, b): in each case, we cover the
tuple as in the example on the previous line.

Table 1: An example on the ILP construction for queries on a database with three relations R(A), S(A,B), T (A).

4.2 Extensions
In this subsection, we show how to extend the ILP con-

struction for full conjunctive queries to include projections,
UCQs, interpreted constraints, bundles, key constraints, as
well as user-defined functions (UDFs).

Projections. Consider a query Q(x1, . . . , x`), where the
head variables are a strict subset of the body variables (or
even an empty set if Q is boolean). Let Qf be the corre-
sponding full query of Q, i.e., Qf contains all the body vari-
ables as head variables. Take a tuple t ∈ Colx1 × . . . Colx`

and consider two cases.
If t ∈ Q(D), for every tuple tf ∈ Qf (D) that projects to

t, introduce a constraint as in Qf , with the only difference
that the right side of the inequality is a new variable utf

(and not 1). Finally, introduce an additional constraint:∑
tf utf ≥ 1. Hence, every feasible solution has to satisfy

the latter constraint, which means that one of the utf will
be set to 1: thus, the solution has to discover at least one tf ,
which will imply that t will also be discovered as an answer.
If t /∈ Q(D), for every tuple tf /∈ Qf (D) that projects to t,
we construct the inequality constraint for Qf as before; we
need no additional constraints in this case. Indeed, if any
of these inequalities fails to be satisfied, we do prove that tf

(and hence t) is indeed a non-answer.
Table 1 gives an illustrative example of the construction.
Interpreted Constraints. Here we address arbitrary

selection conditions. The conditions may be unary (e.g. se-
lections of the form x = 1) or of higher arity (e.g. x = y),
and they may involve any conditional operator (e.g. inequal-
ities x < y). Common queries that are used in practice are
theta joins of the form Q(x, y) = R(x), S(y), θ(x, y), where
θ is a predicate: e.g. x > y, x ≤ y, |x− y| < 2 (band join).

For unary constraints, we assume a predicate C(x). In
this case, instead of using Colx in the construction of the
ILP, we use the filtered column Col′x = {a ∈ Colx | C(x)}.
This transformation can be viewed as pushing the selection
operator down the query plan, since it reduces the num-
ber of variables in the ILP. More generally, introducing a
constraint of arbitrary arity θ(xi1 , . . . , xim), where m ≤ k,
modifies only how we define a potential tuple when con-
structing the ILP. Indeed, a potential tuple is now defined
as t ∈ {a ∈ Colx1 × · · · × Colxk | θ(ai1 , . . . , aim)}.

Query Bundles. Assume we want to formulate an ILP
for a query bundle Q = {Q1, . . . , Qk}. For each query Qi,
we construct independently the ILP constraints Ci. The
constraints for the bundle Q will be the set of constraints

{Ci | Qi ∈ Q}. As for the objective function of the ILP, this
will be to minimize the sum of p(σR.X=a) · xR.X,a, where
the sum is over any priced attribute for some relation that
appears in some Qi and a ∈ ColR.X .

Selections on Multiple Attributes. We can formu-
late the ILP even in the case where price points are defined
as selections over multiple attributes. For example, con-
sider the bigram dataset in Example 1.1: it is reasonable
for the data seller to price the selections on both words, i.e.
σBF.w1=a,BF.w2=b(BF). To incorporate this extension in the
ILP, we can generalize Theorem 4.1 to take into account that
a tuple t can now be covered not only by single-attribute,
but also multiple-attribute selections. The generalization is
straightforward and is omitted due to space constraints.

Unions of Conjunctive Queries. We will describe the
ILP construction for a query Q = Q1 ∪Q2 that is the union
of two CQs, Q1, Q2; the process can be easily generalized
for the union of more than 2 queries.

For every potential tuple t, we distinguish several cases.
If t /∈ Q(D), then it is neither in Q1(D) or Q2(D), so we
construct the ILP constraints separately for Q1, Q2 as pre-
viously discussed. If t ∈ Q(D), we distinguish two cases. If
t belongs in Q1(D) and not in Q2(D), we introduce the con-
straint for t ∈ Q1(D) (symmetrically if t ∈ Q2(D) and not
in Q1(D)). Finally, if t belongs in both Q1(D), Q2(D), we
introduce the constraints for Q1(D), Q2(D) as before, but
now on the right side of the inequalities for Q1 we replace
1 by a new binary variable ut,1 and for Q2 by a new binary
variable ut,2. Additionally, we require that ut,1 + ut,2 ≥ 1.
Key Constraints. We discuss how to incorporate key

constraints in our framework.
If the database schema defines a certain attribute as the

key of a relation, we can take this information into account
to lower the price offered to potential customers. Indeed, the
key constraint is an additional piece of information about the
database that the buyer knows, hence the buyer potentially
needs less information to answer the same question without
keys. Since the prices depend solely on information, less
information implies a lower price.

Example 4.2. Assume that a data owner wants to sell
the table R(X,Y), where the instance is RD = {(a1, b1)},
ColX = {a1} is priced to $10 and ColY = {b1, b2} is priced
to $3 each. Assume we want to price the query Q(x, y) =
R(x, y). If no keys exist, then σY =b1 , σY =b2 are the cheapest
views that determine Q; hence, p(Q) = 6. Now, assume
that the attribute X is a key for R. Then, purchasing the

618

view σY =b1 suffices to determine Q, since the key constraint
restricts a1 to map to a single value of Y , which is b1. In
this case, p(Q) = 3.

Assume that the attribute X is a key for R(X,Y1, . . . , Yk).
Let us construct the constraints for the ILP as we have de-
scribed before, but now we replace each variable xR.X,a with
a new variable yR.X,a. Furthermore, let a ∈ ColR.X map to
the unique values b1, . . . , bk. For each such value a, we in-
troduce the following constraint:

yR.X,a ≤ xR.X,a +
∑

R.Y ∈pr(R)\X

xR.Y,bi

In other words, the answer to the selection view σR.X=a

is the single tuple (a, b1, . . . , bk), and, in order to buy it, it
suffices to either buy it as is, or buy any of the other selection
views on some bi.
UDFs. We discuss how to model the pricing of user-

defined functions in our pricing system. As a motivating
example, suppose that a data seller wishes to sell a func-
tion hashtag(w), which determines whether the word w is a
Twitter hashtag or not. The idea is to represent the function
as a database relation isHashtag(X) that contains all the
hashtags and then define a price point for each selection of
the form σX=wisHashtag(X), where w is a possible word.
Thus, by representing any function f(x1, . . . , xk) for sale as
a relation isf (X1, . . . , Xk), we can incorporate UDFs into
our pricing system.

4.3 Optimizing the ILP
The resulting ILP can be typically large. Recall that we

introduce a variable for every value of every attribute used
for pricing. Moreover, the number of constraints varies ac-
cording to the structure of the query and the attributes that
are priced: for example, for a typical join R(x, y) 1 S(y, z)
where all columns are priced, the number of constraints will
be |Colx| · |Coly| · |Colz|. To overcome the problem of con-
structing a huge ILP, we develop several optimization tech-
niques that reduce the size of the resulting ILP.

4.3.1 Independent Subproblems
This technique allows us to split the ILP into one or more

smaller ILPs, solve each ILP independently and then effi-
ciently combine their solutions. There are two cases where
this technique can be applied.

First, when a CQ contains more than one connected com-
ponent, it is possible to construct an ILP separately for each
connected component and then combine their prices. For ex-
ample, to compute the answer for Q() = tgr(x, x), tfr(y, y),
we independently price the components Q1() = tgr(x, x) and
Q2() = tfr(y, y). If both are true, we add up their prices,
if one is false we output its price and if both are false we
output the minimum of the two prices.

This technique can also be applied in the case of bundles:
if the queries in the bundle do not share any predicates, we
can price each query separately and then add up their prices.

4.3.2 Problem Size Reduction
The second optimization technique we present reduces the

number of variables or constraints of the ILP, which accel-
erates the price computation. We discuss below two cases
where such a reduction of the ILP size is possible.

In the first case, the CQ contains a hanging variable, which
is a variable that appears once in the body of the query. If

the query Q is without self-joins any set of views that deter-
mines Q must either choose all the views from the hanging
variable or none of them [13]. We can thus construct two sep-
arate ILPs: the first sets the prices of the views to zero (and
automatically satisfies the relative constraints), whereas the
second sets the prices to infinity (in practice we can remove
the variables from the ILP).

In the second case, a CQ without self-joins contains a
variable that appears multiple times in a single atom. Then,
we can reduce the size of the ILP by keeping only one of
the columns where this variable appears (see [13] for more
details).

4.3.3 Coarse-Grained Pricing
To further reduce the size of the constructed ILP, we can

use as price points selections not only on single values, but
on groups of values or intervals. As we will discuss below,
this also solves the problem of setting explicit price points
on continuous or large domains.

Example 4.3. A data seller offers for purchase data on
weather conditions. In particular, the table Temp(x, y, t)
denotes that a location with coordinates (x, y) has an average
temperature t during 2011. Note that the column referring to
the temperature is continuous and it makes no sense for the
seller to set a price for specific values of the domain. The
same problem appears when someone sells data on revenue
for companies in the USA; even though the domain is not
continuous, it is still impractical to price every value.

To overcome these two problems, we propose a solution
that is based on a more coarse-grained pricing. Instead of
specifying price points as selections on single values, price
points are specified as selections over disjoint groups of val-
ues that cover the column. This grouping can refer to a
natural partition of a column into intervals, or, in the case
of a finite column, an arbitrary partition of the values into
groups.

Example 4.4. Continuing Example 4.3, a seller can par-
tition the temperature column of the Temp table into ranges
of 10 degrees Fahrenheit, [−100,−90), . . . , [90, 100), with
two additional ranges (−∞,−100) and [100,+∞). A coarser
pricing would partition into groups of 20 degrees. Moreover,
the seller could also group price points on coordinates. For
example, a reasonable partition would be to group coordinates
based on zip code.

As we show next, we can still transform the pricing prob-
lem into an ILP. However, the construction is not trivial,
since joining attributes may be priced at a different granu-
larity or using a different partitioning strategy.

Formally, the data seller can now define price points
over some attribute X of relation R as (σR.X∈Gi(R), pi),
where {Gi}i=1,k denotes a partition of ColR.X into k dis-
joint groups that cover ColR.X .

Generalized Price Points. We next present an algo-
rithm to compute the price in the case where the price points
are groups of values and not single values. The algorithm
transforms the problem to a single-value selection instance,
which we have previously discussed how to price.

Let D be the database, PR.X be the partition into groups
for an attribute R.X, and S be the price points in this case.
Moreover, for a value a ∈ ColR.X , let G(a) be the (unique)

619

group that a belongs to. We construct a database D′ and
price points S ′ as follows. The schema remains the same.
For a relation R, we replace the column ColR.X for D with a
column Col′R.X , where each value in Col′R.X corresponds to
a group in PR.X . The price points are set such that the price
of the selection is the same as the price of the group in S. To
construct the database D′, for a tuple t = (a1, . . . , ak) ∈ RD,

we introduce G(t) = (G(a1), . . . , G(ak)) ∈ RD′
.

Finally, assume a given conjunctive query Q. We con-
struct the corresponding query Q′ for S ′ and D′ as follows.
If x is a join variable that appears in atoms R1, . . . , Rm,
we replace its occurrence with x1, . . . , xm in R1, . . . , Rm re-
spectively and also introduce the predicate ∩i=1x

i 6= ∅, i.e.
that the conjunction of the corresponding groups must be
non-empty. We prove next the validity of our construction.

Theorem 4.5. We have that pSD(Q) = pS
′

D′(Q′).

Proof. Notice that the price points are in one to one
correspondence. Indeed, σR.X∈G(R) is a price point in S iff
σR.X=G(R) is a price point in S ′. Hence, we need to show
that D ` V � Q iff D′ ` V � Q′.

First, consider some V such that D′ ` V � Q′. We will
show that D ` V � Q. Indeed, consider a potential tuple
t = (a1, . . . , ak) ∈ Q(D) and take its projection tR for any

atom R. By our construction, since tR ∈ RD, G(tR) ∈ RD′
.

Now, consider a join variable x which corresponds to the
position i for t: let R1, Rm the atoms that have x. Then,
notice that the groups G1(ai), . . . , Gm(ai) have a non-empty
intersection, since ai belongs in all of them. Thus, G(t) ∈
Q′(D′) and for each G(tR), at least one view covers it, which
implies that at least one view will cover tR as well. A similar
proof holds when t /∈ Q(D). For the converse direction,
assume that D ` V � Q. Then, take any tuple t ∈ Q′(D′)
and suppose, for the sake of contradiction, that for any atom
R, V does not cover tR. Thus, we can find a tuple a ∈ RD

such that G(a) = tR and this tuple is not covered by V.
Now, we also know that the intersection for the join variables
is not-empty; hence, we can use any common value for the
intersection and create a counterexample for determinacy.
If t /∈ Q′(D′), a similar construction holds.

Notice that the transformation of the pricing problem to
pricing single-valued selections does not increase the num-
ber of price points in the problem. Hence, the size of the
resulting ILP depends directly on how coarse the partition
of the column is.

Prices. Given a column ColR.X , consider two partitions
P1, P2 of the column such that P1 is finer-grained than P2, in
the sense that, any group G2 ∈ P2 can be covered exactly by
a disjoint set of groups from P1. For example, the partition
in Example 4.4 into 5-degree ranges is finer than the one
into 20-degree ranges. Moreover, assume that the prices of
P1, P2 are naturally set such that if a collection of groups
{Gi}mi=1 from one partition covers a group G from the other
partition,

∑m
i=1 p(G

i) ≥ p(G). In this case, it is easy to

see that for any query Q, pP1
D (Q) ≤ pP2

D (Q) for the same
database D2. Consequently, a more fine-grained partition
will in general lead to lower prices for the buyers.

2Indeed, if D ` V2 � Q for P2, we can cover each V ∈ V 2

by a collection of groups from P1 of the same price. The
resulting set of views may have redundant views, so the price
may be even lower

5. PRICING IN A DYNAMIC SETTING
In the previous sections, we have only considered the case

where a buyer purchases a single query bundle and the
database is static, i.e. does not change over time. How-
ever, in order to build a practical pricing system, we need
to consider the case where a data consumer is interested in
several queries, which she issues at different times, and also
study the case where the database is modified over time.

In both cases, queries may have overlapping content;
hence, the information content that a data consumer has
purchased in the past must be taken into account when we
compute the price of a new query. In the extreme case that
the content of a query is determined by previous queries
asked, it must be offered for free, since the user has no in-
formation gain.

5.1 History
In this subsection, we discuss and explore various strate-

gies for incorporating query history when computing the
price. For the rest of the section, we consider the case of
a buyer who wants to purchase a sequence of query bundles
〈Q1,Q2, . . . ,Qk〉. Notice that the queries are issued by the
buyer in an online fashion; hence, we cannot assume that
the buyer or the system knows the full query sequence from
the start. Also, observe that the price for the information
content of this sequence is p(Q1:k), i.e. the price of the bun-
dle Q1:k =

⋃
i=1,k Qi. For ease of exposition, let us denote

by p(Qi) the price of the bundle Qi as a standalone query
bundle.

Oblivious Pricing. This pricing strategy, which we de-
note by pO, completely ignores the query history. Formally,
when asking for the bundle Qi, we define pO(Qi) = p(Qi).
The total cost for the sequence in the end will thus be
pO(〈Q1, . . . ,Qk〉) =

∑
i p(Qi). We will use this naive strat-

egy as the baseline for comparison.
Bundle Pricing. The second strategy is to ensure that,

after having asked queries Q1, . . . ,Qk, the user will have
paid p(Q1:k), i.e. the price of the total bundle. In order to
achieve this, the system charges for Qi, where i > 1, the
price pB(Qi) = p(Q1:i)− pB(Q1:i−1). Moreover, pB(Q1) =
p(Q1). It is easy to see that the definition implies that, for
every i = 1, . . . , k: pB(〈Q1, . . . ,Qi〉) = p(Q1:i). Hence, the
total cost of the sequence is pB(〈Q1, . . . ,Qk〉) = p(Q1:k).
Unfortunately, bundle pricing as a strategy is computation-
ally inefficient, since now the price computation depends also
on the size of the query history.

View Pricing. The third strategy leverages the query
history by storing the information that the buyer has pur-
chased. More precisely, when the system prices a query bun-
dle Qi, it computes a set of views V of minimum cost that
determines Qi. The pricing system will then consider that
the user has purchased these views, and so will offer them for
free when the same user issues another query. This strategy
can be implemented efficiently, since the system will perform
the same computation as pricing a standalone query, with
the difference that the already purchased views will now be
priced to zero. The only overhead of this strategy boils down
to the system storing the views that have been purchased.
Let us denote the price assigned by view pricing by pV .
Conditional Pricing. The final pricing strategy we con-

sider is conditional pricing, where we are looking for the
minimum cost set of views that, together with Q1:i−1 deter-
mines Qi. For this, we use the following notation: pC(Qi) =

620

p(Qi|Q1:i−1). Formally, the price will be equal to the mini-
mum cost set of views V such that D ` V,Q1:i−1 � Qi.

This notion is equivalent to the one presented in [15]. We
do not explore this case in depth, since the problem becomes
computationally very hard. In particular, deciding whether
p(Q|Q′) = 0 is equivalent to whether query Q′ determines
query Q, which is a problem in general harder than NP, even
in the case where the price points are only selections.

When comparing the various pricing strategies, we are
interested in two parameters. The first parameter is how
efficient the computation of the price is (and whether it is
independent from the size of the sequence or not). The
second is how close the total price of the sequence will be to
the price of the query bundle Q1:k. Regarding the second
factor, we can formally show the following lemma.

Lemma 5.1. For any sequence S = 〈Q1, . . . ,Qk〉:

p(Q1:k) = pB(S) ≤ pV (S) ≤ pC(S) ≤ pO(S) (4)

pO(S) ≤ k · p(Q1:k) (5)

Proof. We first prove the first equation. It is easy to
see that any strategy cannot do better than pB . In order to
show that pV (S) ≤ pC(S), consider any bundle Qi and let
V be the set of views purchased so far by the view pricing
strategy. By definition, D ` V � Q1:i−1. Hence, for any
set of views Vi such that D ` Vi,Q1:i−1 � Qi, it also holds
that D ` Vi,V � Qi, which implies that pC will be at least
as much as pV . Finally, we show that pC(Qi) ≤ pO(Qi).
Indeed, if D ` V � Qi, then trivially D ` V,Q1:i−1 � Qi.

To show the second equation, notice that we have pO(S) =∑
i p(Qi) ≤ k ·maxi{p(Qi)}. However, for any query bundle

Qi, p(Qi) ≤ p(Q1:k). It additionally holds that the bound is
tight for pV , i.e. there exists an instance such that pV (S) =
k · p(Q1:k).

In Section 7, we experimentally compare the various
strategies in terms of price and performance. We propose
view pricing as the most suitable strategy for incorporating
history, since the performance overhead over the oblivious
strategy is small and the price is close to the total bundle
price. Further, as we show in the next subsection, view pric-
ing can be used to additionally model dynamic databases.

5.2 Updates
In this subsection, we discuss pricing in the presence of

updates. Datasets that frequently change are often offered
for sale: for example, the hashtag(X) table that contains
all the words that are hashtags changes when new hashtags
are added in the Twitter stream. Also, a dataset with stock
prices may be updated daily.

Our framework does not enforce any constraints on how
the prices are related when the database changes; however, if
some part of the data has not been modified by the update,
the pricing system should not charge the user again.

We use query history and the view pricing strategy to for-
malize this problem. The seller, apart from the base prices,
can define an update price pu(V) for each view V , which de-
fines how much a user must pay for updates to a view she
has already purchased. Clearly, pu(V) ≤ p(V). Moreover,
the update price can be set to zero, i.e. after a view has
been purchased, each modification is offered for free.

As we have discussed above, the data consumer keeps a log
of the views that have been purchased: these views are now

free for the user. When the database is updated, QueryMar-
ket updates the prices of the purchased views accordingly:
if a view has not been modified, its price remains zero. On
the other hand, if a view V is modified, the price to pur-
chase this view will be pu(V). This formulation allows to
transform this problem into a regular pricing problem, thus
not increasing the complexity of pricing.

6. REVENUE SHARING
Since the datasets may belong to several sellers, the rev-

enue of a priced query must be shared between the sellers
who contributed to answering the particular query Q. If
a unique minimum-cost set of views V determines Q, dis-
tributing the profit among the sellers is trivial: the revenue
of each seller is the sum of the prices of the views that she
owns. However, it might be the case that the pricing prob-
lem admits multiple minimum-cost solutions.

Example 6.1. Consider Q(x, y) = R(x, y), S(y, z), y = 1
and assume that only the attributes R.y and S.y are priced
uniformly at $1. Moreover, R and S belong to different sell-
ers. If both σy=1(R) and σy=1(S) are empty, we can deter-
mine Q by purchasing either σy=1(R) from the one seller or
σy=1(S) from the other seller. In both cases, one seller will
be rewarded with the total revenue ($1) and the other will
have zero profit.

We next describe FairShare, a policy to ensure that the
revenue will be fairly shared among the data sellers. Let a
query bundle Q and Sol(Q) the set of all the minimum-cost
solutions. For a set of views V that determines Q and a
seller s, let Vs be the set of views that belong to seller s.
Moreover, for a seller s that may contribute to the price of
Q, define by share(s,Q) the maximum revenue that seller
s can get among all minimum-cost solutions for Q:

share(s,Q) = max
V∈Sol(Q)

p(Vs)

First, observe that one can compute the share for seller
s using our standard ILP techniques, without needing to
iterate over all possible solutions. For this, before we for-
mulate the ILP, we give to all the views from seller s a
tiny discount: a view that costs p will now cost (1 − ε)p
for an arbitrary small ε. The solution V with price p′(V)
of the ILP will now give us the share for seller s. Indeed,
p′(V) = p′(Vs) + p′(V \Vs) = (1− ε)p(Vs) + p(V \Vs) =
(1 − ε)p(Vs) + p(Q) − p(Vs) = p(Q) − εp(Vs). Thus, any
solution with a larger share than V would give a smaller
price than the optimal price of the ILP, a contradiction.

Intuitively, the share of a seller characterizes how much
of the ”burden” of answering Q she can afford. In the case
of k sellers s1, . . . , sk, it is easy to see that: share(si,Q) ≤
p(Q) ≤

∑
i=1,k share(si,Q).

Given that we know the shares for each of k sellers that
may contribute to Q, FairShare will distribute the revenue
in proportion to the share of each seller, i.e. the revenue
rev(si,Q) of seller si will be:

rev(si,Q) =
share(si,Q)∑

j=1,k share(sj ,Q)
· p(Q)

Continuing Example 6.1, observe that the share of each
seller is exactly $1. Since the price of the query is also $1,
FairShare will distribute to each seller an equal part of the
total price, i.e. $0.5.

621

7. EVALUATION
In this section, we experimentally evaluate the QueryMar-

ket pricing system. Our system (implemented in C++) runs
as a middleware layer and can be used over any relational
database management system (DBMS) supporting SQL: we
evaluate our system on top of the lightweight SQLite DBMS.
We use the open source GLPK ILP solver [6].

In QueryMarket, the explicit price points specified by
the seller are stored as tables in the database itself. More
precisely, for a priced attribute R.X, we create a table
Price[R.X](value, price), which stores the value of the selec-
tion attribute, along with the corresponding price. A similar
construction holds when the price points refer to multiple at-
tributes. In the case where the price is uniform for a specific
attribute, we store only the attribute values.

In order to monitor the price tables introduced by the
data sellers, QueryMarket keeps an index table, which we
refer to as price_info, with the following structure:

price info(table name, column1, column2, column3,

uprice, price table, owner)

The column uprice refers to the case where the selection has
a uniform price. As one can observe, the table also keeps
track of the data owner in order to share the revenue.

In order to construct the ILP constraints, the system con-
structs and issues SQL queries over the price tables and the
actual relations. Further, the system needs to store addi-
tional information so as to support the view pricing strategy
discussed in Section 5. Hence, for each buyer u, QueryMar-
ket keeps a table Purchased V iews[u] that stores the views
that have been purchased by the user so far.

We evaluate the various queries and workloads over the
database described in Example 1.1. More precisely, the
database and price points are constructed as follows:

• ten,de(x, y): price points for both columns

• ten,fr(x, y): price points for column x

• wf(w, g, f, r): price points for columns r and g

• hashtag(x): price points for the unique column x

The prices are set uniformly for each attribute to some
arbitrary price (the actual price value does not affect the
runtime of pricing algorithms).

7.1 Evaluation of the ILP formulation
We first study the performance of our price computation

algorithm that uses the ILP solver, for various sizes of the
database and the columns (the original dataset has size in
the order of 104, and for smaller sizes we consider subsets
of it). In our setting, the size of each column is equal to the
size of the projection of the relation on the priced attribute;
the sizes of the relations are in general larger than the sizes
of the columns, but of the same order of magnitude.

We issue various queries to the pricing system: selections
on single attributes with or without projections (Q1 through
Q5), selections with interpreted predicates (Q6), 2-way joins
without projections (Q7-Q11), 2-way joins with projections
(Q12-Q14) and 3-way joins (Q15). We conduct experiments
to measure the time to price each query for columns with
102 and 103 rows3. The results are depicted in Figure 1,

3Our measurement study of Many Eyes shows that 90% of
datasets contain fewer than 1000 rows [16].

0	

2	

4	

6	

8	

10	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ti
m
e	

in
	
 se

co
nd

s	

Query	

ILP	
 solving	
 6me	

ILP	
 construc6on	
 6me	

(a) Price columns with size 102. The construction time and total time
lines almost overlap in this case.

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ti
m
e	

in
	
 se

co
nd

s	

Query	

ILP	
 solving	
 6me	

ILP	
 construc6on	
 6me	

(b) Price columns with size 103.

Figure 1: Times for ILP construction and ILP solving for price
columns of size 102(a) and 103(b), where the queries are in ascending
order of total computation time.

where both the time to construct and the time to solve the
ILP are measured.

As the figure shows, for the small-scale datasets, pricing is
interactive: all but two queries are priced within 3 seconds.
The slower two queries still take less than 10 seconds to
price. In the larger configuration, 9 out of 15 queries are
priced within 10 seconds, and all but one are priced within a
minute. While these runtimes are no longer interactive, they
are still drastically faster than the current approach, which
requires human-to-human negotiations. The slower queries
in both cases correspond to 2-way joins (for size 103), where
the algorithm has to perform heavier computation in order
to construct the ILP.

Discussion. The efficiency of our pricing algorithm de-
pends heavily on the attributes that are priced. In general,
it is a good practice to price as few attributes per relation
as possible: pricing only one attribute (i.e. giving only one
access point to the buyer) will make the ILP extremely effi-
cient even for very large instances. If a buyer wishes to offer
multiple access points to some relation, one strategy is to
create copies of the same relation and for each copy offer a
different access attribute: any buyer will not be aware that
the data belongs in the same relation (that is exactly what
the Azure Marketplace does when selling translations).

7.2 Query History
In this subsection, we evaluate the various strategies that

we proposed to leverage query history discussed in Section 5
based on two parameters: performance and comparison of
the prices to the optimal price, which is the price of the total
bundle. The size of each column is in the order of 103 values.

In our experiment, we price three different query se-
quences of 30 queries 〈Q1, . . . , Q30〉, which consist of a ran-

622

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2

4

6

8

10

12

14

16

Oblivious pricing

Bundle pricing

View pricing

query

p
ri

ce
 in

 d
o

lla
rs

(a) Weakly overlapping query sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

5

10

15

20

25

Oblivious pricing

View pricing

Bundle pricing

query

p
ri

ce
 in

 d
o

lla
rs

(b) Moderately overlapping query sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2

4

6

8

10

12

14

16

18

Oblivious pricing

Bundle pricing

View pricing

query

p
ri

ce
 in

 d
o

lla
rs

(c) Highly overlapping query sequence

Figure 2: Comparison of the pricing strategies. Oblivious pricing
overcharges the users by 5% in (a) to 260% in (c). Bundle pricing
computes the ideal price, but is too expensive to compute. View-
pricing is easier to compute, and approximates bundle pricing almost
perfectly (the graphs are overlapped in (a),(b) and (c)).

dom choice of selections on ten,de and ten,fr and joins be-
tween these two datasets and the hashtag table. Each query
in the sequence is parametrized to access a small random set
of English words. The three sequences differ in the amount
of overlap between the sets of words: weakly, moderately and
highly overlapping. We vary the overlap by varying the size
of the set from which the set of English words is sampled:
for the weakly overlapping set it is the whole column, for
the moderately overlapping 20% of the column, and for the
highly overlapping 0.05% of the column.

Figure 2a, Figure 2b and Figure 2c show the cumulative
price at each point of the sequence for the following three
pricing strategies: oblivious pricing (pO), view pricing (pV)
and bundle pricing (pB).

A first observation is that, in all three cases, the price for
pV is the same as pB (although this will not always be the
case). Moreover, in Figure 2a, since the information between
the queries is essentially not overlapping, the price computed
by all strategies is approximately the same, as expected.
In contrast, in Figure 2c, where the information content is

Table 2: Performance comparison for the history pricing strategies.

Query Overlap Oblivious View Bundle
Weak 142 sec 213 sec > 20 min
Moderate 74 sec 129 sec > 20 min
High 138 sec 165 sec > 20 min

highly overlapping, the total price remains virtually constant
after some point, which means that incoming queries can be
answered almost for free, by using the views the user has
already purchased. In this case, the user ends up paying 8X
less than paying for each query independently.

Finally, we evaluate the time that it takes to price each
of the three query sequences using each of the three pric-
ing strategies. Table 2 shows the results. As the table
shows, the overhead induced by storing and updating the
purchased views is small: the time to price the whole se-
quence is only 20% to 75% longer than the time to price
the same sequence using the oblivious pricing method. On
the other hand, using bundle pricing makes price computa-
tion very costly, since the time to price the bundle Q1:20,
for example, takes as much as the cumulative time to price
the queries Q1, . . . , Q20 separately. And this cost is incurred
repetitively, with each new query in the sequence.

8. DISCUSSION
We now discuss lessons learned and open research prob-

lems toward building a truly practical query pricing system.
Performance. As our experiments demonstrate, Query-

Market can price queries over small datasets interactively
and over medium-size datasets within a minute or two.
These query-pricing times are a first step toward a prac-
tical, automated query-pricing system, since they are much
faster than the current approach of calling the data seller to
negotiate a personalized data product. The ILP construc-
tion is the bottleneck step in query pricing, but QueryMar-
ket can use bucketization, as described in Subsection 4.3, to
reduce the number of price points and hence bring pricing
back to interactive speeds, with the tradeoff of increasing
the prices offered to the customers. Other optimizations
may also be possible including pricing independent queries
in parallel and combining ILP construction with ILP solving
to reduce total processing times. Overall, however, scaling
the pricing framework to datasets in the age of ”Big Data”
remains a challenging open problem.

We also learned that using history is critical in a dynamic
setting. Bundle pricing offers the best functionality, but we
discovered that it is too expensive. View pricing achieves a
good trade-off between price reduction and efficiency.

Another interesting open problem is whether a system like
QueryMarket could leverage approximations to give users an
idea of a query’s price without computing that price exactly
such as to enable subsecond approximate query pricing.

Finally, in a practical system, it may be necessary to price
queries based on both the value of the data and the cost of
the resources necessary to process these queries.

Towards full SQL support. The current version of
QueryMarket supports a large subset of SQL, but does not
support aggregation or negation. Since queries with nega-
tion can be non-monotone and QueryMarket exploits the
monotonicity property to compute a query price, using nega-
tion in queries would require new algorithms and theory for
pricing non-monotone queries. As far as aggregation queries
are concerned, the challenge is to fairly price such queries.
For example, to determine a query Q that sums up the at-

623

tribute X for the relation R(X), one must purchase all the
views of the form σX=a(R). Thus, Q’s cost under our frame-
work is the same as purchasing the relation R, even though
the sum operator offers significantly less information than
the whole relation. There has been some work on pricing
aggregates [15], but finding a way to integrate aggregation
in a way that correctly captures the information content re-
mains a challenging open problem.

Approximate Answers. A natural operation for a data
marketplace is to allow the user to ask queries with a bud-
get limit; if the query is above budget the system may re-
turn a good approximate answer (for example, a sample of
the answer, or some summarization of the query) that falls
within the given budget. This area opens several interesting
research questions, such as to find what are relevant approx-
imations of the queries, and further which one is the most
informative under a given budget.

Data Integration. QueryMarket currently ignores all is-
sues related to data integration. It can price queries across
data providers assuming that the query produces a correct
result. Interesting future work includes modeling and ac-
counting for data overlap between multiple vendors, mod-
eling differences in data quality and freshness across these
vendors, and perhaps offering credits, free samples, or dis-
counts whenever a buyer attempts to integrate datasets from
different vendors but fails to achieve a desired result.

9. RELATED WORK
The notion of pricing in databases has been studied in var-

ious contexts, including resource management [20] and phys-
ical tuning [12, 21]. The concept of pricing data, however,
has only recently emerged as a research topic [11, 17]. In this
latter context, a series of recent papers [13, 14, 15] developed
theoretical frameworks for flexible data pricing. Our paper
builds on this theoretical foundation, but is the first towards
a practical design and implementation of a pricing system.
More specifically, Koutris et al. [13] present and study a
formal framework for query-based pricing. Central to this
framework are the notions of arbitrage-free and discount-free
pricing. The authors explore in depth the case where the
price points are selections on single attributes, and present a
dichotomy on the complexity of pricing conjunctive queries
without self-joins into NP-complete and PTIME. Further
work [15] studies the same pricing framework in the case of
linear aggregate queries. In contrast, our work focuses on
developing and evaluating a practical system to price a large
class of queries that can be expressed as Unions of Conjunc-
tive Queries with interpreted predicates, while addressing
practical concerns related to dynamic environments.

Digital market services for data have recently emerged in
the cloud [1, 7]. Similar to our work, these services also
implement data pricing systems, but with simplistic pricing
schemes. In the case of Infochimps [7], the seller can ei-
ther specify and price selection queries or entire datasets.
On the Azure Marketplace [1], sellers specify parameter-
ized selection queries over the base data or over pre-defined
views. The prices are then set based on the number of out-
put records returned (subscriptions give users access to a
certain number of result pages in a month). Our pricing
system is more powerful, since it can automatically price a
much greater variety of queries.

There exist many independent vendors selling data on-
line [4, 3, 8, 5, 10]. They either use simple and limited

pricing options to sell data en masse or they negotiate cus-
tom products with individual buyers. Factual [4] offers their
data through APIs and charges based on the number of API
calls per day. Similarly, Xignite [10] sells data through an-
nual subscriptions that come with a monthly limit on the
number of returned records. Gnip [3] negotiates prices with
individual customers. Finally, Aggdata [5] uses fixed prices
for entire datasets or provides full access to their data library
for a flat subscription cost.

10. CONCLUSIONS
We presented QueryMarket, a system that automatically

prices a large class of SQL queries requested by buyers based
on price-points specified by sellers. QueryMarket supports
updates to the database and accounts for query history.
The system also supports multiple sellers by sharing rev-
enues fairly among them. Computing arbitrage-free prices
is theoretically hard, and we described a novel approach for
computing prices, by translating then into optimized Integer
Linear Programs (ILPs).

11. ACKNOWLEDGMENTS
This work is partially supported by the National Science

Foundation and Microsoft through NSF CiC grant CCF-
1047815 and NSF grant IIS-0915054.

12. REFERENCES
[1] datamarket.azure.com/.

[2] datamarket.azure.com/dataset/bing/microsofttranslator.

[3] gnip.com.

[4] http://www.factual.com/.

[5] www.aggdata.com/.

[6] www.gnu.org/software/glpk/.

[7] www.infochimps.com/marketplace.

[8] www.patientslikeme.com.

[9] www.wordfrequency.info.

[10] www.xignite.com/.

[11] M. Balazinska, B. Howe, and D. Suciu. Data markets in the
cloud: An opportunity for the database community. PVLDB,
4(12), 2011.

[12] D. Dash, V. Kantere, and A. Ailamaki. An economic model for
self-tuned cloud caching. In ICDE, pages 1687–1693, 2009.

[13] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Query-based data pricing. In PODS, pages 167–178.
ACM, 2012.

[14] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Querymarket demonstration: Pricing for online data
markets. PVLDB, 5(12):1962–1965, 2012.

[15] C. Li and G. Miklau. Pricing aggregate queries in a data
marketplace. In WebDB, 2012.

[16] K. Morton, R. Kosara, J. Mackinlay, M. Balazinska, and
D. Grossman. Masses of visualizations: An analysis of usage
patterns on many eyes and tableau public. Technical report,
2013.

[17] A. Muschalle, F. Stahl, A. Löser, and G. Vossen. Pricing
approaches for data markets. In BIRTE Workshop, 2012.

[18] A. Nash, L. Segoufin, and V. Vianu. Determinacy and rewriting
of conjunctive queries using views: A progress report. In ICDT,
pages 59–73, 2007.

[19] C. Shapiro and H. R. Varian. Versioning: The smart way to sell
information. Harvard Business Review, 76:106–114, 1998.

[20] Stonebraker et al. Mariposa: a wide-area distributed database
system. VLDB Journal, 5(1):048–063, 1996.

[21] P. Upadhyaya, M. Balazinska, and D. Suciu. How to price
shared optimizations in the cloud. PVLDB, 5(6):562–573, 2012.

624

datamarket.azure.com/
datamarket.azure.com/dataset/bing/microsofttranslator
gnip.com
http://www.factual.com/
www.aggdata.com/
www.gnu.org/software/glpk/
www.infochimps.com/marketplace
www.patientslikeme.com
www.wordfrequency.info
www.xignite.com/

	Introduction
	Background: Pricing Framework
	Alternative Pricing Models

	Problem Formulation
	A Practical Implementation of the Static Pricing Framework
	ILP for Full Conjunctive Queries
	Extensions
	Optimizing the ILP
	Independent Subproblems
	Problem Size Reduction
	Coarse-Grained Pricing

	Pricing in a Dynamic Setting
	History
	Updates

	Revenue Sharing
	Evaluation
	Evaluation of the ILP formulation
	Query History

	Discussion
	Related Work
	Conclusions
	Acknowledgments
	References

